Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = single-cell/single-nucleus RNA sequencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3539 KB  
Article
Neuro-Genomic Mapping of Cardiac Neurons with Systemic Analysis Reveals Cognitive and Neurodevelopmental Impacts in Congenital Heart Disease
by Abhimanyu Thakur and Raj Kishore
Life 2025, 15(9), 1400; https://doi.org/10.3390/life15091400 - 4 Sep 2025
Viewed by 470
Abstract
Congenital heart disease (CHD) is associated with neurodevelopmental and cognitive impairments, but the underlying molecular mechanisms remain unclear. This study investigated cardiac neuronal genomics in CHD using single-nucleus RNA-sequencing data (GSE203274) from 157,273 cardiac nuclei of healthy donors and patients with hypoplastic left [...] Read more.
Congenital heart disease (CHD) is associated with neurodevelopmental and cognitive impairments, but the underlying molecular mechanisms remain unclear. This study investigated cardiac neuronal genomics in CHD using single-nucleus RNA-sequencing data (GSE203274) from 157,273 cardiac nuclei of healthy donors and patients with hypoplastic left heart syndrome (HLHS), Tetralogy of Fallot (TOF), dilated (DCM), and hypertrophic (HCM) cardiomyopathies. The Uniform Manifold Approximation and Projection (UMAP) clustering identified major cardiac cell types, revealing neuron-specific transcriptional programmes. Neuronal populations showed enriched expression of neurodevelopmental disorder-linked genes (NRXN3, CADM2, ZNF536) and synaptic signalling pathways. CHD cardiac neurons exhibited upregulated markers of cognitive dysfunction (APP, SNCA, BDNF) and neurodevelopment regulators (DNMT1, HCFC1) across subtypes. Cardiomyocyte troponin elevation correlated with neuronal exosome receptor expression (TLR2, LRP1), suggesting intercellular communication. Gene ontology analysis highlighted overlaps between cardiovascular disease pathways and neurodevelopmental disorder signatures in CHD neurons. These findings provide the first neuro-genomic map of cardiac neurons in CHD, linking cardiac pathology to neural outcomes through transcriptional dysregulation. Further, the systemic analysis of clinical findings in CHD further supports the risk of neurodevelopmental impacts. In summary, this study identifies transcriptional dysregulation within cardiac neurons in CHD and, together with a systemic analysis of clinical data, provides molecular evidence linking cardiac pathology to neurodevelopmental and cognitive impairments. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

23 pages, 4560 KB  
Article
A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs
by Pablo Ruiz-Amezcua, Miguel Nieto Hernández, Javier García Flores, Clara Plaza Alonso, David Reigada, Teresa Muñoz-Galdeano, Eva Vargas, Rodrigo M. Maza, Francisco J. Esteban and Manuel Nieto-Díaz
BioTech 2025, 14(3), 70; https://doi.org/10.3390/biotech14030070 - 3 Sep 2025
Viewed by 717
Abstract
The adult lumbar spinal cord plays a critical role in locomotor control and somatosensory integration, whose transcriptional architecture under physiological conditions has been characterized in various studies with restricted numbers of individuals (up to four). Here, we present an integrative single-nucleus RNA sequencing [...] Read more.
The adult lumbar spinal cord plays a critical role in locomotor control and somatosensory integration, whose transcriptional architecture under physiological conditions has been characterized in various studies with restricted numbers of individuals (up to four). Here, we present an integrative single-nucleus RNA sequencing (snRNA-seq) atlas of the healthy adult mouse lumbar spinal cord, assembled from over 86,000 nuclei from 16 samples across five public datasets. Using a harmonized computational pipeline, we identify all major spinal cell lineages and resolve 17 transcriptionally distinct neuronal subtypes. A central novelty of our approach is the systematic inclusion of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and pseudogenes. By comparing transcriptomic analyses based on coding-only, non-coding-only, and combined gene sets, we show that ncRNAs, despite accounting to a 10% of the recorded information of each cell, contribute to cell type-specific signatures. This resource offers a high-resolution, ncRNA-inclusive reference for the adult spinal cord and provides a foundation for future studies on spinal plasticity, injury, and regeneration. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

