Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood
Abstract
1. Introduction
1.1. Time and Accuracy in TMT-VR
1.2. Interaction Modalities in TMT-VR: Precision vs. Ergonomics
1.3. Study Aims and Scope
1.3.1. Research Questions
- Do input modes differentially affect speed and accuracy across the two age groups?
- Do usability, UX, and acceptability ratings differ by age?
- Does gaming experience moderate performance or usability?
1.3.2. Hypotheses
2. Materials and Methods
2.1. Participants
2.1.1. Gaming Skill Questionnaire (GSQ)
2.1.2. Cybersickness in VR Questionnaire (CSQ-VR)
2.2. Virtual Reality Apparatus
2.3. Development and Ergonomic Optimisation of the TMT-VR
2.3.1. Demographic and Technology-Use Form
2.3.2. Trail Making Test—Virtual Reality (TMT-VR)
2.3.3. Subjective Evaluation Scales of Usability, UX, and Acceptability
2.3.4. Procedure
2.3.5. Statistical Analysis
3. Results
3.1. Correlational Analyses
3.2. Task Performance (Mixed-Model ANOVAs)
3.2.1. Accuracy in Task A
3.2.2. Accuracy in Task B
3.2.3. Completion Time in Task A
3.2.4. Completion Time in Task B
3.2.5. Mistakes in Task A
3.2.6. Mistakes in Task B
3.3. Acceptability, Usability, and User Experience
4. Discussion
4.1. Interaction-Modality Effects on Task Performance
4.2. Participant Factors: Age and Gaming Background
4.3. Subjective Appraisals and Their Link to Objective Performance
4.4. Design and Clinical Implications
4.5. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tombaugh, T.N. Trail Making Test A and B: Normative Data Stratified by Age and Education. Arch. Clin. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An Immersive Virtual Reality Neuropsychological Battery with Enhanced Ecological Validity. J. Int. Neuropsychol. Soc. 2021, 27, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; MacPherson, S.E. How Immersive Virtual Reality Methods May Meet the Criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology: A Software Review of the Virtual Reality Everyday Assessment Lab (VR-EAL). Comput. Hum. Behav. Rep. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Faria, A.L.; Latorre, J.; Silva Cameirão, M.; Bermúdez i Badia, S.; Llorens, R. Ecologically Valid Virtual Reality-Based Technologies for Assessment and Rehabilitation of Acquired Brain Injury: A Systematic Review. Front. Psychol. 2023, 14, 1233346. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.D.A.; Alves, H.V.D.; Charchat-Fichman, H. The Most Frequently Used Tests for Assessing Executive Functions in Aging. Dement. Neuropsychol. 2015, 9, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual Reality in Neuroscience Research and Therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Duffield, T.; Asbee, J. A Comparison of Virtual Reality Classroom Continuous Performance Tests to Traditional Continuous Performance Tests in Delineating ADHD: A Meta-Analysis. Neuropsychol. Rev. 2019, 29, 338–356. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, F.; Noriega, P.; Duarte, E.; Soares, M. Using Virtual Reality to Assess User Experience. Hum. Factors 2012, 54, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Dulau, E.; Botha-Ravyse, C.R.; Luimula, M.; Markopoulos, P.; Markopoulos, E.; Tarkkanen, K. A Virtual Reality Game for Cognitive Impairment Screening in the Elderly: A User Perspective. In Proceedings of the 2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25 October 2019; pp. 403–410. [Google Scholar]
- Kourtesis, P. A Comprehensive Review of Multimodal XR Applications, Risks, and Ethical Challenges in the Metaverse. Multimodal Technol. Interact. 2024, 8, 98. [Google Scholar] [CrossRef]
- Kourtesis, P.; Korre, D.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Guidelines for the Development of Immersive Virtual Reality Software for Cognitive Neuroscience and Neuropsychology: The Development of Virtual Reality Everyday Assessment Lab (VR-EAL), a Neuropsychological Test Battery in Immersive Virtual Reality. Front. Comput. Sci. 2020, 1, 12. [Google Scholar] [CrossRef]
