Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,799)

Search Parameters:
Keywords = site contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17158 KiB  
Article
Deep Learning Strategy for UAV-Based Multi-Class Damage Detection on Railway Bridges Using U-Net with Different Loss Functions
by Yong-Hyoun Na and Doo-Kie Kim
Appl. Sci. 2025, 15(15), 8719; https://doi.org/10.3390/app15158719 (registering DOI) - 7 Aug 2025
Abstract
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves [...] Read more.
Periodic visual inspections are currently conducted to maintain the condition of railway bridges. These inspections rely on direct visual assessments by human inspectors, often requiring specialized equipment such as aerial ladders. However, this method is not only time-consuming and costly but also involves significant safety risks. Therefore, there is a growing need for a more efficient and reliable alternative to traditional visual inspections of railway bridges. In this study, we evaluated and compared the performance of damage detection using U-Net-based deep learning models on images captured by unmanned aerial vehicles (UAVs). The target damage types include cracks, concrete spalling and delamination, water leakage, exposed reinforcement, and paint peeling. To enable multi-class segmentation, the U-Net model was trained using three different loss functions: Cross-Entropy Loss, Focal Loss, and Intersection over Union (IoU) Loss. We compared these methods to determine their ability to distinguish actual structural damage from environmental factors and surface contamination, particularly under real-world site conditions. The results showed that the U-Net model trained with IoU Loss outperformed the others in terms of detection accuracy. When applied to field inspection scenarios, this approach demonstrates strong potential for objective and precise damage detection. Furthermore, the use of UAVs in the inspection process is expected to significantly reduce both time and cost in railway infrastructure maintenance. Future research will focus on extending the detection capabilities to additional damage types such as efflorescence and corrosion, aiming to ultimately replace manual visual inspections of railway bridge surfaces with deep-learning-based methods. Full article
Show Figures

Figure 1

26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

17 pages, 972 KiB  
Article
A Preliminary Investigation into Heavy Metal Tolerance in Pseudomonas Isolates: Does the Isolation Site Have an Effect?
by Alessandro De Santis, Antonio Bevilacqua, Angela Racioppo, Barbara Speranza, Maria Rosaria Corbo, Clelia Altieri and Milena Sinigaglia
Agriculture 2025, 15(15), 1692; https://doi.org/10.3390/agriculture15151692 - 5 Aug 2025
Abstract
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH [...] Read more.
One hundred presumptive Pseudomonas isolates, recovered from 15 sites impacted by anthropogenic activity in the Foggia district (Italy), were screened for key adaptive and functional traits important for environmental applications. The isolates were phenotypically characterized for their ability to grow under combined pH (5.0–8.0) and temperature (15–37 °C) conditions, to produce proteolytic enzymes, pigments, and exopolysaccharides, and to tolerate SDS. Moreover, the resistance to six environmentally relevant heavy metals (Cd, Co, Cu, Ni, Zn, As) was qualitatively assessed. The results highlighted wide inter-strain variability, with distinct clusters of isolates showing unique combinations of stress tolerance, enzymatic potential, and resistance profile. PERMANOVA analysis revealed significant effects of both the isolation site and the metal type, as well as their interaction, on the observed resistance patterns. A subset of isolates showed co-tolerance to elevated temperatures and heavy metals. These findings offer an initial yet insightful overview of the adaptive diversity of soil-derived Pseudomonas, laying the groundwork for the rational selection of strains for bioaugmentation in contaminated soils. Full article
Show Figures

Figure 1

24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Viewed by 43
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

31 pages, 5440 KiB  
Article
Canals, Contaminants, and Connections: Exploring the Urban Exposome in a Tropical River System
by Alan D. Ziegler, Theodora H. Y. Lee, Khajornkiat Srinuansom, Teppitag Boonta, Jongkon Promya and Richard D. Webster
Urban Sci. 2025, 9(8), 302; https://doi.org/10.3390/urbansci9080302 - 4 Aug 2025
Viewed by 90
Abstract
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 [...] Read more.
Emerging and persistent contaminants (EPCs) were detected at high concentrations in Chiang Mai’s Mae Kha Canal, identifying urban waterways as important sources of pollution in the Ping River system in northern Thailand. Maximum levels of metformin (20,000 ng/L), fexofenadine (15,900 ng/L), gabapentin (12,300 ng/L), sucralose (38,000 ng/L), and acesulfame (23,000 ng/L) point to inadequately treated wastewater as a plausible contributor. Downstream enrichment patterns relative to upstream sites highlight the cumulative impact of urban runoff. Five compounds—acesulfame, gemfibrozil, fexofenadine, TBEP, and caffeine—consistently emerged as reliable tracers of urban wastewater, forming a distinct chemical fingerprint of the riverine exposome. Median EPC concentrations were highest in Mae Kha, lower in other urban canals, and declined with distance from the city, reflecting spatial gradients in urban density and pollution intensity. Although most detected concentrations fell below predicted no-effect thresholds, ibuprofen frequently approached or exceeded ecotoxicological benchmarks and may represent a compound of ecological concern. Non-targeted analysis revealed a broader “chemical cocktail” of unregulated substances—illustrating a witches’ brew of pollution that likely escapes standard monitoring efforts. These findings demonstrate the utility of wide-scope surveillance for identifying key compounds, contamination hotspots, and spatial gradients in mixed-use watersheds. They also highlight the need for integrated, long-term monitoring strategies that address diffuse, compound mixtures to safeguard freshwater ecosystems in rapidly urbanizing regions. Full article
Show Figures