23 pages, 8052 KB  
Article
The Capability to Undergo ACSL4-Mediated Ferroptosis Is Acquired During Brown-like Adipogenesis and Affected by Hypoxia
by Markus Mandl, Elisabeth Heuboeck, Peter Benedikt, Florian Huber, Olga Mamunchak, Sonja Grossmann, Michaela Kotnik, Esma Hamzic-Jahic, Charnkamal Singh Bhogal, Anna-Maria Lipp, Edeltraud Raml, Werner Zwerschke, Martin Wabitsch, Jakob Voelkl, Andreas Zierer and David Bernhard
Cells 2025, 14(16), 1247; https://doi.org/10.3390/cells14161247 - 13 Aug 2025
Viewed by 943
Abstract
Adipose tissue enlargement in obesity leads to hypoxia, which may promote premature aging. This study aimed to understand the hypoxic response in 3D cultures of SGBS cells, a model for brown-like adipose tissue expressing uncoupling protein 1 (UCP1). Single-nucleus RNA sequencing of SGBS [...] Read more.
Adipose tissue enlargement in obesity leads to hypoxia, which may promote premature aging. This study aimed to understand the hypoxic response in 3D cultures of SGBS cells, a model for brown-like adipose tissue expressing uncoupling protein 1 (UCP1). Single-nucleus RNA sequencing of SGBS organoids revealed a heterogeneous composition and sub-population-specific responses to hypoxia. The analysis identified a cluster of transcriptional repression, indicating dying cells, and implied a role of ferroptosis in this model. Further experiments with SGBS cells and white adipose tissue-derived stem/progenitor cells showed that Acyl-CoA synthetase long-chain family member 4 (ACSL4), a key enzyme in ferroptosis, is expressed only in the presence of browning factors. Hypoxia downregulated ACSL4 protein in SGBS organoids but induced an inflammaging phenotype. Analysis of brown-like epicardial adipose tissue from cardiac surgery patients revealed a significant positive correlation of ACSL4 mRNA with UCP1 and hypoxia-inducible pro-inflammatory markers, while ACSL4 protein appeared to be inversely correlated. In conclusion, this study demonstrates that adipocytes’ capability to undergo ACSL4-mediated ferroptosis is linked to brown-like adipogenesis, suggesting an opportunity to modulate ferroptotic signaling in adipose tissue. The dual role of hypoxia by inhibiting ACSL4 but promoting inflammaging indicates a relationship between ferroptosis and aging that warrants further investigation. Full article
Show Figures

Figure 1

29 pages, 14681 KB  
Article
Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
by Yanchun Bao, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, Lin Zhu, Yu Wang, Bin Liu, Risu Na and Wenguang Zhang
Animals 2025, 15(15), 2277; https://doi.org/10.3390/ani15152277 - 4 Aug 2025
Viewed by 731
Abstract
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total [...] Read more.
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total of 6161 high-quality nuclei from the hypothalamus, 14,715 nuclei from the pituitary, and 26,072 nuclei from the ovary, providing a comprehensive cellular atlas across the HPO axis. In the hypothalamus, neurons exhibited synaptic and neuroendocrine specialization, with glutamatergic subtype Glut4 serving as a TGFβ signaling hub to regulate pituitary feedback, while GABAergic GABA1 dominated PRL signaling, likely adapting maternal behavior. Pituitary stem cells dynamically replenished endocrine populations via TGFβ, and lactotrophs formed a PRLPRLR paracrine network with stem cells, synergizing mammary development. Ovarian luteal cells exhibited steroidogenic specialization and microenvironmental synergy: endothelial cells coregulated TGFβ-driven angiogenesis and immune tolerance, while luteal–stromal PRLPRLR interactions amplified progesterone synthesis and nutrient support. Granulosa cells (GCs) displayed spatial-functional stratification, with steroidogenic GCs persisting across pseudotime as luteinization precursors, while atretic GCs underwent apoptosis. Spatial mapping revealed GCs’ annular follicular distribution, mediating oocyte–somatic crosstalk, and luteal–endothelial colocalization supporting vascularization. This study unveils pregnancy-specific HPO axis regulation, emphasizing multi-organ crosstalk through TGFβ/PRL pathways and stem cell-driven plasticity, offering insights into reproductive homeostasis and pathologies. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