- Gounari, K.A.; Giatzoglou, E.; Kemm, R.; Beratis, I.N.; Nega, C.; Kourtesis, P. The Trail Making Test in Virtual Reality (TMT-VR): Examination of the Ecological Validity, Usability, Acceptability, and User Experience in Adults with ADHD. Psychiatr. Int. 2025, 6, 31. [Google Scholar] [CrossRef]
- Plancher, G.; Tirard, A.; Gyselinck, V.; Nicolas, S.; Piolino, P. Using Virtual Reality to Characterize Episodic Memory Profiles in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Influence of Active and Passive Encoding. Neuropsychologia 2012, 50, 592–602. [Google Scholar] [CrossRef] [PubMed]
- González-Erena, P.V.; Fernández-Guinea, S.; Kourtesis, P. Cognitive Assessment and Training in Extended Reality: Multimodal Systems, Clinical Utility, and Current Challenges. Encyclopedia 2025, 5, 8. [Google Scholar] [CrossRef]
- Pallavicini, F.; Pepe, A.; Minissi, M.E. Taking Neuropsychological Test to the Next Level: Commercial Virtual Reality Video Games for the Assessment of Executive Functions. In Universal Access in Human-Computer Interaction. Multimodality and Assistive Environments, Proceedings of the 13th International Conference, UAHCI 2019, Orlando, FL, USA, 26–31 July 2019; Antona, M., Stephanidis, C., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 133–149. [Google Scholar]
- Bowie, C.R.; Harvey, P.D. Administration and Interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.D.; Guhn, A.; Zeller, J.B.M.; Biehl, S.C.; Dresler, T.; Hahn, T.; Fallgatter, A.J.; Polak, T.; Deckert, J.; Herrmann, M.J. Neural Correlates of a Standardized Version of the Trail Making Test in Young and Elderly Adults: A Functional near-Infrared Spectroscopy Study. Neuropsychologia 2014, 56, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019, 13, 417. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.L.; Wyma, J.M.; Herron, T.J.; Yund, E.W. The Effects of Aging, Malingering, and Traumatic Brain Injury on Computerized Trail-Making Test Performance. PLoS ONE 2015, 10, e0124345. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.C.; Lim, J.E.; Allen, J.C.; Wong, W.T.; Quah, J.H.M.; Muthulakshmi, P.; Teh, T.A.; Lim, S.H.; Malhotra, R. Age-Related Performance in Using a Fully Immersive and Automated Virtual Reality System to Assess Cognitive Function. Front. Psychol. 2022, 13, 847590. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Nagano, A.; Seki, K.; Okahashi, S.; Kojima, M.; Luo, Z. Development of a Cognitive Function Test Using Virtual Reality Technology: Examination in Healthy Participants. Aging Neuropsychol. Cogn. 2018, 25, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.M.C.; Deeprose, C.; Terbeck, S. A Comparison of Immersive Virtual Reality with Traditional Neuropsychological Measures in the Assessment of Executive Functions. Acta Neuropsychiatr. 2018, 30, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, É.; Boller, B.; Corriveau-Lecavalier, N.; Cloutier, S.; Belleville, S. The Virtual Shop: A New Immersive Virtual Reality Environment and Scenario for the Assessment of Everyday Memory. J. Neurosci. Methods 2018, 303, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Plechatá, A.; Sahula, V.; Fayette, D.; Fajnerová, I. Age-Related Differences with Immersive and Non-Immersive Virtual Reality in Memory Assessment. Front. Psychol. 2019, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Linari, I.; Juantorena, G.E.; Ibáñez, A.; Petroni, A.; Kamienkowski, J.E. Unveiling Trail Making Test: Visual and Manual Trajectories Indexing Multiple Executive Processes. Sci. Rep. 2022, 12, 14265. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Lidor, R.; Levin, O. Reaction Time and Working Memory in Gamers and Non-Gamers. Sci. Rep. 2022, 12, 6798. