Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = single-leg jump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1632 KiB  
Article
Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
by Mariola Gepfert, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz and Adam Zając
J. Funct. Morphol. Kinesiol. 2025, 10(3), 304; https://doi.org/10.3390/jfmk10030304 - 5 Aug 2025
Abstract
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to [...] Read more.
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to either an experimental group (n = 15), which supplemented their regular badminton training with plyometric exercises, or a control group (n = 15), which continued standard technical training. Performance assessments included squat jump (SJ), countermovement jump (CMJ), single-leg jumps, sprint tests (5 m, 10 m), lateral movements, musculotendinous stiffness, and RSI measurements. Results: The experimental group showed statistically significant improvements in jump height, power output, stiffness, and 10 m sprint and lateral slide-step performance (p < 0.05), with large effect sizes. No significant changes were observed in the control group. Single-leg jump improvements suggested potential benefits for addressing lower-limb asymmetries. Conclusions: An 8-week plyometric intervention significantly enhanced lower-limb explosive performance and multidirectional movement capabilities in young badminton players. These findings support the integration of targeted plyometric training into regular training programs to optimize physical performance, improve movement efficiency, and potentially reduce injury risk in high-intensity racket sports. Full article
Show Figures

Figure 1

14 pages, 257 KiB  
Article
Mental and Physical Health of Chinese College Students After Shanghai Lockdown: An Exploratory Study
by Jingyu Sun, Rongji Zhao and Antonio Cicchella
Healthcare 2025, 13(15), 1864; https://doi.org/10.3390/healthcare13151864 - 30 Jul 2025
Viewed by 248
Abstract
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, [...] Read more.
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, with females often more vulnerable to mental health issues. Objective: This study aimed to comprehensively assess the physical and psychological health of Chinese college students post-lockdown, focusing on the relationship between stress, anxiety, depression, sleep patterns, and physical health, with a particular emphasis on gender differences. Methods: We conducted a cross-sectional study involving 116 students in Shanghai, utilizing psychological scales (HAMA, IPAQ, PSQI, SDS, FS 14, PSS, SF-36) and physical fitness tests (resting heart rate, blood pressure, hand grip, forced vital capacity, standing long jump, sit-and-reach, one-minute sit-up test and the one-minute squat test, single-leg stand test with eyes closed), to analyze health and behavior during the pandemic lockdown. All students have undergone the same life habits during the pandemic. Results: The HAMA scores indicated no significant levels of physical or mental anxiety. The PSS results (42.45 ± 8.93) reflected a high overall stress level. Furthermore, the PSQI scores (5.4 ± 2.91) suggested that the participants experienced mild insomnia. The IPAQ scores indicated higher levels of job-related activity (1261.49 ± 2144.58), transportation activity (1253.65 ± 987.57), walking intensity (1580.78 ± 1412.20), and moderate-intensity activity (1353.03 ± 1675.27) among college students following the lockdown. Hand grip strength (right) (p = 0.001), sit-and-reach test (p = 0.001), standing long jump (p = 0.001), and HAMA total score (p = 0.033) showed significant differences between males and females. Three principal components were identified in males: HAMA, FS14, and PSQI, explaining a total variance of 70.473%. Similarly, three principal components were extracted in females: HAMA, PSQI, and FS14, explaining a total variance of 69.100%. Conclusions: Our study underscores the complex interplay between physical activity (PA), mental health, and quality of life, emphasizing the need for gender-specific interventions. The persistent high stress, poor sleep quality, and reduced PA levels call for a reorganized teaching schedule to enhance student well-being without increasing academic pressure. Full article
14 pages, 1173 KiB  
Article
Biomechanical Alterations in the Unweight Phase of the Single-Leg Countermovement Jump After ACL Reconstruction
by Roberto Ricupito, Marco Bravi, Fabio Santacaterina, Giandomenico Campardo, Riccardo Guarise, Rosalba Castellucci, Ismail Bouzekraoui Alaoui and Florian Forelli
J. Funct. Morphol. Kinesiol. 2025, 10(3), 296; https://doi.org/10.3390/jfmk10030296 - 30 Jul 2025
Viewed by 280
Abstract
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of [...] Read more.
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of the jump. Methods: This study assessed 53 recreational athletes (11 females, 42 males) between 6 and 9 months post-ACLr using a dual force plate system (1000 Hz). Each participant performed three maximal-effort SLCMJs per limb. Outcome measures included jump height, negative peak velocity, minimum force, and center of mass (COM) displacement. Paired t-tests and Wilcoxon tests were used to compare the ACLr limb with the contralateral limb. Results: Compared to the healthy limb, the ACLr limb showed significantly lower negative peak velocity (−0.80 ± 0.40 m/s vs. −0.94 ± 0.40 m/s, p < 0.001), higher minimum force (36.75 ± 17.88 kg vs. 32.05 ± 17.25 kg, p < 0.001), and reduced COM displacement (−17.62 ± 6.25 cm vs. −19.73 ± 5.34 cm, p = 0.014). Eccentric phase duration did not differ significantly. Conclusions: Athletes post-ACLr demonstrate altered neuromuscular control during the early SLCMJ phase. These findings highlight the importance of rehabilitation strategies targeting eccentric strength and symmetry restoration. Full article
(This article belongs to the Special Issue Movement Analysis in Sports and Physical Therapy)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 293
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