19 pages, 11390 KB  
Article
Single-Nucleus Transcriptomics Reveals Glial Metabolic–Immune Rewiring and Intercellular Signaling Disruption in Chronic Migraine
by Shuangyuan Hu, Zili Tang, Shiqi Sun, Lu Liu, Yuyan Wang, Longyao Xu, Jing Yuan, Ying Chen, Mingsheng Sun and Ling Zhao
Biomolecules 2025, 15(7), 942; https://doi.org/10.3390/biom15070942 - 28 Jun 2025
Viewed by 946
Abstract
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a [...] Read more.
Chronic migraine (CM) is a debilitating neurological disorder, yet the glial-specific mechanisms underlying its pathophysiology in the trigeminal nucleus caudalis (TNC)—a critical hub for craniofacial pain processing—remain poorly understood. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to resolve cell-type-specific transcriptional landscapes in a nitroglycerin (NTG)-induced CM rat model, with a particular focus on microglia and astrocytes. We identified 19 transcriptional clusters representing nine major cell types, among which reactive microglia (NTG-Mic) and astrocytes (NTG-Asts) were markedly expanded. The NTG-Mic displayed a glycolysis-dominant, complement-enriched state, whereas the NTG-Asts exhibited concurrent activation of amino acid transport and cytokine signaling pathways. Pseudotime trajectory analysis revealed bifurcated glial activation paths, with NTG driving both cell types toward terminal reactive states. Intercellular communication inference uncovered suppressed homeostatic interactions (e.g., CSF1-CSF1R) alongside enhanced proinflammatory signaling (e.g., FGF1-FGFR2, PTN-SDC4), particularly affecting neuron–glia and glia–glia crosstalk. Together, these findings define a high-resolution atlas of glial reprogramming in CM, implicating state-specific metabolic–immune transitions and dysregulated glial communication as potential targets for therapeutic intervention. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

10 pages, 2639 KB  
Brief Report
Patterning Defects in Mice with Defective Ventricular Wall Maturation and Cardiomyopathy
by Javier Santos-Cantador, Marcos Siguero-Álvarez and José Luis de la Pompa
J. Cardiovasc. Dev. Dis. 2025, 12(6), 224; https://doi.org/10.3390/jcdd12060224 - 12 Jun 2025
Viewed by 597
Abstract
Ventricular chamber development involves the coordinated maturation of diverse cardiomyocyte cell populations. In the human fetal heart, single-cell and single-nucleus RNA sequencing technologies and spatial transcriptomics reveal marked regional gene expression differences. In contrast, the mouse ventricular wall appears more homogeneous, except for [...] Read more.
Ventricular chamber development involves the coordinated maturation of diverse cardiomyocyte cell populations. In the human fetal heart, single-cell and single-nucleus RNA sequencing technologies and spatial transcriptomics reveal marked regional gene expression differences. In contrast, the mouse ventricular wall appears more homogeneous, except for a transient hybrid cardiomyocyte population co-expressing compact (Hey2) and trabecular (Irx3, Nppa, Bmp10) markers, indicating a transitional lineage state. To further investigate this, we used in situ hybridization (ISH) to examine the expression of a selected set of cardiomyocyte markers in normal and left ventricular non-compaction cardiomyopathy (LVNC) mouse models. In developing mouse ventricles, the expression of key marker genes was largely restricted to two wide myocardial domains, compact and trabecular myocardium, suggesting a less complex regional organization than the human fetal heart. Other markers labeled endocardial and coronary endothelial cells rather than cardiomyocytes, differing from patterns observed in the human heart. In the LVNC model, various markers exhibited altered spatial expression, indicating that the precise regional organization of gene expression is critical for normal ventricular wall maturation. These findings underscore the critical role of spatially regulated gene programs in ventricular chamber development and point to their potential involvement in cardiomyopathy pathogenesis. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Graphical abstract