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ayuso, D.; del Pino-González, A.; Torres-Jiménez, A.; Juan-González, J.; Celdrán, F.J.; Franchella, M.C.; Ortega-López, N.; Triviño-Juárez, J.M.; Garach-Gómez, A.; Arrabal-Fernández, L.; et al. Enhancing Ecological Validity: Virtual Reality Assessment of Executive Functioning in Children and Adolescents with ADHD. Children 2024, 11, 986. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.S.; Landau, A.N.; Shimamura, A.P. Action Video Game Experience Reduces the Cost of Switching Tasks. Atten. Percept. Psychophys. 2012, 74, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Han, J.; Choi, H.; Prié, Y.; Vigier, T.; Bulteau, S.; Kwon, G.H. Examining the Academic Trends in Neuropsychological Tests for Executive Functions Using Virtual Reality: Systematic Literature Review. JMIR Serious Games 2021, 9, e30249. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Vizcay, S.; Marchal, M.; Pacchierotti, C.; Argelaguet, F. Action-Specific Perception & Performance on a Fitts’s Law Task in Virtual Reality: The Role of Haptic Feedback. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3715–3726. [Google Scholar] [CrossRef] [PubMed]
- Giatzoglou, E.; Vorias, P.; Kemm, R.; Karayianni, I.; Nega, C.; Kourtesis, P. The Trail Making Test in Virtual Reality (TMT-VR): The Effects of Interaction Modes and Gaming Skills on Cognitive Performance of Young Adults. Appl. Sci. 2024, 14, 10010. [Google Scholar] [CrossRef]
- Hornsey, R.L.; Hibbard, P.B. Current Perceptions of Virtual Reality Technology. Appl. Sci. 2024, 14, 4222. [Google Scholar] [CrossRef]
- Stadler, S.; Cornet, H.; Frenkler, F. A Study in Virtual Reality on (Non-)Gamers’ Attitudes and Behaviors. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1169–1170. [Google Scholar]
- Lobato-Camacho, F.J.; López, J.C.; Vargas, J.P. Virtual Reality Evaluation of the Spatial Learning Strategies in Gamers. Multimed. Tools Appl. 2023, 83, 38127–38144. [Google Scholar] [CrossRef]
- Xu, W.; Wei, Y.; Hu, X.; Stuerzlinger, W.; Wang, Y.; Liang, H.N. Predicting Ray Pointer Landing Poses in VR Using Multimodal LSTM-Based Neural Networks. In Proceedings of the 2025 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Saint Malo, France, 8–12 March 2025; pp. 93–103. [Google Scholar]
- Wei, Y.; Shi, R.; Yu, D.; Wang, Y.; Li, Y.; Yu, L.; Liang, H.N. Predicting Gaze-Based Target Selection in Augmented Reality Headsets Based on Eye and Head Endpoint Distributions. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Pittsburgh, PA, USA, 13–16 October 2025; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar]
- Henrikson, R.; Grossman, T.; Trowbridge, S.; Wigdor, D.; Benko, H. Head-Coupled Kinematic Template Matching: A Prediction Model for Ray Pointing in VR. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–14. [Google Scholar]
- Yu, D.; Lu, X.; Shi, R.; Liang, H.N.; Dingler, T.; Velloso, E.; Goncalves, J. Gaze-Supported 3D Object Manipulation in Virtual Reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
- Carter, B.T.; Luke, S.G. Best Practices in Eye Tracking Research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Majaranta, P.; Bulling, A. Eye Tracking and Eye-Based Human–Computer Interaction. In Advances in Physiological Computing; Fairclough, S.H., Gilleade, K., Eds.; Human–Computer Interaction Series; Springer: London, UK, 2014; pp. 39–65. ISBN 978-1-4471-6391-6. [Google Scholar]
- Blattgerste, J.; Renner, P.; Pfeiffer, T. Advantages of Eye-Gaze over Head-Gaze-Based Selection in Virtual and Augmented Reality under Varying Field of Views. In Proceedings of ETRA ‘18: 2018 Symposium on Eye Tracking Research and Applications, Warsaw, Poland, 15 June 2018; Acm: New York, NY, USA, 2018. [Google Scholar]
