Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = single-frequency orbit determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 23032 KiB  
Article
Statistical Approach to Research on the Relationship Between Kp/Dst Geomagnetic Indices and Total GPS Position Error
by Mario Bakota, Igor Jelaska, Serdjo Kos and David Brčić
Remote Sens. 2025, 17(14), 2374; https://doi.org/10.3390/rs17142374 - 10 Jul 2025
Viewed by 272
Abstract
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally [...] Read more.
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally distributed network of 14 IGS stations were analyzed for September 2017, featuring significant geomagnetic activity. The selection of stations encompassed equatorial and mid-latitude regions (approximately ±45°), strategically aligned with the distribution of the Dst index during geomagnetic storms. Satellite navigation data were processed using RTKLIB software in standalone mode with standardized atmospheric and orbital corrections. The GPS was chosen over GLONASS following preliminary testing, which revealed a higher sensitivity of GPS positional accuracy to variations in geomagnetic indices such as Kp and Dst, despite generally lower total error magnitudes. The ECEF coordinate system calculates the total GPS error as the vector sum of deviations in the X, Y, and Z axes. Statistical evaluation was performed using One-Way Repeated Measures ANOVA to determine whether positional error variances across geomagnetic activity phases were significant. The results of the variance analysis confirm that the variation in the total GPS positioning error is non-random and can be attributed to the influence of geomagnetic storms. However, regression analysis reveals that the impact of geomagnetic storms (quantified by Kp and Dst) displays spatiotemporal variability, with no consistent correlation to GPS positioning error dynamics. The findings, as well as the developed methodology, have qualitative implications for GNSS-dependent operations in sensitive sectors such as navigation, timing services, and geospatial monitoring. Full article
Show Figures

Figure 1

15 pages, 3884 KiB  
Article
Real-Time Identification Algorithm of Daylight Space Debris Laser Ranging Data Based on Observation Data Distribution Model
by Yang Liu, Xue Dong, Jian Gao, Bowen Guan, Yanning Zheng, Zhipeng Liang, Xingwei Han and He Dong
Sensors 2025, 25(7), 2281; https://doi.org/10.3390/s25072281 - 3 Apr 2025
Viewed by 351
Abstract
In an effort to accomplish the real-time acquisition of the laser ranging results of space debris during the daylight and enhance the observation success rate, this paper establishes a joint distribution model of noise and echo signals grounded on the intensity distribution law [...] Read more.
In an effort to accomplish the real-time acquisition of the laser ranging results of space debris during the daylight and enhance the observation success rate, this paper establishes a joint distribution model of noise and echo signals grounded on the intensity distribution law of the daylight background noise. Through an in-depth analysis of the measurement characteristics of single-photon detectors, a real-time recognition algorithm based on the disparity in statistical distribution is put forward. This algorithm partitions the observation data into intervals of equal length. It then employs the goodness-of-fit test of the geometric distribution to ascertain the data distribution law. Subsequently, it locates the interval in which the echo signal resides by analyzing the contribution degree of the chi-square statistic. The experimental outcomes indicate that under the circumstances of a laser frequency of 400 Hz and a background noise photon rate of 2 × 107 photons per second, the algorithm is capable of achieving real-time recognition of the echo interval for an intensity of 0.09 echo photons per single pulse within 1 s. This breakthrough resolves the critical challenge of daylight echo discrimination in high-noise environments. This method overcomes the constraints of the traditional signal intensity threshold and offers a novel technical approach for the tracking and precise orbit determination of space debris in a low signal-to-noise ratio environment. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 8948 KiB  
Article
Differential Code Bias Estimation and Accuracy Analysis Based on CSES Onboard GPS and BDS Observations
by Jiawen Pang, Fuying Zhu and Shang Wu
Remote Sens. 2025, 17(3), 374; https://doi.org/10.3390/rs17030374 - 23 Jan 2025
Viewed by 918
Abstract
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System [...] Read more.
An accurate estimation of Differential Code Bias (DCB) is essential for high-precision applications of the Global Navigation Satellite System (GNSS) and for the precise determination of GNSS-derived total electron content (TEC). This study leverages BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS) dual-frequency observations of the China Seismo-electromagnetic Satellite (CSES) from day of the year (DOY) 201 to DOY 232 in 2018, we evaluate the quality of CSES onboard GNSS observations, improve the data preprocessing method, and use the least-squares to estimate DCBs for both GNSS satellites and CSES receivers. A comprehensive analysis of the estimation accuracy is presented, revealing that DCBs for BDS satellites, derived from joint BDS and GPS observations, exhibit superior consistency compared to those from single BDS observations. Notably, the stability of DCBs for the CSES BDS receiver as well as for BDS GEO, IGSO, and MEO satellites has been significantly enhanced by 70%, 14%, 22%, and 23%, respectively. Conversely, the consistency of GPS satellite DCBs estimated from joint observations shows a decline when compared to the DCB products from the Center for Orbit Determination in Europe (CODE) and the Chinese Academy of Sciences (CAS). When fewer than nine satellites are tracked daily and nighttime observations are under 25%, estimation errors increase. The optimal DCB estimation is achieved with a cutoff elevation angle set at 10°, with monthly mean DCB values for CSES GPS and BDS receivers determined to be −2.193 ns and −1.099 ns, respectively, accompanied by root mean square errors (RMSEs) of 0.10 ns and 0.31 ns. The highest accuracy of DCBs estimated by the single-GPS scheme is corroborated by examining the occurrence of negative vertical total electron content (VTEC) percentages. Full article
Show Figures