20 pages, 8664 KB  
Article
Molecular Fingerprint of Endocannabinoid Signaling in the Developing Paraventricular Nucleus of the Hypothalamus as Revealed by Single-Cell RNA-Seq and In Situ Hybridization
by Evgenii O. Tretiakov, Zsófia Hevesi, Csenge Böröczky, Alán Alpár, Tibor Harkany and Erik Keimpema
Cells 2025, 14(11), 788; https://doi.org/10.3390/cells14110788 - 27 May 2025
Viewed by 1003
Abstract
The paraventricular nucleus of the hypothalamus (PVN) regulates, among others, the stress response, sexual behavior, and energy metabolism through its magnocellular and parvocellular neurosecretory cells. Within the PVN, ensemble coordination occurs through the many long-range synaptic afferents, whose activity in time relies on [...] Read more.
The paraventricular nucleus of the hypothalamus (PVN) regulates, among others, the stress response, sexual behavior, and energy metabolism through its magnocellular and parvocellular neurosecretory cells. Within the PVN, ensemble coordination occurs through the many long-range synaptic afferents, whose activity in time relies on retrograde neuromodulation by, e.g., endocannabinoids. However, the nanoarchitecture of endocannabinoid signaling in the PVN, especially during neuronal development, remains undescribed. By using single-cell RNA sequencing, in situ hybridization, and immunohistochemistry during fetal and postnatal development in mice, we present a spatiotemporal map of both the 2-arachidonoylglycerol (2-AG) and anandamide (AEA) signaling cassettes, with a focus on receptors and metabolic enzymes, in both molecularly defined neurons and astrocytes. We find type 1 cannabinoid receptors (Cnr1), but neither Cnr2 nor Gpr55, expressed in neurons of the PVN. Dagla and Daglb, which encode the enzymes synthesizing 2-AG, were found in all neuronal subtypes of the PVN, with a developmental switch from Daglb to Dagla. Mgll, which encodes an enzyme degrading 2-AG, was only found sporadically. Napepld and Faah, encoding enzymes that synthesize and degrade AEA, respectively, were sparsely expressed in neurons throughout development. Notably, astrocytes expressed Mgll and both Dagl isoforms. In contrast, mRNA for any of the three major cannabinoid-receptor subtypes could not be detected. Immunohistochemistry validated mRNA expression and suggested that endocannabinoid signaling is configured to modulate the activity of afferent inputs, rather than local neurocircuits, in the PVN. Full article
Show Figures

Figure 1

14 pages, 4820 KB  
Article
Single-Cell RNA Sequencing Outperforms Single-Nucleus RNA Sequencing in Analyzing Pancreatic Cell Diversity and Gene Expression in Goats
by Jie Cheng, Tianxi Zhang, Yan Cheng, Kefyalew Gebeyew, Zhiliang Tan and Zhixiong He
Int. J. Mol. Sci. 2025, 26(8), 3916; https://doi.org/10.3390/ijms26083916 - 21 Apr 2025
Viewed by 1525
Abstract
The objective of this study was to determine whether single-cell RNA sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) was more effective for studying the goat pancreas. Pancreas tissues from three healthy 10-day-old female Xiangdong black goats were processed into single-cell and single-nucleus suspensions. [...] Read more.
The objective of this study was to determine whether single-cell RNA sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) was more effective for studying the goat pancreas. Pancreas tissues from three healthy 10-day-old female Xiangdong black goats were processed into single-cell and single-nucleus suspensions. These suspensions were then used to compare cellular composition and gene expression levels following library construction and sequencing. Both scRNA-seq and snRNA-seq were eligible for primary analysis but produced different cell identification profiles in pancreatic tissue. Both methods successfully annotated pancreatic acinar cells, ductal cells, alpha cells, beta cells, and endothelial cells. However, pancreatic stellate cells, immune cells, and delta cells were uniquely annotated by scRNA-seq, while pancreatic stem cells were uniquely identified by snRNA-seq. Furthermore, the genes related to digestive enzymes showed a higher expression in scRNA-seq than in snRNA-seq. In the present study, scRNA-seq detected a great diversity of pancreatic cell types and was more effective in profiling key genes than snRNA-seq, demonstrating that scRNA-seq was better suited for studying the goat pancreas. However, the choice between scRNA-seq and snRNA-seq should consider the sample compatibility, technical differences, and experimental objectives. Full article
(This article belongs to the Special Issue Molecular Basis of Pancreatic Secretion and Metabolism)
Show Figures