- Llanes-Jurado, J.; Marín-Morales, J.; Guixeres, J.; Alcañiz, M. Development and Calibration of an Eye-Tracking Fixation Identification Algorithm for Immersive Virtual Reality. Sensors 2020, 20, 4956. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.S.; Murdison, T.S.; Schuetz, I.; Komogortsev, O.; Proulx, M.J. The Effect of Degraded Eye Tracking Accuracy on Interactions in VR. In Proceedings of the 2024 Symposium on Eye Tracking Research and Applications, Glasgow, UK, 4–7 June 2024; ACM: New York, NY, USA, 2024; pp. 1–7. [Google Scholar]
- Deng, C.L.; Tian, C.Y.; Kuai, S.G. A Combination of Eye-Gaze and Head-Gaze Interactions Improves Efficiency and User Experience in an Object Positioning Task in Virtual Environments. Appl. Ergon. 2022, 103, 103785. [Google Scholar] [CrossRef] [PubMed]
- Sidenmark, L.; Prummer, F.; Newn, J.; Gellersen, H. Comparing Gaze, Head and Controller Selection of Dynamically Revealed Targets in Head-Mounted Displays. IEEE Trans. Visual. Comput. Graph. 2023, 29, 4740–4750. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 236866. [Google Scholar] [CrossRef]
- Moreno-Arjonilla, J.; López-Ruiz, A.; Jiménez-Pérez, J.R.; Callejas-Aguilera, J.E.; Jurado, J.M. Eye-Tracking on Virtual Reality: A Survey. Virtual Real. 2024, 28, 38. [Google Scholar] [CrossRef]
- O’Hara, E.; Al-Bayati, R.; Chiu, M.; Dubrowski, A. User Experience Testing of the Meta Quest 2 for Integration with the Virtual Reality Simulation for Dementia Coaching, Advocacy, Respite, Education, Relationship, and Simulation (VR-SIM CARERS) Program. Cureus 2024, 16, e66314. [Google Scholar] [CrossRef] [PubMed]
- Gabel, J.; Schmidt, S.; Ariza, O.; Steinicke, F. Redirecting Rays: Evaluation of Assistive Raycasting Techniques in Virtual Reality. In Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technology, Christchurch, New Zealand, 9–11 October 2023; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar]
- Schuetz, I.; Baltaretu, B.R.; Fiehler, K. Where Was This Thing Again? Evaluating Methods to Indicate Remembered Object Positions in Virtual Reality. J. Vis. 2024, 24, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, D.; Zhang, S.; Huang, Y.; Wang, Z.; Fan, M. Toward Making Virtual Reality (VR) More Inclusive for Older Adults: Investigating Aging Effect on Target Selection and Manipulation Tasks in VR. In Proceedings of the Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; ACM: New York, NY, USA, 2024; pp. 1–17. [Google Scholar]
- Esteves, A.; Shin, Y.; Oakley, I. Comparing Selection Mechanisms for Gaze Input Techniques in Head-Mounted Displays. Int. J. Hum. Comput. Stud. 2020, 139, 102414. [Google Scholar] [CrossRef]
- Zioga, T.; Ferentinos, A.; Konsolaki, E.; Nega, C.; Kourtesis, P. Video Game Skills across Diverse Genres and Cognitive Functioning in Early Adulthood: Verbal and Visuospatial Short-Term and Working Memory, Hand–Eye Coordination, and Empathy. Behav. Sci. 2024, 14, 874. [Google Scholar] [CrossRef] [PubMed]
- Zioga, T.; Nega, C.; Roussos, P.; Kourtesis, P. Validation of the Gaming Skills Questionnaire in Adolescence: Effects of Gaming Skills on Cognitive and Affective Functioning. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 722–752. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Linnell, J.; Amir, R.; Argelaguet, F.; MacPherson, S.E. Cybersickness in Virtual Reality Questionnaire (CSQ-VR): A Validation and Comparison against SSQ and VRSQ. Virtual Worlds 2023, 2, 16–35. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Technological Competence Is a Pre-Condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Front. Hum. Neurosci. 2019, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.; Cheng, Y.F.; Möbus, M.; Fender, A.; Holz, C. Controllers or Bare Hands? A Controlled Evaluation of Input Techniques on Interaction Performance and Exertion in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2023, 29, 4633–4643. [Google Scholar] [CrossRef] [PubMed]
- ISO 9241-210:2019(En); Ergonomics of Human-System Interaction—Part 210: Human-Centred Design for Interactive Systems. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:9241:-210:ed-2:v1:en (accessed on 15 April 2025).