12 pages, 2851 KiB  
Article
Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
by Álvaro Murillo-Ortiz, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Javier Raya-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 279; https://doi.org/10.3390/jfmk10030279 - 18 Jul 2025
Viewed by 339
Abstract
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a [...] Read more.
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a valuable method to evaluate and train these mechanical variables separately for each leg. The aim of this study was twofold: (a) to characterise the mechanical variables derived from several lower-body strength exercises performed on rotational inertial devices, all targeting the same muscle group; and (b) to compare the mechanical variables between the dominant and non-dominant leg for each exercise. Methods: Twenty-six male professional soccer players (age = 26.3 ± 5.1 years; height = 182.3 ± 0.6 cm; weight = 75.9 ± 5.9 kg; body mass index = 22.8 ± 1.1 kg/m2; fat mass percentage = 9.1 ± 0.6%; fat-free mass = 68.8 ± 5.3 kg), all belonging to the same professional Belgian team, voluntarily participated in this study. The players completed a single assessment session consisting of six unilateral exercises (i.e., quadriceps hip, hamstring knee, adductor, quadriceps knee, hamstring hip, and abductor). For each exercise, they performed two sets of eight repetitions with each leg (i.e., dominant and non-dominant) in a randomised order. Results: The quadriceps hip exercise resulted in higher mechanical values compared to the quadriceps knee exercise in both limbs (p < 0.004). Similarly, the hamstring hip exercise produced greater values across all variables and limbs (p < 0.004), except for peak force, where the hamstring knee exercise exhibited higher values (p < 0.004). The adductor exercise showed higher peak force values for the dominant limb (p < 0.004). The between-limb comparison revealed differences only in the abductor exercise (p < 0.004). Conclusions: These findings suggest the necessity of prioritising movement selection based on targeted outcomes, although it should be considered that the differences between limb differences are very limited. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