Figure 1

14 pages, 3774 KiB  
Article
Locating Strong Electromagnetic Pulses Recorded by a Single Satellite with Cluster Analysis and Worldwide Lightning Location Network Observations
by Zongxiang Li, Baofeng Cao, Wenjuan Zhang, Xiaoqiang Li, Xiong Zhang, Yongli Wei, Xiao Li, Changjiao Duan and Peng Li
Remote Sens. 2024, 16(23), 4442; https://doi.org/10.3390/rs16234442 - 27 Nov 2024
Cited by 1 | Viewed by 919
Abstract
The integration of satellite-borne and ground-based global lightning location networks offers a better perspective to study lightning processes and their evolutionary characteristics within thunderstorm clouds, thereby bolstering the predictive capabilities for severe weather phenomena. Currently, the satellite-borne network is in the preliminary testing [...] Read more.
The integration of satellite-borne and ground-based global lightning location networks offers a better perspective to study lightning processes and their evolutionary characteristics within thunderstorm clouds, thereby bolstering the predictive capabilities for severe weather phenomena. Currently, the satellite-borne network is in the preliminary testing phase with a single satellite. The geographic locations of single-satellite detection events primarily rely on synchronous information from coincident ground-based network events; this method is called synchronous locating (SCL). However, variations in detection-frequency bands and system capabilities prevent this method from accurately locating more than a mere 10% of events. To address this limitation, this paper introduces a cluster-analysis-based strategy, utilizing the observations from the Worldwide Lightning Location Network (WWLLN), termed the cluster analysis locating (CAL) method. The CAL method’s performance, influenced by the density-based spatial clustering of applications with noise (DBSCAN), the K-means, and the mean shift algorithms, is examined. Subsequently, an advanced version, mean shift denoised (MSDN)-CAL, is proposed, demonstrating marked improvements in location accuracy and reliability over the other CAL methods. The satellite-borne wideband electromagnetic pulse detector (WEMPD), orbiting at an altitude of approximately 500 km with a 97.5° inclination, captured 1061 strong electromagnetic pulses (EMPs). Among these, trans-ionospheric single pulses (TISPs) and trans-ionospheric pulse pairs (TIPPs) constituted 21.30% and 78.70%, respectively. Using the MSDN-CAL method successfully determines the geographic locations for 81.15% (861 out of 1061) of the events. This success rate represents an approximate eightfold enhancement over the SCL method. The arithmetic mean, geometric mean, and standard deviation of the two-dimensional range deviation of the locating results between the MSDN-CAL method versus the WWLLN-SCL (or the Guangdong-Hong Kong-Macao Lightning Location System (GHMLLS)-SCL) method are 51.06 (176.26) km, 16.17 (92.53) km, and 100.95 (174.79) km, respectively. Furthermore, it has been possible to estimate the occurrence altitudes for 81.92% (684 out of 835) of the TIPP events. The altitude deviations, as determined by comparing them with the GHMLLS-SCL method’s locating results, exhibit an arithmetic mean of 2.08 km, a geometric mean of 1.30 km, and a standard deviation of 2.26 km. The outcomes of this research establish a foundation for deeper investigation into the origins of various event types, their seasonal variations, and their geographical distribution patterns. Moreover, they pave the way for utilizing a single satellite to measure global surface reflectance, thus contributing valuable data for meteorological and atmospheric studies. Full article
Show Figures