Figure 1

21 pages, 5172 KB  
Article
Characterizing the Ovarian Cytogenetic Dynamics of Sichuan Bream (Sinibrama taeniatus) During Vitellogenesis at a Single-Cell Resolution
by Zhe Zhao, Shixia Huang, Qilin Feng, Li Peng, Qiang Zhao and Zhijian Wang
Int. J. Mol. Sci. 2025, 26(5), 2265; https://doi.org/10.3390/ijms26052265 - 4 Mar 2025
Cited by 1 | Viewed by 1149
Abstract
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing [...] Read more.
Vitellogenesis in fish represents a critical phase of oogenesis, significantly influencing the nutritional provisioning for oocyte maturation and subsequent offspring development. However, research on the physiological mechanisms governing vitellogenesis at the single-cell level remains limited. In this study, we performed single-nucleus RNA sequencing (snRNA-seq) on the ovaries of Sichuan bream (Sinibrama taeniatus). We first identified six distinct cell types (germ cells, follicular cells, immune cells, stromal cells, endothelial cells, and epithelial cells) in the ovaries based on typical functional marker genes. Subsequently, we reconstructed the developmental trajectory of germ cells using pseudotime analysis, which describes the transcriptional dynamics of germ cells at various developmental stages. Additionally, we identified transcription factors (TFs) specific to germ cells that exhibit high activity at each developmental stage. Furthermore, we analyzed the genetic functional heterogeneity of germ cells and follicular cells at different developmental stages to elucidate their contributions to vitellogenesis. Finally, cell interaction analysis revealed that germ cells communicate with somatic cells or with each other via multiple receptors and ligands to regulate growth, development, and yolk acquisition. These findings enhance our understanding of the physiological mechanisms underlying vitellogenesis in fish, providing a theoretical foundation for regulating ovarian development in farmed fish. Full article
Show Figures

Figure 1

22 pages, 15049 KB  
Article
Single-Cell Transcriptional Profiling Reveals Cell Type-Specific Sex-Dependent Molecular Patterns of Schizophrenia
by Runguang Zhou, Tianli Zhang and Baofa Sun
Int. J. Mol. Sci. 2025, 26(5), 2227; https://doi.org/10.3390/ijms26052227 - 1 Mar 2025
Cited by 1 | Viewed by 1886
Abstract
Schizophrenia (SCZ) is a debilitating psychiatric disorder marked by alterations in cognition and social behavior, resulting in profound impacts on individuals and society. Although sex-dependent disparities in the epidemiology of SCZ are well established, the biological molecular basis of these disparities remains poorly [...] Read more.
Schizophrenia (SCZ) is a debilitating psychiatric disorder marked by alterations in cognition and social behavior, resulting in profound impacts on individuals and society. Although sex-dependent disparities in the epidemiology of SCZ are well established, the biological molecular basis of these disparities remains poorly understood. Investigating cell type-specific transcriptomic profiles is critical for identifying regulatory components underlying sex-dependent molecular dysregulation in SCZ, which could serve as targets for sex-specific therapeutic interventions. To address this, we systematically analyzed publicly available single-nucleus RNA sequencing datasets to characterize cell type-specific sex-dependent gene expression profiles in the prefrontal cortex of SCZ cases. Functional enrichment analyses revealed sex-dependent dysregulation patterns of SCZ at the pathway level. Furthermore, we constructed cell type-specific gene regulatory networks for males and females, identifying SCZ-associated transcription factors that interact with sex hormones and their receptors. By incorporating drug screening results from the Connectivity Map, we established disease–gene–drug connections, elucidating sex-dependent molecular mechanisms of SCZ from the single-gene to the regulatory network level. Our findings delineate the molecular patterns of sex-dependent disparities in SCZ, uncover regulatory mechanisms driving SCZ-associated sex-dependent dysregulation, and illustrate the signal flow through which the biological sex influences downstream cellular pathways in SCZ cases. Our study provides significant evidence supporting the neuroprotective role of estrogen in the pathophysiology of female SCZ cases, while also establishing a robust foundation for the development of sex-specific therapeutic approaches for both sexes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