14 pages, 1973 KiB  
Article
The Effects of Short-Duration Ischemic Preconditioning on Horizontal and Vertical Jump Performance in Male and Female Track and Field Jumpers
by Varvara Nektaria Gkari, Athanasios Tsoukos, Nikolaos Aspradakis and Gregory C. Bogdanis
J. Funct. Morphol. Kinesiol. 2025, 10(3), 265; https://doi.org/10.3390/jfmk10030265 - 14 Jul 2025
Viewed by 1156
Abstract
Background: Ischemic preconditioning (IPC) is a non-invasive, time-efficient strategy that has been shown to acutely enhance athletic performance. The present study examined the effects of 5 min of IPC on vertical and horizontal jump performance. A secondary aim was to explore the [...] Read more.
Background: Ischemic preconditioning (IPC) is a non-invasive, time-efficient strategy that has been shown to acutely enhance athletic performance. The present study examined the effects of 5 min of IPC on vertical and horizontal jump performance. A secondary aim was to explore the associations between outcomes of the 5-Hop (5-H) test and drop jump performance, in order to provide further evidence supporting the validity of the 5-H test for assessing reactive strength characteristics in trained jumpers. Methods: Twelve trained track and field jumpers (nine males, three females, age: 23.2 ± 2.9 years; height: 1.76 ± 0.07 m; body mass: 71.5 ± 8.0 kg) completed two conditions: an IPC condition applied to one leg and a control condition applied to the contralateral leg. In the first week, one leg was assigned to IPC and the other to the control condition, while in the second week, the conditions for each leg were reversed. Vertical single-leg performance was evaluated by drop jump (DJ) height, ground contact time, and reactive strength index (RSI). Horizontal jump performance was assessed by a five-hop (5-H) test during which total distance (TD), total time (TT), and reactive hopping index (RHI) were obtained. Results: Compared to the control condition, IPC enhanced DJ height (+ 3.6%) and RSI (+ 7.8%) (p < 0.05, g = 0.16 and 0.32, respectively) and reduced contact time (−4.4% p < 0.05, g = 0.41). Also, IPC resulted in significant improvements in TD (+ 4.1%) and RHI (+ 3.9%) during the 5-H test (p < 0.05, g = 0.32 and 0.42, respectively), while TT remained unchanged. Conclusions: A single cycle of IPC acutely improved vertical and horizontal jump performance and reactive strength indices in trained jumpers. These findings support the use of IPC as a practical, time-efficient method to enhance neuromuscular performance in explosive tasks. Full article
Show Figures

Figure 1

17 pages, 937 KiB  
Article
The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players
by Hakkı Mor, Ahmet Mor, Mekki Abdioğlu, Dragoș Ioan Tohănean, Cătălin Vasile Savu, Gizem Ceylan Acar, Cristina Elena Moraru and Dan Iulian Alexe
Nutrients 2025, 17(13), 2156; https://doi.org/10.3390/nu17132156 - 28 Jun 2025
Viewed by 712
Abstract
Background/Objectives: Despite extensive research on caffeine’s (CAF’s) ergogenic effects, evidence regarding its impact on anaerobic performance in female athletes remains limited and inconclusive. The aim of this study was to investigate the acute effects of 6 mg/kg−1 caffeine on anaerobic performance, functional [...] Read more.
Background/Objectives: Despite extensive research on caffeine’s (CAF’s) ergogenic effects, evidence regarding its impact on anaerobic performance in female athletes remains limited and inconclusive. The aim of this study was to investigate the acute effects of 6 mg/kg−1 caffeine on anaerobic performance, functional strength, agility, and ball speed in female soccer players. Methods: A randomized, double-blind, placebo-controlled crossover design was employed. Thirteen moderately trained female soccer players (age: 21.08 ± 1.11 years; height: 161.69 ± 6.30 cm; weight: 59.69 ± 10.52 kg; body mass index (BMI): 22.77 ± 3.50 kg/m2; training age: 7.77 ± 1.16 years; habitual caffeine intake: 319 ± 160 mg/day) completed two experimental trials (caffeine vs. placebo (PLA)), separated by at least 48 h. Testing sessions included performance assessments in vertical jump (VJ), running-based anaerobic sprint test (RAST), bilateral leg strength (LS), handgrip strength (HS), single hop for distance (SH), medial rotation (90°) hop for distance (MRH), change of direction (COD), and ball speed. Rating of perceived exertion (RPE) was also recorded. Results: CAF ingestion significantly improved minimum (p = 0.011; d = 0.35) and average power (p = 0.007; d = 0.29) during RAST. A significant increase was also observed in SHR (single leg hop for distance right) performance (p = 0.045; d = 0.44). No significant differences were found in VJ, COD, ball speed, LS, HS, SHL, MRHR, or MRHL (p > 0.05). RPE showed a moderate effect size (d = 0.65) favoring the CAF condition, though not statistically significant (p = 0.110). Conclusions: In conclusion, acute CAF intake at a dose of 6 mg/kg−1 may enhance anaerobic capacity and lower-limb functional strength in female soccer players, with no significant effects on jump height, agility, or upper-body strength. Full article
(This article belongs to the Special Issue Nutrition, Physical Activity and Women’s Health)
Show Figures

