Optimizing Performance: Training Strategies to Improve Strength, Speed, Power, and Endurance

A special issue of Journal of Functional Morphology and Kinesiology (ISSN 2411-5142). This special issue belongs to the section "Athletic Training and Human Performance".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1608

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
Interests: strength training; neuromuscular; talent selection; resistance training; speed and sprint performance
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

I have the pleasure of inviting researchers to contribute to this Special Issue of JFMK, which aims to explore diverse training strategies for enhancing athletic performance. Specific focus will be given to improving athletes’ strength, speed, power, and endurance. We seek to promote innovative work and effective methodologies to optimize athletic capabilities. Additionally, we are interested in exploring new devices and sensors that assist coaches in improving these qualities.

We welcome submissions exploring, but not limited to, the following topics:

  • Effective training methods for developing muscular strength and power;
  • Innovative approaches for improving running speed and sprint performance;
  • The integration of resistance training, plyometrics, and other modalities for athletic performance enhancement;
  • Endurance training and methods to improve aerobic fitness for overall performance optimization;
  • Advancements in exercise physiology, biomechanics, and sports science related to performance optimization.

Dr. Athanasios Tsoukos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Morphology and Kinesiology is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • muscular strength
  • muscular power
  • resistance training
  • free weights
  • weight machines
  • bodyweight exercises
  • plyometric training
  • Olympic weightlifting
  • complex training
  • endurance training

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1185 KiB  
Article
Iliotibial Band Behavior Assessed Through Tensor Fasciae Latae Electromyographic Activity with Different Foot Orthoses in Recreational Runners According to Foot Type: A Cross-Sectional Study
by Ruben Sanchez-Gomez, Álvaro Gómez Carrión, Ismael Ortuño Soriano, Paola Sanz Wozniak, Ignacio Zaragoza García, Fatma Ben Waer, Cristina Iona Alexe and Dan Iulian Alexe
J. Funct. Morphol. Kinesiol. 2025, 10(3), 237; https://doi.org/10.3390/jfmk10030237 - 23 Jun 2025
Viewed by 205
Abstract
Background: Iliotibial band syndrome (ITBS) through the tensor fascia latae (TFL) is a well-known pathology among runners whose etiology is not completely clear, nor is the effectiveness of plantar insoles for different types of feet known well enough for them to be considered [...] Read more.
Background: Iliotibial band syndrome (ITBS) through the tensor fascia latae (TFL) is a well-known pathology among runners whose etiology is not completely clear, nor is the effectiveness of plantar insoles for different types of feet known well enough for them to be considered a possible approach for this issue. Objective: to understand how foot type and foot orthotics may influence the electromyographic (EMG) activity of the TFL. Methods: A total of 41 healthy recreational runners (mean age 32.66 ± 3.51) were recruited for the present cross-sectional study, categorizing them as neutral (NEUg = 15), supinators (SUPg = 15), and pronators (PROg = 11) according to the foot postural index, over a period of 11 months. The EMG of the TFL was measured using a surface electromyograph device while they ran on a treadmill at a constant speed of 9 km/h for 3 min, randomly using supinating (SUP), pronating (PRO), or heel lift (TAL) insoles of 5 mm each one, compared to the baseline condition (SIN). The intraclass correlation coefficient (ICC) was performed to check the reproducibility of the tests, pairwise comparisons with Bonferroni adjustment were made, and to test the differences between measurements, the Friedman test was performed. Results: The Shapiro–Wilk test indicated a normal distribution of the sample (p > 0.05). Almost all obtained results showed a “perfect reproducibility” close to one; a significant statistical increase was observed in the mean EMG values from NEUg (87.58 ± 4.81 mV) to SUPg (97.17 ± 4.3 mV) (p < 0.05) during SIN+ basal condition. Additionally, there was a statistical reduction from SIN (87.58 ± 4.81 mV) vs. PRO (74.69 ± 3.77 mV) (p < 0.001) in NEUg and from SIN (97.17 ± 4.3 mV) vs. PRO (90.96 ± 4 mV) (p < 0.001) in SUPg. Conclusions: The SUPg exhibited increased activation of TFL fibers compared to the NEUg, likely due to the biomechanical demands associated with a supinated foot type. In contrast, the use of PRO appeared to promote relaxation of the TFL fibers by inducing internal rotation of the lower limb. Based on these preliminary results from a cross-sectional study in a healthy population, it is recommended to assess foot type when addressing ITBS and to consider the use of PRO as a complementary therapeutic strategy alongside conventional treatments. Full article
Show Figures