Figure 1

17 pages, 6120 KiB  
Article
Virtual Dynamic Vibration Absorber Trap Fusion Active Vibration Suppression Algorithm Based on Inertial Actuators for Large Flexible Space Trusses
by Chao Qin, Anpeng Xu, Shuai He, Chunyang Han and Zhenbang Xu
Aerospace 2024, 11(9), 764; https://doi.org/10.3390/aerospace11090764 - 18 Sep 2024
Cited by 2 | Viewed by 1332
Abstract
This paper presents a virtual dynamic vibration absorber (DVA) trap fusion active vibration suppression algorithm based on inertial actuators as a solution to the harmonic vibration control problem of large flexible space trusses. Firstly, the mechanism of the inertial actuator is analyzed, and [...] Read more.
This paper presents a virtual dynamic vibration absorber (DVA) trap fusion active vibration suppression algorithm based on inertial actuators as a solution to the harmonic vibration control problem of large flexible space trusses. Firstly, the mechanism of the inertial actuator is analyzed, and the relationship between the bandwidth of the algorithm and the intrinsic frequency of the inertial actuator is derived. Secondly, a dynamic model of the space truss is constructed. Subsequently, an analysis is conducted to determine the manner in which the virtual DVA exerts influence on the system’s dynamic characteristics. Based on this analysis, a virtual DVA trap fusion active vibration suppression algorithm is designed. Finally, the efficacy of the proposed algorithm in suppressing vibration is demonstrated through experimentation. The algorithm was demonstrated to be effective in suppressing both single-frequency harmonic vibration and multi-frequency harmonic vibration under the working conditions of single-degree-of-freedom and multi-degree-of-freedom of a flexible truss. The vibration suppression efficiency was found to be greater than 60%. It is therefore evident that the proposed algorithm has the potential to be applied to the vibration suppression of telescopes assembled in orbit in the future. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 3209 KiB  
Technical Note
Effects of Equatorial Plasma Bubbles on Multi-GNSS Signals: A Case Study over South China
by Hao Han, Jiahao Zhong, Yongqiang Hao, Ningbo Wang, Xin Wan, Fuqing Huang, Qiaoling Li, Xingyan Song, Jiawen Chen, Kang Wang, Yanyan Tang, Zhuoliang Ou and Wenyu Du
Remote Sens. 2024, 16(8), 1358; https://doi.org/10.3390/rs16081358 - 12 Apr 2024
Cited by 5 | Viewed by 1739
Abstract
Equatorial plasma bubbles (EPBs) occur frequently in low-latitude areas and have a non-negligible impact on navigation satellite signals. To systematically analyze the effects of a single EPB event on multi-frequency signals of GPS, Galileo, GLONASS, and BDS, all-sky airglow images over South China [...] Read more.
Equatorial plasma bubbles (EPBs) occur frequently in low-latitude areas and have a non-negligible impact on navigation satellite signals. To systematically analyze the effects of a single EPB event on multi-frequency signals of GPS, Galileo, GLONASS, and BDS, all-sky airglow images over South China are jointly used to visually determine the EPB structure and depletion degree. The results reveal that scintillations, or GNSS signal fluctuations, are directly linked to EPBs and that the intensity of scintillation is positively correlated with the airglow depletion intensity. The center of the airglow depletion often corresponds to stronger GNSS scintillation, while the edge of the bubble, which is considered to have the largest density gradient, corresponds to relatively smaller scintillation instead. This work also systematically analyzes the responses of multi-constellation and multi-frequency signals to EPBs. The results show that the L2 and L5 frequencies are more susceptible than the L1 frequency is. For different constellations, Galileo’s signal has the best tracking stability during an EPB event compared with GPS, GLONASS, and BDS. The results provide a reference for dual-frequency signal selection in precise positioning or TEC calculation, that is, L1C and L2L for GPS, L1C and L5Q for Galileo, L1P and L2C for GLONASS, and L1P and L5P for BDS. Notably, BDS-2 is significantly weaker than BDS-3. And inclined geosynchronous orbit (IGSO) satellites have abnormal data error rates, which should be related to the special signal path trajectory of the IGSO satellite. Full article
Show Figures