Figure 1

33 pages, 12896 KiB  
Article
A Bipedal Robotic Platform Leveraging Reconfigurable Locomotion Policies for Terrestrial, Aquatic, and Aerial Mobility
by Zijie Sun, Yangmin Li and Long Teng
Biomimetics 2025, 10(6), 374; https://doi.org/10.3390/biomimetics10060374 - 5 Jun 2025
Viewed by 813
Abstract
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by [...] Read more.
Biological systems can adaptively navigate multi-terrain environments via morphological and behavioral flexibility. While robotic systems increasingly achieve locomotion versatility in one or two domains, integrating terrestrial, aquatic, and aerial mobility into a single platform remains an engineering challenge. This work tackles this by introducing a bipedal robot equipped with a reconfigurable locomotion framework, enabling seven adaptive policies: (1) thrust-assisted jumping, (2) legged crawling, (3) balanced wheeling, (4) tricycle wheeling, (5) paddling-based swimming, (6) air-propelled drifting, and (7) quadcopter flight. Field experiments and indoor statistical tests validated these capabilities. The robot achieved a 3.7-m vertical jump via thrust forces counteracting gravitational forces. A unified paddling mechanism enabled seamless transitions between crawling and swimming modes, allowing amphibious mobility in transitional environments such as riverbanks. The crawling mode demonstrated the traversal on uneven substrates (e.g., medium-density grassland, soft sand, and cobblestones) while generating sufficient push forces for object transport. In contrast, wheeling modes prioritize speed and efficiency on flat terrain. The aquatic locomotion was validated through trials in static water, an open river, and a narrow stream. The flight mode was investigated with the assistance of the jumping mechanism. By bridging terrestrial, aquatic, and aerial locomotion, this platform may have the potential for search-and-rescue and environmental monitoring applications. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

18 pages, 1726 KiB  
Article
Experiences of People with Multiple Sclerosis in Sensor-Based Jump Assessment
by Anne Geßner, Anikó Vágó, Heidi Stölzer-Hutsch, Dirk Schriefer, Maximilian Hartmann, Katrin Trentzsch and Tjalf Ziemssen
Bioengineering 2025, 12(6), 610; https://doi.org/10.3390/bioengineering12060610 - 3 Jun 2025
Viewed by 525
Abstract
(1) Background: When implementing new biomechanical and technology-based assessments, such as the jump assessment in Multiple Sclerosis (MS), into clinical routine, it is important to ensure that they are based on the real needs of patients and to identify and adapt to potential [...] Read more.
(1) Background: When implementing new biomechanical and technology-based assessments, such as the jump assessment in Multiple Sclerosis (MS), into clinical routine, it is important to ensure that they are based on the real needs of patients and to identify and adapt to potential barriers early on. (2) Methods: In the present cross-sectional study, 157 pwMS performed a sensor-based jump assessment on a force plate consisting of three jump tests: 10 s jump test (10SHT), countermovement jumps (CMJ), and single-leg countermovement jumps (SLCMJ). After the jump assessment, the patient experience measures (PREM) were recorded using a paper-based questionnaire on an 11-point scale from 0 (positive) to 10 (negative). (3) Results: PwMS showed an overall positive experience with the sensor-based jump assessment. “Staff support performance”, “acceptance required time”, “usefulness” of the results, and “integration of results in therapy” were the best rated items with a median of 0 (positive). The CMJ was perceived as the easy (p < 0.05) and less exhausting (p < 0.05). PwMS who experienced CMJ as easy, not exhausting, and safe were associated with higher CMJ performance, especially in peak power, flight time, and jump height (r > −0.4). Significant associations were found between PREMs and age, sex, BMI, physical activity, and disability degree. (4) Conclusions: The study findings support the feasibility of jump assessment in clinical practice and highlight the need for patient-centered integration of innovative technologies to optimize precision neuromuscular function evaluation in MS. Full article
(This article belongs to the Special Issue Technological Advances for Gait and Balance Assessment)
Show Figures