- Argelaguet, F.; Andujar, C. A Survey of 3D Object Selection Techniques for Virtual Environments. Comput. Graph. 2013, 37, 121–136. [Google Scholar] [CrossRef]
- Mohan, P.; Goh, W.B.; Fu, C.W.; Yeung, S.K. DualGaze: Addressing the Midas Touch Problem in Gaze Mediated VR Interaction. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Ichihara, Y.G.; Okabe, M.; Iga, K.; Tanaka, Y.; Musha, K.; Ito, K. Color Universal Design: The Selection of Four Easily Distinguishable Colors for All Color Vision Types. In Proceedings of the Color Imaging XIII: Processing, Hardcopy, and Applications, San Jose, CA, USA, 27–31 January 2008; Eschbach, R., Marcu, G.G., Tominaga, S., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 6807, pp. 206–213. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum. Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Brooke, J. SUS: A Retrospective. J. Usabil. Stud. 2013, 8, 29–40. [Google Scholar]
- Schrepp, M.; Thomaschewski, J.; Hinderks, A. Design and Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S). Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 103–108. [Google Scholar] [CrossRef]
- Hirani, S.P.; Rixon, L.; Beynon, M.; Cartwright, M.; Cleanthous, S.; Selva, A.; Sanders, C.; Newman, S.P. Quantifying Beliefs Regarding Telehealth: Development of the Whole Systems Demonstrator Service User Technology Acceptability Questionnaire. J. Telemed. Telecare 2017, 23, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Kouklari, E.-C.; Roussos, P.; Mantas, V.; Papanikolaou, K.; Skaloumbakas, C.; Pehlivanidis, A. Virtual Reality Training of Social Skills in Adults with Autism Spectrum Disorder: An Examination of Acceptability, Usability, User Experience, Social Skills, and Executive Functions. Behav. Sci. 2023, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R.; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Peterson, R.A.; Cavanaugh, J.E. Ordered Quantile Normalization: A Semiparametric Transformation Built for the Cross-Validation Era. J. Appl. Statist. 2020, 47, 2312–2327. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2; Use R!; Springer International Publishing: Cham, Germany, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix, Version 0.84; 2024. Available online: https://cran.r-project.org/web//packages/corrplot/corrplot.pdf (accessed on 23 June 2025).
- Singmann, H.; Bolker, B.; Westfall, J.; Aust, F.; Ben-Shachar, M.S. Afex: Analysis of Factorial Experiments; 2021. Available online: https://cran.r-project.org/web//packages/afex/afex.pdf (accessed on 23 June 2025).
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means, version 1.8.5.; 2022. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 23 June 2025).
- Clay, V.; König, P.; König, S. Eye Tracking in Virtual Reality. J. Eye Mov. Res. 2019, 12, 10–16910. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Chen, X. Comparison of Eye-Based and Controller-Based Selection in Virtual Reality. Int. J. Hum. Comput. Interact. 2021, 37, 484–495. [Google Scholar] [CrossRef]