Graphical abstract

9 pages, 4083 KiB  
Communication
A Study of Outliers in GNSS Clock Products
by Kamil Maciuk, Inese Varna and Karolina Krzykowska-Piotrowska
Sensors 2024, 24(3), 799; https://doi.org/10.3390/s24030799 - 25 Jan 2024
Cited by 1 | Viewed by 1436
Abstract
Time is an extremely important element in the field of GNSS positioning. In precise positioning with a single-centimetre accuracy, satellite clock corrections are used. In this article, the longest available data set of satellite clock corrections of four GNSS systems from 2014 to [...] Read more.
Time is an extremely important element in the field of GNSS positioning. In precise positioning with a single-centimetre accuracy, satellite clock corrections are used. In this article, the longest available data set of satellite clock corrections of four GNSS systems from 2014 to 2021 was analysed. This study covers the determination of the quality (outliers number and magnitude), availability, stability, and determination of the specificity and nature of the clock correction for each satellite system. One problem with the two newest satellite systems (Galileo and BeiDou) is the lack of availability of satellite signals in the early years of the analysis. These data were available only in the later years of the period covered by the analysis, as most of the satellites have only been in orbit since 2018–2019. Interestingly, the percentage of outlying observations was highest in Galileo and lowest in BeiDou. Phase and frequency plots showed a significant number of outlying observations. On the other hand, after eliminating outlying observations, each system showed a characteristic graph waveform. The most consistent and stable satellite clock corrections are provided by the GPS and GLONASS systems. The main problems discussed in this paper are the determination of the number and magnitude of outliers in clock products of four GNSS systems (GPS, GLONASS, Galileo, Beidou) and the study on the long-term stability of GNSS clocks analysis, which covers the years 2014–2021. Full article
Show Figures

Figure 1

19 pages, 6036 KiB  
Article
Characterizing Ionospheric Effects on GNSS Reflectometry at Grazing Angles from Space
by Mario Moreno, Maximilian Semmling, Georges Stienne, Mainul Hoque and Jens Wickert
Remote Sens. 2023, 15(20), 5049; https://doi.org/10.3390/rs15205049 - 20 Oct 2023
Cited by 1 | Viewed by 2618
Abstract
Coherent observations in GNSS reflectometry are prominent in regions with smooth reflecting surfaces and at grazing elevation angles. However, within these lower elevation ranges, GNSS signals traverse a more extensive atmospheric path, and increased ionospheric effects (e.g., delay biases) are expected. These biases [...] Read more.
Coherent observations in GNSS reflectometry are prominent in regions with smooth reflecting surfaces and at grazing elevation angles. However, within these lower elevation ranges, GNSS signals traverse a more extensive atmospheric path, and increased ionospheric effects (e.g., delay biases) are expected. These biases can be mitigated by employing dual-frequency receivers or models tailored for single-frequency receivers. In preparation for the single-frequency GNSS-R ESA “PRETTY” mission, this study aims to characterize ionospheric effects under variable parameter conditions: elevation angles in the grazing range (5° to 30°), latitude-dependent regions (north, tropic, south) and diurnal changes (day and nighttime). The investigation employs simulations using orbit data from Spire Global Inc.’s Lemur-2 CubeSat constellation at the solar minimum (F10.7 index at 75) on March, 2021. Changes towards higher solar activity are accounted for with an additional scenario (F10.7 index at 180) on March, 2023. The electron density associated with each reflection event is determined using the Neustrelitz Electron Density Model (NEDM2020) and the NeQuick 2 model. The results from periods of low solar activity reveal fluctuations of up to approximately 300 TECUs in slant total electron content, 19 m in relative ionospheric delay for the GPS L1 frequency, 2 Hz in Doppler shifts, and variations in the peak electron density height ranging from 215 to 330 km. Sea surface height uncertainty associated with ionospheric model-based corrections in group delay altimetric inversion can reach a standard deviation at the meter level. Full article
(This article belongs to the Special Issue GNSS-R Earth Remote Sensing from SmallSats)
Show Figures