Figure 1

14 pages, 2603 KiB  
Article
Pulsed Electromagnetic Field (PEMF) Stimulation Increases Muscle Activity During Exercise in Sedentary People
by Aurelio Trofè, Alessandro Piras, Luca Breviglieri, Alessandra Laffi, Andrea Meoni and Milena Raffi
J. Funct. Morphol. Kinesiol. 2025, 10(2), 232; https://doi.org/10.3390/jfmk10020232 - 19 Jun 2025
Viewed by 391
Abstract
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of [...] Read more.
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of the right leg’s vastus medialis (RVM) and biceps femoris (RBF) muscles was recorded and analyzed. The root mean square values were normalized to the peak amplitude observed during maximal voluntary contraction. Measurements were taken at baseline (stationary seated position), during warm-up (unloaded cycling), and throughout 15 min of constant-load exercise performed at moderate intensity. Subjects performed two experimental conditions, when PEMF was turned ON versus OFF. Results: No significant difference was found during the baseline. The analysis during warm-up showed significant differences between conditions (ON vs. OFF) for both muscles (RVM p = 0.019; RBF p < 0.001). The analysis during constant-load exercise showed significant differences between conditions (ON vs. OFF) for RVM only (p = 0.002). Conclusions: This study provides evidence that PEMF stimulation acutely enhances muscle activation, primarily in the vastus medialis, with a comparatively smaller effect on the biceps femoris during moderate-intensity cycling in sedentary young men. The observed increase in EMG activity suggests that PEMF may facilitate neuromuscular excitability and muscle recruitment, potentially through mechanisms related to calcium signaling and enhanced muscle perfusion. Full article
Show Figures

Figure 1

28 pages, 1852 KiB  
Article
Effects of a 5-Day Back Squat Overreaching Protocol on Strength Performance, Perceived Recovery and Wellness Responses: A Pilot Trial
by Lee Bell, Alan Ruddock, Jordan Boriel, Tom Maden-Wilkinson, Steve W. Thompson, Kieran J. Wright, Kieran Burke and David Rogerson
J. Funct. Morphol. Kinesiol. 2025, 10(2), 227; https://doi.org/10.3390/jfmk10020227 - 13 Jun 2025
Viewed by 686
Abstract
Background: The aim of this study was to characterise the performance, perceptual, and wellness responses to a barbell back squat overreaching training protocol. Methods: Eight trained male participants (age = 24.6 ± 2.8 years; relative to body mass back squat one repetition maximum [...] Read more.
Background: The aim of this study was to characterise the performance, perceptual, and wellness responses to a barbell back squat overreaching training protocol. Methods: Eight trained male participants (age = 24.6 ± 2.8 years; relative to body mass back squat one repetition maximum (1-RM) = 1.9 ± 0.4; training experience = 7.0 ± 3.2 years) participated in a 5-day squat OR protocol (SqOR), followed by a 14-day taper. SqOR consisted of five sets of barbell back squats using 80% of daily adjusted 1-RM. A 40% velocity loss threshold was used to determine the set end point. For performance, isometric mid-thigh pull (IMTP) peak force (PF), and countermovement jump (CMJ) PF and jump height; for perceptual, perceived recovery scale (PRS); and for wellness, Hooper Wellness Index (HWI), were recorded at baseline, each day of SqOR, and at select intervals during the taper (POST 1 d, 2 d, 7 d, and 14 d). Follow-up back squat 1-RM testing was conducted at POST 7 d and POST 14 d to determine strength-performance changes relative to baseline. Results: Back squat 1-RM increased by 4.8% at POST 7 d and 5.2% at POST 14 d. IMTP PF increased by 10.3% at POST 7 d and 11.4% at POST 14 d relative to the baseline. CMJ PF and jump height decreased during SqOR but returned to baseline by POST 7 d. PRS and HWI worsened during SqOR, with the greatest impairment occurring on day 3 (PRS = −41.5%; HWI = 34.4%), and did not return to baseline until POST 14 d and POST 2 d, respectively. Conclusions: These findings demonstrate that a short-term period of planned OR improves muscular strength performance, but the duration of the taper influences when peak strength improvements are observed. Full article
Show Figures

Figure 1

Back to TopTop