- Kim, J.; Palmisano, S.; Luu, W.; Iwasaki, S. Effects of Linear Visual-Vestibular Conflict on Presence, Perceived Scene Stability and Cybersickness in the Oculus Go and Oculus Quest. Front. Virtual Real. 2021, 2, 582156. [Google Scholar] [CrossRef]
- Salthouse, T.A. When Does Age-Related Cognitive Decline Begin? Neurobiol. Aging 2009, 30, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Boot, W.R.; Kramer, A.F.; Simons, D.J.; Fabiani, M.; Gratton, G. The Effects of Video Game Playing on Attention, Memory, and Executive Control. Acta Psychol. 2008, 129, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Sagnier, C.; Loup-Escande, E.; Lourdeaux, D.; Thouvenin, I.; Valléry, G. User Acceptance of Virtual Reality: An Extended Technology Acceptance Model. Int. J. Hum. Comput. Interact. 2020, 36, 993–1007. [Google Scholar] [CrossRef]
- Kim, S.; Koo, M.; Nam, K. Game Experience Leads to Improvement in Cognitive Functioning of the Early Middle-Aged Adults in Contrast with the Young-Aged Adults. Comput. Hum. Behav. 2022, 129, 107153. [Google Scholar] [CrossRef]
- Díaz-Barrancas, F.; Rodríguez, R.G.; Bayer, F.S.; Aizenman, A.; Gegenfurtner, K.R. High-Fidelity Color Characterization in Virtual Reality across Head Mounted Displays, Game Engines, and Materials. Opt. Express 2024, 32, 22388–22409. [Google Scholar] [CrossRef] [PubMed]
- Papaefthymiou, S.; Giannakopoulos, A.; Roussos, P.; Kourtesis, P. Mitigating Cybersickness in Virtual Reality: Impact of Eye–Hand Coordination Tasks, Immersion, and Gaming Skills. Virtual Worlds 2024, 3, 506–535. [Google Scholar] [CrossRef]
- Porcino, T.M.; Clua, E.; Trevisan, D.; Vasconcelos, C.N.; Valente, L. Minimizing Cyber Sickness in Head Mounted Display Systems: Design Guidelines and Applications. In Proceedings of the 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth, WA, Australia, 2–4 April 2017; pp. 1–6. [Google Scholar]
- Schaumburg, M.; Imtiaz, A.; Zhou, R.; Bernard, M.; Wolbers, T.; Segen, V. Immersive Virtual Reality for Older Adults: Challenges and Solutions in Basic Research and Clinical Applications. Ageing Res. Rev. 2025, 109, 102771. [Google Scholar] [CrossRef] [PubMed]
- Avinç, E.; Doğan, F. Digital Literacy Scale: Validity and Reliability Study with the Rasch Model. Educ. Inf. Technol. 2024, 29, 22895–22941. [Google Scholar] [CrossRef]
- Marini, M.R.; Mocerino, L.; Leopardi, L.; Malatesta, S.G.; Cinque, L. WSUS: A Novel Usability Metric Based on SUS for VR-Based Tasks in Cultural Heritage Contexts. In Proceedings of the 2024 10th International Conference on Virtual Reality (ICVR), Bournemouth, UK, 24–26 July 2024; pp. 347–355. [Google Scholar]
Variable | Age Group | Gaming Level | Mean (SD) | Range |
---|---|---|---|---|
Age | Middle | High | 40.90 (3.76) | 35–48 |
Young | High | 23.65 (2.43) | 19–29 | |
Middle | Low | 44.21 (5.45) | 35–56 | |
Young | Low | 23.32 (2.89) | 19–29 | |
Education | Middle | High | 16.90 (2.64) | 12–22 |
Young | High | 16.50 (1.08) | 14–18 | |
Middle | Low | 17.16 (2.84) | 12–24 | |
Young | Low | 16.63 (2.27) | 14–20 | |