Graphical abstract

25 pages, 6214 KiB  
Article
Research on Soil Moisture Estimation of Multiple-Track-GNSS Dual-Frequency Combination Observations Considering the Detection and Correction of Phase Outliers
by Xudong Zhang, Chao Ren, Yueji Liang, Jieyu Liang, Anchao Yin and Zhenkui Wei
Sensors 2023, 23(18), 7944; https://doi.org/10.3390/s23187944 - 17 Sep 2023
Cited by 1 | Viewed by 1723
Abstract
Soil moisture (SM), as one of the crucial environmental factors, has traditionally been estimated using global navigation satellite system interferometric reflectometry (GNSS-IR) microwave remote sensing technology. This approach relies on the signal-to-noise ratio (SNR) reflection component, and its accuracy hinges on the successful [...] Read more.
Soil moisture (SM), as one of the crucial environmental factors, has traditionally been estimated using global navigation satellite system interferometric reflectometry (GNSS-IR) microwave remote sensing technology. This approach relies on the signal-to-noise ratio (SNR) reflection component, and its accuracy hinges on the successful separation of the reflection component from the direct component. In contrast, the presence of carrier phase and pseudorange multipath errors enables soil moisture retrieval without the requirement for separating the direct component of the signal. To acquire high-quality combined multipath errors and diversify GNSS-IR data sources, this study establishes the dual-frequency pseudorange combination (DFPC) and dual-frequency carrier phase combination (L4) that exclude geometrical factors, ionospheric delay, and tropospheric delay. Simultaneously, we propose two methods for estimating soil moisture: the DFPC method and the L4 method. Initially, the equal-weight least squares method is employed to calculate the initial delay phase. Subsequently, anomalous delay phases are detected and corrected through a combination of the minimum covariance determinant robust estimation (MCD) and the moving average filter (MAF). Finally, we utilize the multivariate linear regression (MLR) and extreme learning machine (ELM) to construct multi-satellite linear regression models (MSLRs) and multi-satellite nonlinear regression models (MSNRs) for soil moisture prediction, and compare the accuracy of each model. To validate the feasibility of these methods, data from site P031 of the Plate Boundary Observatory (PBO) H2O project are utilized. Experimental results demonstrate that combining MCD and MAF can effectively detect and correct outliers, yielding single-satellite delay phase sequences with a high quality. This improvement contributes to varying degrees of enhanced correlation between the single-satellite delay phase and soil moisture. When fusing the corrected delay phases from multiple satellite orbits using the DFPC method for soil moisture estimation, the correlations between the true soil moisture values and the predicted values obtained through MLR and ELM reach 0.81 and 0.88, respectively, while the correlations of the L4 method can reach 0.84 and 0.90, respectively. These findings indicate a substantial achievement in high-precision soil moisture estimation within a small satellite-elevation angle range. Full article
(This article belongs to the Special Issue GNSS Sensing and Imaging Based on Monitoring Applications)
Show Figures

Figure 1

15 pages, 6631 KiB  
Article
Ionospheric Assimilation of GNSS TEC into IRI Model Using a Local Ensemble Kalman Filter
by Jun Tang, Shimeng Zhang, Xingliang Huo and Xuequn Wu
Remote Sens. 2022, 14(14), 3267; https://doi.org/10.3390/rs14143267 - 7 Jul 2022
Cited by 12 | Viewed by 2928
Abstract
Ionospheric total electron content (TEC) is important data for ionospheric morphology, and also an important parameter for ionospheric correction in Global Navigation Satellite System (GNSS) precise positioning, navigation, and radio science. In this study, we present a data assimilation model for regional ionosphere [...] Read more.
Ionospheric total electron content (TEC) is important data for ionospheric morphology, and also an important parameter for ionospheric correction in Global Navigation Satellite System (GNSS) precise positioning, navigation, and radio science. In this study, we present a data assimilation model for regional ionosphere based on a local ensemble Kalman filter (LEnKF) with the International Reference Ionosphere 2016 (IRI-2016) model as the background, to assimilate ionospheric TEC observations from GNSS. To demonstrate the results, the TEC estimates from the Crustal Movement Observation Network of China (CMONOC), which is about 260 stations in China, are applied as observation. The assessments are performed against the TEC estimates from BeiDou Navigation Satellite System (BDS) geostationary earth orbit (GEO) and against the final products from the Center for Orbit Determination in Europe (CODE). The assimilation results are in good agreement with BDS GEO TEC and the CODE TEC on a quiet or disturbed day. The correlation coefficient after assimilation is increased by about 17% compared with that before assimilation, and the RMSE after assimilation is decreased by about 42% compared with that before assimilation. Furthermore, the assimilated method is also evaluated in the single-frequency precise point positioning (PPP). The experimental results indicate that the PPP/Assimilated method can improve the GNSS positioning accuracy more effectively in comparison to the PPP/CODE. These results reveal that the LEnKF method can be considered as a useful tool for ionospheric assimilation. Full article
(This article belongs to the Special Issue GNSS Atmospheric Modelling)
Show Figures