Figure 1

30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 - 2 Aug 2025
Viewed by 345
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

12 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 248
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 - 1 Aug 2025
Viewed by 227
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 254
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Viewed by 181
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 397
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 204
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

21 pages, 799 KiB  
Review
The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR
by Lottie Brown, Mario Cruciani, Charles Oliver Morton, Alexandre Alanio, Rosemary A. Barnes, J. Peter Donnelly, Ferry Hagen, Rebecca Gorton, Michaela Lackner, Juergen Loeffler, Laurence Millon, Riina Rautemaa-Richardson and P. Lewis White
Diagnostics 2025, 15(15), 1909; https://doi.org/10.3390/diagnostics15151909 - 30 Jul 2025
Viewed by 565
Abstract
Background: Polymerase chain reaction (PCR) is highly sensitive and specific for the rapid diagnosis of invasive fungal disease (IFD) but is not yet widely implemented due to concerns regarding limited standardisation between assays, the lack of commercial options and the absence of [...] Read more.
Background: Polymerase chain reaction (PCR) is highly sensitive and specific for the rapid diagnosis of invasive fungal disease (IFD) but is not yet widely implemented due to concerns regarding limited standardisation between assays, the lack of commercial options and the absence of clear guidance on interpreting results. Objectives and Methods: This review provides an update on technical and clinical aspects of PCR for the diagnosis of the most pertinent fungal pathogens, including Aspergillus, Candida, Pneumocystis jirovecii, Mucorales spp., and endemic mycoses. Summary: Recent meta-analyses have demonstrated that quantitative PCR (qPCR) offers high sensitivity for diagnosing IFD, surpassing conventional microscopy, culture and most serological tests. The reported specificity of qPCR is likely underestimated due to comparison with imperfect reference standards with variable sensitivity. Although the very low limit of detection of qPCR can generate false positive results due to procedural contamination or patient colonisation (particularly in pulmonary specimens), the rates are comparable to those observed for biomarker testing. When interpreting qPCR results, it is essential to consider the pre-test probability, determined by the patient population, host factors, clinical presentation and risk factors. For patients with low to moderate pre-test probability, the use of sensitive molecular tests, often in conjunction with serological testing or biomarkers, can effectively exclude IFD when all tests return negative results, reducing the need for empirical antifungal therapy. Conversely, for patients with high pre-test probability and clinical features of IFD, qPCR testing on invasive specimens from the site of infection (such as tissue or bronchoalveolar lavage fluid) can confidently rule in the disease. The development of next-generation sequencing methods to detect fungal infection has the potential to enhance the diagnosis of IFD, but standardisation and optimisation are essential, with improved accessibility underpinning clinical utility. Full article
Show Figures

Figure 1

24 pages, 2240 KiB  
Article
Yeast Diversity on Sandy Lake Beaches Used for Recreation in Olsztyn, Poland
by Tomasz Bałabański, Anna Biedunkiewicz and Jan P. Jastrzębski
Pathogens 2025, 14(8), 744; https://doi.org/10.3390/pathogens14080744 - 29 Jul 2025
Viewed by 566
Abstract
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and [...] Read more.
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and transmission of yeasts, posing an increasing sanitary and epidemiological risk. The aim of this study was to determine the species and quantitative composition of potentially pathogenic and pathogenic yeasts for humans present in the sand of supervised and unsupervised beaches along the shores of lakes in the city of Olsztyn (northeastern Poland). The study material consisted of sand samples collected during two summer seasons (2019; 2020) from 12 research sites on sandy beaches of four lakes located within the administrative boundaries of Olsztyn. Standard isolation and identification methods used in diagnostic mycological laboratories were applied and are described in detail in the following sections of this study. A total of 259 yeast isolates (264, counting species in two-species isolates separately) belonging to 62 species representing 47 genera were obtained during the study. Among all the isolates, five were identified as mixed (two species from a single colony). Eight isolated species were classified into biosafety level 2 (BSL-2) and risk group 2 (RG-2). The highest average number of viable yeast cells was found in sand samples collected in July 2019 (5.56 × 102 CFU/g), August, and September 2020 (1.03 × 103 CFU/g and 1.94 × 103 CFU/g, respectively). The lowest concentrations were in samples collected in April, September, and October 2019, and October 2020 (1.48 × 102 CFU/g, 1.47 × 102 CFU/g, 1.40 × 102 CFU/g, and 1.40 × 102 CFU/g, respectively). The results indicate sand contamination with yeasts that may pose etiological factors for human mycoses. In light of these findings, continuous sanitary-epidemiological monitoring of beach sand and further studies on its mycological cleanliness are warranted, along with actions leading to appropriate legal regulations. Full article
Show Figures

Graphical abstract

Back to TopTop