Figure 1

21 pages, 545 KiB  
Article
Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters
by Jamal L. Thruston, Stuart A. Best, Nicholas R. Heebner, Lance M. Bollinger and Mark G. Abel
Healthcare 2025, 13(11), 1278; https://doi.org/10.3390/healthcare13111278 - 28 May 2025
Viewed by 621
Abstract
Background: Participation in on-duty exercise is critical to enhance firefighter safety and readiness. However, these sessions are often interrupted with emergency responses and require firefighters to work in a fatigued state that may increase injury risk. Objective: To assess the impact of on-duty [...] Read more.
Background: Participation in on-duty exercise is critical to enhance firefighter safety and readiness. However, these sessions are often interrupted with emergency responses and require firefighters to work in a fatigued state that may increase injury risk. Objective: To assess the impact of on-duty resistance training on neuromuscular function. Methods: A sample of 18 firefighters (Age: 38.8 ± 8.0 y; Body fat: 24.9 ± 7.0%) completed three testing sessions, separated by at least 72 h to compare the effects of circuit (CT) versus heavy resistance training (HRT) fatigue on neuromuscular function. During Session 1, anthropometrics and familiarization trials of balance and neuromuscular function were completed, which included single-leg drop landing (SLDL), postural sway (PS), and modified Functional Balance Test (mFBT). Sessions 2 and 3 were randomized, where participants completed either HRT or CT. Isometric midthigh pull (IMTP), long jump (LJ), and lower body power (LBP) tests were conducted pre- and immediately post exercise, whereas static and dynamic balance assessments were conducted pre- and 10 min post exercise to simulate an emergency response time course. Repeated measures ANOVA, effect sizes, and difference scores were used to analyze the effects of condition and time. The level of significance was set at p < 0.05. Results: CT decreased IMTP, LJ, and LBP, whereas HRT decreased LJ and LBP (p ≤ 0.001, ES ≥ 0.476). Despite several significant condition by time interaction effects on balance outcomes, there were no differences within CT or HRT over time (p ≥ 0.066). Conclusions: These findings suggest that on-duty resistance training reduces firefighters’ power and/or strength immediately post exercise but does not influence most firefighters’ balance 10 min post exercise. Thus, firefighters are recommended to perform resistance training on-duty during low emergency call volume times. Full article
(This article belongs to the Special Issue Health and Readiness of Tactical Populations)
Show Figures