Graphical abstract

17 pages, 5483 KiB  
Article
Tsinghua Scientific Satellite Precise Orbit Determination Using Onboard GNSS Observations with Antenna Center Modeling
by Kai Shao, Chunbo Wei, Defeng Gu, Zhaokui Wang, Kai Wang, Yingkai Cai and Dachen Peng
Remote Sens. 2022, 14(10), 2479; https://doi.org/10.3390/rs14102479 - 21 May 2022
Cited by 6 | Viewed by 2588
Abstract
The Tsinghua scientific satellite is a Chinese spherical micro satellite for Earth gravity and atmospheric scientific measurements. The accurate orbits of this satellite are the prerequisites to satisfy the mission objectives. A commercial off-the-shelf dual-frequency GNSS receiver is equipped on the satellite for [...] Read more.
The Tsinghua scientific satellite is a Chinese spherical micro satellite for Earth gravity and atmospheric scientific measurements. The accurate orbits of this satellite are the prerequisites to satisfy the mission objectives. A commercial off-the-shelf dual-frequency GNSS receiver is equipped on the satellite for precise orbit determination (POD). The in-flight performances of the receiver are assessed. Regular long-duration gaps up to 50 min are observed in GNSS data, and the typical data availability is about 60–70% each day. The RMS of code noises is 0.24 m and 0.30 m for C1 and P2 codes, respectively. The RMS of fitting residuals of the carrier phase geometry-free L1–L2 combination is 2.4 mm. The GNSS receiver antenna center offsets (ACOs) and antenna center variations (ACVs) maps are estimated using in-flight data for both dual-frequency and single-frequency POD. Significant improvements in POD performances are obtained when the measurement models are updated by using the ACO and ACV maps’ corrections. With the updated measurement model, the RMS of the orbit overlap differences is 1.23 cm in three dimensions for dual-frequency POD, which is reduced by 27%. Meanwhile, two different empirical acceleration types are employed and compared for dual-frequency POD, and the results show that consistency on the 5 cm level is demonstrated for orbit solutions obtained with the updated measurement model. After correcting the ACO and ACV maps, the precision of single-frequency orbit solutions is better than 10 cm, which is improved by 32%. The results indicate that the antenna center modeling can significantly improve the consistency of Tsinghua scientific satellite precise orbits, which will be conducive to the realization of the mission objectives. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Graphical abstract