18 pages, 4740 KB  
Article
Phagocytic Function Analyses of GABBR-Related Microglia in Immature Developing Epileptic Brain Based on 10× Single-Nucleus RNA Sequencing Technology
by Yunhao Gan, Xiaoyue Yang, Tianyi Li, Ziyao Han, Li Cheng, Lingling Xie and Li Jiang
Biomedicines 2025, 13(2), 269; https://doi.org/10.3390/biomedicines13020269 - 22 Jan 2025
Viewed by 1646
Abstract
Background: Epilepsy is a neurological disorder defined by the occurrence of epileptic seizures, which can significantly affect children, often leading to learning and cognitive impairments. Microglia, the resident immune cells of the central nervous system, are essential in clearing damaged neurons through [...] Read more.
Background: Epilepsy is a neurological disorder defined by the occurrence of epileptic seizures, which can significantly affect children, often leading to learning and cognitive impairments. Microglia, the resident immune cells of the central nervous system, are essential in clearing damaged neurons through phagocytosis. Notably, GABBR-associated microglia have been implicated in regulating phagocytic activity. Since the phagocytic function of microglia is critical in the pathogenesis of epilepsy, this study aims to investigate the role of GABBR-associated microglia in the development of the immature brain following epileptic seizures. Methods: Epilepsy was induced in a mouse model by the intraperitoneal injection of KA. Changes in the expression of the GABBR-related gene, GABBR2, in hippocampal microglia were analyzed using single-nucleus RNA sequencing (snRNA-seq). Cognitive and emotional changes in the mice were assessed through behavioral analyses. The expression of GABBR2 was semi-quantitatively measured using Western blotting, quantitative reverse transcription PCR, and immunofluorescence. Additionally, the spatial relationship between GABBR2 and hippocampal neurons was evaluated using Imaris software. Results: The snRNA-seq analysis revealed that GABBR2 expression was elevated in activated microglia in the hippocampus during chronic epilepsy compared to the early phase of seizures. Behavioral assessments demonstrated heightened anxiety levels and learning and memory impairments in the chronic epilepsy group compared to the control group. GABBR2 expression was upregulated in chronic epilepsy. Three-dimensional reconstruction analyses revealed a significantly increased contact volume between GABBR-associated microglia and neurons in the chronic epilepsy group compared to the control group. Conclusions: GABBR-associated microglia significantly contribute to the progression of immature brain diseases by promoting neuronal phagocytic activity. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