Figure 1

12 pages, 636 KiB  
Article
Old Habits Die Hard: Kinematic Carryover Between Low- and High-Impact Tasks in Active Females
by Vaishnavi Vivek Chiddarwar, Katherine F. Wilford, Troy L. Hooper, C. Roger James, Karthick Natesan, Aaron Likness, Gesine H. Seeber and Phillip S. Sizer
Sports 2025, 13(6), 160; https://doi.org/10.3390/sports13060160 - 25 May 2025
Viewed by 422
Abstract
Background: Knee injury risk screening protocols predominantly employ high-impact tasks (HIT), but there is a need for low-impact movement screening alternatives. This study aimed to investigate kinematic carryover between low-impact tasks (LIT) and HIT. Methods: This study employed a cross-sectional design. Eighteen healthy, [...] Read more.
Background: Knee injury risk screening protocols predominantly employ high-impact tasks (HIT), but there is a need for low-impact movement screening alternatives. This study aimed to investigate kinematic carryover between low-impact tasks (LIT) and HIT. Methods: This study employed a cross-sectional design. Eighteen healthy, active females with no history of injury within the last six months, aged between 18–35 years completed three trials of LIT (stand-to-sit, single-leg stand-to-sit) and HIT (drop vertical jump, single-leg drop vertical jump). Hip and knee three-dimensional kinematics were evaluated during LIT and HIT. Pearson correlation analyses were used to assess kinematic relationships between LIT and HIT. A post-hoc exploratory analysis examined the consistency of kinematic directionality across tasks. Results: In the frontal plane, the dominant hip, dominant knee, and non-dominant knee during LIT demonstrated a strong positive correlation and directional consistency with the corresponding values during HITs (p < 0.001). In the transverse plane, non-dominant hip, dominant knee, and non-dominant knee kinematics during LITs demonstrated directional consistency and a strong positive correlation with respective kinematics during HITs (p < 0.001). Conclusion: The similarities in hip and knee kinematic patterns suggest that motor responses may generalize across varying task intensities. Thus, LITs may be a useful tool in early knee injury risk identification. Full article
Show Figures

Figure 1

20 pages, 1872 KiB  
Article
Diagnostic Predictors of Recovery Outcomes Following Open Reduction and Internal Fixation for Tibial Plateau Fractures: A Retrospective Study Based on the Schatzker Classification
by Carlo Biz, Carla Stecco, Samuele Perissinotto, Xiaoxiao Zhao, Raffaele Ierardi, Luca Puce, Filippo Migliorini, Nicola Luigi Bragazzi and Pietro Ruggieri
Diagnostics 2025, 15(11), 1304; https://doi.org/10.3390/diagnostics15111304 - 22 May 2025
Viewed by 696
Abstract
Background: Tibial plateau fractures (TPFs) are complex injuries often leading to long-term complications such as knee instability, limited range of motion, and osteoarthritis. Accurate diagnostic evaluations combining subjective and objective assessments are essential for identifying functional limitations, guiding rehabilitation, and improving recovery [...] Read more.
Background: Tibial plateau fractures (TPFs) are complex injuries often leading to long-term complications such as knee instability, limited range of motion, and osteoarthritis. Accurate diagnostic evaluations combining subjective and objective assessments are essential for identifying functional limitations, guiding rehabilitation, and improving recovery outcomes. This study examines the role of diagnostic predictors in differentiating recovery trajectories in two groups of patients treated for closed TPFs by open reduction and internal fixation (ORIF), comparing patients with less severe fractures and patients with more severe fractures (BCFs). Methods: A consecutive series of patients with a diagnosis of TPFs treated by ORIF at our institution between 2009 and 2016 were analyzed in this retrospective study. All injured patients were divided according to the Schatzker classification into two groups: mono-condylar (MCF) and bi-condylar (BCF) fracture patient groups. Diagnostic evaluations included patient-reported outcome measures (PROMs) such as KOOS, IKDC, and AKSS, alongside objective assessments of functional recovery using dynamometers, force platform tests (single-leg stance and squat jump variations), and measurements of active range of motion (AROM). Results: A total of 28 patients were included: 17 in the MCF patient group (Schatzker: 12 II; 5 III; 0 IV) and 11 in the BCF patient group (Schatzker: 6 V; 5 VI). Patients with less severe MCFs exhibited significantly better recovery outcomes, including higher KOOS (86.0 vs. 64.6, p = 0.04), IKDC (80.3 vs. 64.6, p = 0.04), and AKSS (95.3 vs. 70.5, p = 0.02) scores. They also demonstrated greater knee flexion (122.8° vs. 105.5°, p = 0.04) and faster neuromuscular recovery, as evidenced by higher rates of force development (RFD) during dynamic performance tests. Conversely, patients with more severe BCFs showed lower RFD values, indicating slower recovery and greater rehabilitation challenges. Conclusions: Integrating diagnostic tools like PROMs, AROM, and neuromuscular performance tests provides valuable insights into recovery after ORIF for TPFs. Fracture severity significantly impacts functional recovery patients with MCFs showing better outcomes and faster neuromuscular recovery, while subjects with BCFs require a longer rehabilitation treatment focusing on neuromuscular re-education and soft tissue recovery. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Management in Orthopaedics and Traumatology)
Show Figures