20 pages, 6055 KiB  
Article
Assessment of IRNSS-Only Data Processing: Availability, Single-Frequency SPP and Short-Baseline RTK
by Lin Pan, Gen Pei, Wenkun Yu and Zhehao Zhang
Remote Sens. 2022, 14(10), 2462; https://doi.org/10.3390/rs14102462 - 20 May 2022
Cited by 3 | Viewed by 2657
Abstract
The Indian Regional Navigation Satellite System (IRNSS) currently can provide independent positioning services with eight in-orbit satellites. This study provides a comprehensive assessment of IRNSS-only data processing, including the availability of satellite constellation, the performance of single-frequency single point positioning (SPP), and the [...] Read more.
The Indian Regional Navigation Satellite System (IRNSS) currently can provide independent positioning services with eight in-orbit satellites. This study provides a comprehensive assessment of IRNSS-only data processing, including the availability of satellite constellation, the performance of single-frequency single point positioning (SPP), and the performance of single-frequency short-baseline real-time kinematic (RTK) positioning. Regarding the availability of IRNSS-only case in its primary service areas, the average number of visible satellites is 6–8, and the average Position Dilution of Precision (PDOP) value falls between 3.3 and 6.2, under a service rate of nearly 100.0%. The datasets from 14 stations located in the IRNSS service areas spanning a week are used for position determination. The results show that under the IRNSS single-system case, the positioning accuracy of the SPP is 6.031, 6.015, and 9.668 m in the east, north, and up directions, respectively, and the mean positioning bias of short-baseline RTK is 5.4, −21.1, and −0.2 mm with a standard deviation (STD) error of 7.8, 19.2, and 29.0 mm in the three directions, respectively. For comparative analysis, the results of the GPS single-system and GPS/IRNSS dual-system combination cases are also presented. The positioning performance of IRNSS is inferior to that of GPS, and the performance improvement of GPS/IRNSS dual-system integrated solutions over GPS single-system solutions is not significant. Furthermore, based on the GPS/IRNSS dual-system solutions, the inter-system bias estimates from SPP, the code observation residuals from SPP, and the carrier phase observation residuals from short-baseline RTK are characterized. Full article
(This article belongs to the Special Issue GNSS Precise Positioning and Geoscience Application)
Show Figures

Graphical abstract

15 pages, 1799 KiB  
Article
A New Space-to-Ground Microwave-Based Two-Way Time Synchronization Method for Next-Generation Space Atomic Clocks
by Yanming Guo, Shuaihe Gao, Yan Bai, Zhibing Pan, Yinhua Liu, Xiaochun Lu and Shougang Zhang
Remote Sens. 2022, 14(3), 528; https://doi.org/10.3390/rs14030528 - 22 Jan 2022
Cited by 12 | Viewed by 3838
Abstract
The accuracy of time synchronization can be significantly increased by enhancing the performance of atomic clocks. Future-generation time-frequency loads will be equipped with the latest ultrahigh-precision atomic clocks (with a day stability better than 10−17) and will leverage advantages of the [...] Read more.
The accuracy of time synchronization can be significantly increased by enhancing the performance of atomic clocks. Future-generation time-frequency loads will be equipped with the latest ultrahigh-precision atomic clocks (with a day stability better than 10−17) and will leverage advantages of the space environment such as microgravity and low interference to operate a new generation of high-performance time-frequency payloads on low-orbit spacecraft. Moreover, using the high-precision time-frequency system of ground stations, low-time-delay high-performance time-frequency transmission networks, which have the potential to achieve ultrahigh-precision time synchronization, will be constructed. By considering full link error terms above the picosecond level, this paper proposes a new space-to-ground microwave two-way time synchronization method for scenarios involving low-orbit spacecraft and ground stations. Using the theoretical principles and practical application scenarios related to this method, a theoretical and simulation verification platform was developed to research the impact of the attitude, phase center calibration, and orbit determination errors on the single-frequency two-way time synchronization method. The effectiveness of this new method was verified. The results showed that when the attitude error is less than 72 arc seconds (0.02°), the phase center calibration error is less than 1 mm, and the precision orbit determination (POD) error is less than 10 cm (three-axis). After disregarding nonlink error terms such as equipment noise, this method can attain a space-to-ground time synchronization accuracy of better than 1.5 ps, and the time deviation (TDEV) of the transfer link is better than 0.7 ps @ 100 s, which results in ultrahigh-precision space-to-ground time synchronization. Full article
(This article belongs to the Topic GNSS Measurement Technique in Aerial Navigation)
Show Figures