PC | Middle | High | 10.37 (0.99) | 8–12 |
Young | High | 10.15 (0.92) | 8–12 | |
Middle | Low | 9.95 (1.11) | 8–12 | |
Young | Low | 9.26 (1.30) | 6–11 | |
SMART | Middle | High | 10.21 (1.21) | 8–12 |
Young | High | 9.85 (1.47) | 6–11 | |
Middle | Low | 9.84 (1.05) | 8–12 | |
Young | Low | 10.05 (1.41) | 7–12 | |
VR | Middle | High | 3.58 (1.55) | 2–7 |
Young | High | 2.35 (0.58) | 2–4 | |
Middle | Low | 2.42 (0.68) | 2–4 | |
Young | Low | 2.26 (0.44) | 2–3 |
Variable | Age Group | Gaming Level | Mean (SD) | Range |
---|---|---|---|---|
SPORT | Middle | High | 6.16 (2.10) | 2–10 |
Young | High | 4.90 (2.14) | 2–10 | |
Middle | Low | 2.68 (0.93) | 2–5 | |
Young | Low | 2.32 (0.47) | 2–3 | |
FPS | Middle | High | 4.90 (2.74) | 2–10 |
Young | High | 5.55 (2.31) | 3–10 | |
Middle | Low | 2.42 (1.24) | 2–6 | |
Young | Low | 2.37 (0.49) | 2–3 | |
RPG | Middle | High | 4.16 (2.86) | 2–11 |
Young | High | 5.05 (2.64) | 2–10 | |
Middle | Low | 2.00 (0.00) | 2–2 | |
Young | Low | 2.00 (0.00) | 2–2 | |
Action | Middle | High | 6.05 (2.50) | 2–10 |
Young | High | 4.45 (1.90) | 2–8 | |
Middle | Low | 2.00 (0.00) | 2–2 | |
Young | Low | 2.53 (0.89) | 2–5 | |
Strategy | Middle | High | 4.05 (1.11) | 2–6 |
Young | High | 3.45 (1.76) | 2–8 | |
Middle | Low | 2.00 (0.00) | 2–2 | |
Young | Low | 2.00 (0.00) | 2–2 | |
Puzzle | Middle | High | 5.37 (3.04) | 2–12 |
Young | High | 3.70 (1.69) | 2–7 | |
Middle | Low | 2.63 (1.28) | 2–6 | |
Young | Low | 2.21 (0.41) | 2–3 |
Gender | Age Group | N | % |
---|---|---|---|
Female | Middle | 21 | 27.3% |
Young | 23 | 29.9% | |
Male | Middle | 17 | 22.1% |
Young | 16 | 20.8% |
Task Time A | Task Time B | Accuracy A | Accuracy B | Mistakes A | Mistakes B | |
---|---|---|---|---|---|---|
Age | 0.228 *** | 0.250 *** | 0.642 *** | 0.596 *** | 0.514 *** | 0.249 *** |
Education | 0.023 | −0.041 | 0.059 | 0.053 | 0.104 | −0.039 |
GSQ | 0.051 | 0.057 | 0.097 | −0.001 | −0.087 | −0.047 |
UX | 0.023 | 0.111 | −0.264 *** | −0.279 *** | −0.212 ** | 0.093 |
Usability | −0.028 | −0.020 | 0.000 | −0.061 | −0.149 * | −0.097 |
Acceptability | −0.021 | −0.059 | −0.154 * | −0.092 | −0.129 * | −0.010 |
PC | 0.038 | −0.019 | 0.166 * | 0.154 * | 0.088 | −0.009 |
SMART | 0.009 ** | −0.055 | 0.131 * | 0.044 | 0.072 | −0.120 |
VR | 0.179 ** | 0.190 ** | 0.333 *** | 0.264 *** | 0.155 * | 0.078 |
UX | Usability | Acceptability | |
---|---|---|---|
Age | 0.182 * | −0.177 ** | 0.191 ** |
Education | −0.125 | 0.006 | 0.129 |
GSQ | −0.125 | 0.167 * | 0.055 |
PC | 0.155 * | 0.217 *** | 0.243 *** |
SMART | 0.136 * | 0.334 *** | 0.419 *** |
Interaction Mode | Mean (SD) | Range | |
---|---|---|---|
Accuracy A | Eye | 22.04 (7.22) | 15.0–32.2 |
Hand | 22.86 (7.98) | 15.3–38.0 | |
Head | 22.48 (7.73) | 15.1–37.8 | |
All | 22.46 (7.62) | 15.0–38.0 | |
Accuracy B | Eye | 22.19 (7.48) | 14.9–35.0 |
Hand | 22.53 (7.65) | 15.3–35.9 | |
Head | 22.31 (7.48) | 15.1–33.7 | |
All | 22.34 (7.51) | 14.9–35.9 | |
Task Time A | Eye | 78.90 (22.08) | 38.0–149.2 |
Hand | 87.49 (20.17) | 36.3–136.8 | |
Head | 76.76 (19.91) | 45.9–135.1 | |