Figure 1

13 pages, 1439 KiB  
Article
Impact of Neuromuscular Fatigue on Dynamic Knee Valgus in Female Basketball Players
by Beatriz B. Gomes, Ricardo Cardoso, Rui A. Fernandes and Rui A. Ferreira
Life 2025, 15(5), 816; https://doi.org/10.3390/life15050816 - 20 May 2025
Viewed by 697
Abstract
Dynamic knee valgus is a biomechanical condition often linked to an increased risk of knee injuries, particularly in female athletes, due to greater hip adduction, internal rotation, and knee abduction during dynamic movements. This study aimed to assess the impact of neuromuscular fatigue [...] Read more.
Dynamic knee valgus is a biomechanical condition often linked to an increased risk of knee injuries, particularly in female athletes, due to greater hip adduction, internal rotation, and knee abduction during dynamic movements. This study aimed to assess the impact of neuromuscular fatigue on dynamic knee valgus in female basketball players during single-leg drop jumps (DJ-SL) and change of direction (COD) tests at 45° and 90°. Thirty-three athletes, divided into national and regional performance groups, performed these movements before and after a fatigue protocol. Fatigue was induced through a series of anaerobic exercises, and frontal plane projection angle (FPPA) was used to measure knee valgus. The results showed that dynamic knee valgus increased with the angle of directional change (from 24.77° ± 8.25 at 45° to 34.55° ± 10.40 at 95° pre-fatigue, and from 26.59° ± 12.30 at 45° to 35.87° ± 10.37 post-fatigue), but was not significantly affected by neuromuscular fatigue. The national group demonstrated lower valgus angles compared to the regional group, indicating potential performance differences based on competitive level. These findings suggest that while neuromuscular fatigue does not notably impact knee valgus, the higher valgus angles during directional changes warrant attention in injury prevention programs for female basketball players. Further research is needed to explore other factors influencing knee mechanics and injury risk. Full article
(This article belongs to the Special Issue Advances in Knee Biomechanics)
Show Figures