Figure 1

31 pages, 7077 KiB  
Article
Evaluation of BRDF Information Retrieved from Time-Series Multiangle Data of the Himawari-8 AHI
by Xiaoning Zhang, Ziti Jiao, Changsen Zhao, Jing Guo, Zidong Zhu, Zhigang Liu, Yadong Dong, Siyang Yin, Hu Zhang, Lei Cui, Sijie Li, Yidong Tong and Chenxia Wang
Remote Sens. 2022, 14(1), 139; https://doi.org/10.3390/rs14010139 - 29 Dec 2021
Cited by 9 | Viewed by 3210
Abstract
Recently, much attention has been given to using geostationary Earth orbit (GEO) meteorological satellite data for retrieving land surface parameters due to their high observation frequencies. However, their bidirectional reflectance distribution function (BRDF) information content with a single viewing angle has not been [...] Read more.
Recently, much attention has been given to using geostationary Earth orbit (GEO) meteorological satellite data for retrieving land surface parameters due to their high observation frequencies. However, their bidirectional reflectance distribution function (BRDF) information content with a single viewing angle has not been sufficiently investigated, which lays a foundation for subsequent quantitative estimation. In this study, we aim to comprehensively evaluate BRDF information from time-series observations from the Advanced Himawari Imager (AHI) onboard the GEO satellite Himawari-8. First, ~6.2 km monthly multiangle surface reflectances from POLDER onboard a low-Earth-orbiting (LEO) satellite with good angle distributions over various land types during 2008 were used as reference data, and corresponding 0.05° high-quality MODIS (i.e., onboard LEO satellites) and AHI datasets during four months in 2020 were obtained using cloud and aerosol property products. Then, indicators of angle distribution, BRDF change, and albedos were retrieved by the kernel-driven Ross-Li BRDF model from the three datasets, which were used for comparisons over different time spans. Generally, the quality of sun-viewing geometries varies dramatically for accumulated AHI observations according to the weight-of-determination, and wide-ranging anisotropic flat indices are obtained. The root-mean-square-errors of white sky albedos between AHI and MODIS half-month data are 0.018 and 0.033 in the red and near-infrared bands, respectively, achieving smaller values of 0.004 and 0.007 between the half-month and daily AHI data, respectively, due to small variances in sun-viewing geometries. The generally wide AHI BRDF variances and good consistency in albedo with MODIS show their potential for retrieving anisotropy information and albedo, while angle accumulation quality of AHI time-series observations must be considered. Full article
Show Figures

Graphical abstract

16 pages, 4156 KiB  
Article
Improved Single-Frequency Kinematic Orbit Determination Strategy of Small LEO Satellite with the Sun-Pointing Attitude Mode
by Wenju Fu, Lei Wang, Ruizhi Chen, Haitao Zhou, Tao Li and Yi Han
Remote Sens. 2021, 13(19), 4020; https://doi.org/10.3390/rs13194020 - 8 Oct 2021
Cited by 1 | Viewed by 3478
Abstract
Kinematic orbit determination (KOD) of low earth orbit (LEO) satellites only using single-frequency global navigation satellite system (GNSS) data is a suitable solution for space applications demanding meter-level orbit precision. For some small LEO satellites with the sun-pointing attitude mode, the rotation of [...] Read more.
Kinematic orbit determination (KOD) of low earth orbit (LEO) satellites only using single-frequency global navigation satellite system (GNSS) data is a suitable solution for space applications demanding meter-level orbit precision. For some small LEO satellites with the sun-pointing attitude mode, the rotation of the GNSS antenna radiation pattern changes the observation noise characteristics. Since the rotation angle information of the antenna plane may not be available for most low-cost missions, the true elevation cannot be computed and a general elevation-dependent weighting model remains invalid for the onboard GNSS observations. Furthermore, the low-stability GNSS receiver clock oscillator of the LEO satellite at high speeds makes single-frequency cycle slip detection ineffective and difficult since the clock steering events occur frequently. In this study, we investigated the improved KOD strategy to improve the performance of orbit solution using single-frequency GPS and BeiDou navigation satellite system (BDS) observations collected from the Luojia-1A satellite. The weighting model based on exponential function and signal strength is proposed according to the analysis of satellite attitude impact, and a joint single-frequency detection algorithm of receiver clock jump and cycle slip is investigated as well. Based on the GPS/BDS-combined KOD results, it is demonstrated that the clock jump and cycle slip can be properly detected and observations can be effectively utilized with the proposed weighting model considering satellite attitude, which significantly improves the availability and accuracy of orbit solution. The number of available epochs is increased by 12.9% benefitting from this strategy. The orbital root mean square (RMS) precision improvements in the radial, along-track, and cross-track directions are 22.1%, 16.4%, and 6.5%, respectively. Combining BDS observations also contributes to orbit precision improvement, which reaches up to 28.8%. Full article
(This article belongs to the Special Issue Autonomous Space Navigation)
Show Figures

Figure 1

Back to TopTop