19 pages, 4850 KB  
Article
Single-Nucleus RNA Sequencing Reveals Cellular Transcriptome Features at Different Growth Stages in Porcine Skeletal Muscle
by Ziyu Chen, Xiaoqian Wu, Dongbin Zheng, Yuling Wang, Jie Chai, Tinghuan Zhang, Pingxian Wu, Minghong Wei, Ting Zhou, Keren Long, Mingzhou Li, Long Jin and Li Chen
Cells 2025, 14(1), 37; https://doi.org/10.3390/cells14010037 - 2 Jan 2025
Cited by 4 | Viewed by 2224
Abstract
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of [...] Read more.
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles. This study investigates the cellular-level transcriptional characteristics of LDM in large white pigs at two growth stages (170 days vs. 245 days) using single-nucleus RNA sequencing (snRNA-seq). We identified 56,072 cells across 12 clusters, including myofibers, fibro/adipogenic progenitor (FAP) cells, muscle satellite cells (MUSCs), and other resident cell types. The same cell types were present in the LDM at both growth stages, but their proportions and states differed. A higher proportion of FAPs was observed in the skeletal muscle of 245-day-old pigs. Additionally, these cells exhibited more active communication with other cell types compared to 170-day-old pigs. For instance, more interactions were found between FAPs and pericytes or endothelial cells in 245-day-old pigs, including collagen and integrin family signaling. Three subclasses of FAPs was identified, comprising FAPs_COL3A1+, FAPs_PDE4D+, and FAPs_EBF1+, while adipocytes were categorized into Ad_PDE4D+ and Ad_DGAT2+ subclasses. The proportions of these subclasses differed between the two age groups. We also constructed differentiation trajectories for FAPs and adipocytes, revealing that FAPs in 245-day-old pigs differentiated more toward fibrosis, a characteristic reminiscent of the high prevalence of skeletal muscle fibrosis in aging humans. Furthermore, the Ad_PDE4D+ adipocyte subclass, predominant in 245-day-old pigs, originated from FAPs_PDE4D+ expressing the same gene, while the Ad_DGAT2+ subclass stemmed from FAPs_EBF1+. In conclusion, our study elucidates transcriptional differences in skeletal muscle between two growth stages of pigs and provides insights into mechanisms relevant to pork meat quality and skeletal muscle diseases. Full article
Show Figures