Figure 1

15 pages, 1804 KiB  
Article
Neuromuscular Electrical Stimulation Enhances Lower Limb Muscle Synergies During Jumping in Martial Artists Post-Anterior Cruciate Ligament Reconstruction: A Randomized Crossover Trial
by Xiaoyan Wang, Haojie Li and Jiangang Chen
Bioengineering 2025, 12(5), 535; https://doi.org/10.3390/bioengineering12050535 - 16 May 2025
Viewed by 874
Abstract
Objective: This study aimed to investigate the effects of neuromuscular electrical stimulation (NMES) on lower limb muscle synergies during the single-leg hop test in martial artists after anterior cruciate ligament (ACL) reconstruction. Methods: Twenty-four martial artists who underwent ACL reconstruction were recruited and [...] Read more.
Objective: This study aimed to investigate the effects of neuromuscular electrical stimulation (NMES) on lower limb muscle synergies during the single-leg hop test in martial artists after anterior cruciate ligament (ACL) reconstruction. Methods: Twenty-four martial artists who underwent ACL reconstruction were recruited and performed a single-leg hop test under two conditions: with NMES (ES) and without NMES (CON). The ES condition involved using Compex SP 8.0 to deliver biphasic symmetrical wave stimulation. Jump performance metrics and electromyographic (EMG) signals were recorded. Muscle synergies of the lower limbs were extracted using non-negative matrix factorization (NMF) to analyze patterns of muscle coordination. Results: Compared with the CON condition, the ES condition significantly reduced the jump time (0.13 ± 0.05 vs. 0.18 ± 0.09; F = 5.660; p = 0.022) and significantly increased the contact time (0.53 ± 0.12 vs. 0.43 ± 0.21; F = 4.013; p = 0.049). Muscle synergy analysis revealed three distinct synergy patterns under both conditions. For synergy pattern 1, compared with the CON condition, the muscle weightings of the rectus femoris and tibialis anterior muscles were significantly increased under the ES condition (p < 0.001). For synergy pattern 2, compared with the CON condition, the muscle weighting of the lateral gastrocnemius muscle was significantly increased under the ES condition (p < 0.001). Additionally, the activation timing of synergy pattern 2 was significantly reduced under the ES condition (p = 0.001). Conclusion: Neuromuscular electrical stimulation enhances jump performance and alters muscle synergy patterns in martial artists after ACL reconstruction. The findings suggest that NMES can promote better lower limb muscle coordination during jumping tasks, potentially aiding in postoperative rehabilitation and performance optimization. Full article
Show Figures

Figure 1

12 pages, 1667 KiB  
Article
Myoelectric Activity of the Peroneal Muscles Following Lateral Ankle Sprain: A Cross-Sectional Analysis
by Oriol Casasayas-Cos, Noé Labata-Lezaun, Albert Pérez-Bellmunt, Carlos López-de-Celis, Johke Smit, Xavier Marimon-Serra, Ramón Aiguadé-Aiguadé, Joaquín Sanahuja-Diez-Caballero, Max Canet-Vintró and Luis Llurda-Almuzara
J. Funct. Morphol. Kinesiol. 2025, 10(2), 179; https://doi.org/10.3390/jfmk10020179 - 15 May 2025
Viewed by 666
Abstract
Background: Lateral ankle sprains can result in adverse outcomes, including reinjuries or chronic ankle instability. The peroneal musculature plays a key role in stabilizing the ankle and preventing sudden ankle inversions that may lead to sprains. Objective: The purpose of the [...] Read more.
Background: Lateral ankle sprains can result in adverse outcomes, including reinjuries or chronic ankle instability. The peroneal musculature plays a key role in stabilizing the ankle and preventing sudden ankle inversions that may lead to sprains. Objective: The purpose of the study is to investigate (1) inter-limb differences in peroneal myoelectrical activity in athletes with a history of ankle sprain during the past six months and (2) to investigate peroneal myoelectrical activity differences between athletes with and without a history of ankle sprain. Methods: Sixty-seven athletes (53% females, 46.3% males) were included in this observational cross-sectional study. Self-reported data regarding history of ankle sprain were collected. The peroneal myoelectrical activity was obtained during (1) isometric ankle eversion, (2) dynamic ankle eversions, (3) single leg squat, (4) unilateral and (5) bilateral drop jump test, (6) sprint, and (7) change of direction. Results: No significant differences in peroneal myoelectrical activity were observed between individuals with (n = 46) and without (n = 21) a history of ankle sprain in the past six months (p > 0.05). Additionally, no significant inter-limb differences were found within the previous ankle sprain group (p > 0.05). Conclusions: This study found no significant inter-limb differences in peroneal muscle activity among athletes with a history of ankle sprain during the past six months. Moreover, no differences were observed between athletes with and without a history of ankle sprain. This study has certain limitations, including the lack of data regarding the timing and severity of the ankle sprain, as well as the duration and specific characteristics of the rehabilitation process. Full article
Show Figures

Figure 1

Back to TopTop