All | 81.05 (21.17) | 36.3–149.2 | |
Task Time B | Eye | 94.23 (34.13) | 46.1–288.5 |
Hand | 101.89 (29.70) | 48.7–206.9 | |
Head | 88.66 (24.12) | 32.8–144.5 | |
All | 94.93 (29.97) | 32.8–288.5 | |
Mistakes A | Eye | 2.06 (3.08) | 0–11 |
Hand | 1.47 (2.00) | 0–8 | |
Head | 1.12 (1.56) | 0–7 | |
All | 1.55 (2.32) | 0–11 | |
Mistakes B | Eye | 2.62 (3.28) | 0–12 |
Hand | 1.87 (2.87) | 0–12 | |
Head | 1.65 (1.58) | 0–8 | |
All | 2.05 (2.69) | 0–12 |
Gaming Level | Age Group | Mean (SD) | SD | |
---|---|---|---|---|
Accuracy A | High | Middle | 30.06 (4.46) | 16.9–38.0 |
Young | 15.61 (0.28) | 15.1–16.3 | ||
Low | Middle | 28.93 (4.37) | 16.7–34.5 | |
Young | 15.60 (0.27) | 15.0–16.3 | ||
Both | Middle | 29.49 (4.43) | 16.7–38.0 | |
Young | 15.61 (0.27) | 15.0–16.3 | ||
Accuracy B | High | Middle | 29.28 (4.07) | 17.0–35.9 |
Young | 15.57 (0.27) | 14.9–16.2 | ||
Low | Middle | 29.29 (4.60) | 16.3–33.5 | |
Young | 15.59 (0.22) | 15.2–16.1 | ||
Both | Middle | 29.28 (4.32) | 16.3–35.9 | |
Young | 15.58 (0.25) | 14.9–16.2 | ||
Task Time A | High | Middle | 92.03 (23.23) | 38.0–149.2 |
Young | 73.20 (17.10) | 42.3–120.0 | ||
Low | Middle | 83.58 (21.57) | 36.3–136.8 | |
Young | 75.81 (17.45) | 43.1–119.5 | ||
Both | Middle | 87.81 (22.71) | 36.3–149.2 | |
Young | 74.47 (17.24) | 42.3–120.0 | ||
Task Time B | High | Middle | 108.14 (40.59) | 32.8–288.5 |
Young | 85.95 (22.05) | 45.6–150.9 | ||
Low | Middle | 100.10 (23.99) | 64.7–162.3 | |
Young | 86.00 (24.12) | 48.5–144.9 | ||
Both | Middle | 104.12 (33.43) | 32.8–288.5 | |
Young | 85.98 (22.98) | 45.6–150.9 | ||
Mistakes A | High | Middle | 2.70 (2.62) | 0–11 |
Young | 0.25 (0.88) | 0–5 | ||
Low | Middle | 2.95 (2.73) | 0–11 | |
Young | 0.37 (0.72) | 0–3 | ||
Both | Middle | 2.83 (2.67) | 0–11 | |
Young | 0.31 (0.80) | 0–5 | ||
Mistakes B | High | Middle | 2.75 (3.57) | 0–12 |
Young | 1.12 (1.43) | 0–5 | ||
Low | Middle | 2.91 (2.87) | 0–12 | |
Young | 1.46 (2.05) | 0–10 | ||
Both | Middle | 2.83 (3.22) | 0–12 | |
Young | 1.28 (1.76) | 0–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourtesis, P.; Giatzoglou, E.; Vorias, P.; Gounari, K.A.; Orfanidou, E.; Nega, C. Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood. Multimodal Technol. Interact. 2025, 9, 76. https://doi.org/10.3390/mti9080076
Kourtesis P, Giatzoglou E, Vorias P, Gounari KA, Orfanidou E, Nega C. Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood. Multimodal Technologies and Interaction. 2025; 9(8):76. https://doi.org/10.3390/mti9080076
Chicago/Turabian StyleKourtesis, Panagiotis, Evgenia Giatzoglou, Panagiotis Vorias, Katerina Alkisti Gounari, Eleni Orfanidou, and Chrysanthi Nega. 2025. "Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood" Multimodal Technologies and Interaction 9, no. 8: 76. https://doi.org/10.3390/mti9080076
APA StyleKourtesis, P., Giatzoglou, E., Vorias, P., Gounari, K. A., Orfanidou, E., & Nega, C. (2025). Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood. Multimodal Technologies and Interaction, 9(8), 76. https://doi.org/10.3390/mti9080076