Figure 1

18 pages, 3071 KB  
Article
Integrative Transcriptomic and Small RNA Analysis Uncovers Key Genes for Cold Resistance in Rice
by Fan Luo, Mengmeng Yin, Jianping Zhou, Xiaoli Zhou, Chunli Wang, Wenfeng Zhang, Lijuan Chen and Dongsun Lee
Genes 2025, 16(1), 38; https://doi.org/10.3390/genes16010038 - 29 Dec 2024
Cited by 1 | Viewed by 1203
Abstract
Background/Objectives: Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice’s low-temperature resistance remains incompletely understood. Methods: In this study, we conducted a [...] Read more.
Background/Objectives: Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice’s low-temperature resistance remains incompletely understood. Methods: In this study, we conducted a joint analysis of miRNA and mRNA expression profiles in the cold-resistant material Yongning red rice and the cold-sensitive material B3 using high-throughput sequencing. Results: 194 differentially expressed miRNAs (DEMIs) and 14,671 differentially expressed mRNAs (DEMs) were identified. Among them, 19 DEMIs, including miR1437, miR1156, miR166, miR1861, and miR396_2 family members, showed opposite expression during the early or late stages of low-temperature treatment in two varieties, while 13 DEMIs were specifically expressed in Yongning red rice, indicating that these miRNAs are involved in rice’s resistance to low temperature. In the transcriptome analysis, 218 DEMs exhibited opposite expressions during the early or late stages of low-temperature treatment in two varieties. GO enrichment analysis indicated that these DEMs were enriched in biological processes such as a defense response to fungi, a defense response to bacteria, a plant-type cell wall modification, single-organism cellular processes, a response to chitin, and the regulation of a plant-type hypersensitive response, as well as in cellular components such as the apoplast, nucleus, vacuole, plasma membrane, and plasmodesma. Twenty-one genes were further selected as potential candidates for low-temperature resistance. The joint analysis of miRNA and mRNA expression profiles showed that 38 miRNAs corresponding to 39 target genes were candidate miRNA–mRNA pairs for low-temperature resistance. Conclusions: This study provides valuable resources for determining the changes in miRNA and mRNA expression profiles induced by low temperatures and enables the provision of valuable information for further investigating the molecular mechanisms of plant resistance to low temperatures and for the genetic improvement of cold-resistant varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 7442 KB  
Article
Comprehensive Gene Expression Analysis Using Human Induced Pluripotent Stem Cells Derived from Patients with Sleep Bruxism: A Preliminary In Vitro Study
by Taro Sato, Akihiro Yamaguchi, Mayu Onishi, Yuka Abe, Takahiro Shiga, Kei-ichi Ishikawa, Kazuyoshi Baba and Wado Akamatsu
Int. J. Mol. Sci. 2024, 25(23), 13141; https://doi.org/10.3390/ijms252313141 - 6 Dec 2024
Viewed by 1857
Abstract
Sleep bruxism (SB) involves involuntary jaw movements during sleep and is potentially caused by motor neuronal hyperexcitability and GABAergic system dysfunction. However, the molecular basis remains unclear. In this study, we aimed to investigate changes in the expression of several genes associated with [...] Read more.
Sleep bruxism (SB) involves involuntary jaw movements during sleep and is potentially caused by motor neuronal hyperexcitability and GABAergic system dysfunction. However, the molecular basis remains unclear. In this study, we aimed to investigate changes in the expression of several genes associated with the pathophysiology of SB. Bulk RNA sequencing (bulk RNA-seq) and single-nucleus RNA sequencing (snRNA-seq) of neurons derived from patient and control human induced pluripotent stem cells (hiPSCs) were performed to comprehensively assess gene expression and cell type-specific alterations, respectively. Bulk RNA-seq revealed significant upregulation of calcium signaling-related genes in SB neurons, including those encoding G protein-coupled receptors and receptor-operated calcium channels. snRNA-seq confirmed the increased expression of GRIN2B (an N-methyl-D-aspartate receptor subunit) and CHRM3 (an M3 muscarinic acetylcholine receptor), particularly in glutamatergic and GABAergic neurons. These alterations were linked to hyperexcitability, with GRIN2B contributing to glutamatergic signaling and CHRM3 contributing to cholinergic signaling. These findings suggest that disrupted calcium signaling and overexpression of GRIN2B and CHRM3 drive neuronal hyperexcitability, providing insight into the pathophysiology of SB. Targeting these pathways may inform therapeutic strategies for SB treatment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 6681 KB  
Article
A Single-Cell Atlas of Porcine Skeletal Muscle Reveals Mechanisms That Regulate Intramuscular Adipogenesis
by Zhong Xu, Junjing Wu, Yujie Li, Jiawei Zhou, Yu Zhang, Mu Qiao, Yue Feng, Hua Sun, Zipeng Li, Lianghua Li, Favour Oluwapelumi Oyelami, Xianwen Peng and Shuqi Mei
Int. J. Mol. Sci. 2024, 25(23), 12935; https://doi.org/10.3390/ijms252312935 - 1 Dec 2024
Cited by 2 | Viewed by 2263
Abstract
Porcine skeletal muscle development is closely linked to meat production efficiency and quality. The accumulation of porcine intramuscular fat is influenced by the hyperplasia and hypertrophy of adipocytes within the muscle. However, the cellular profiles corresponding to the two stages of muscle development [...] Read more.
Porcine skeletal muscle development is closely linked to meat production efficiency and quality. The accumulation of porcine intramuscular fat is influenced by the hyperplasia and hypertrophy of adipocytes within the muscle. However, the cellular profiles corresponding to the two stages of muscle development remain undetermined. Single-nucleus RNA sequencing (snRNA-seq) can elucidate cell subsets in tissues, capture gene expression at the individual cell level, and provide innovative perspectives for studying muscle and intramuscular fat formation. In this study, a total of 78,302 nuclei and 9 clusters of cells, which included fibro/adipogenic progenitor (FAP), myonuclei, adipocytes, and other cell types, of Xidu black pigs, were identified on Day 1 and Day 180. The pattern of cell clustering varied between the two developmental stages. Notably, the percentage of adipocytes in the Day 180 group was higher than in the Day 1 group (0.51% vs. 0.15%). Pseudo-time sequence analysis indicated that FAPs could differentiate into adipocytes and myonuclei cells, respectively. The THRSP gene was identified as a biomarker for swine intramuscular fat cells, and its down-regulation resulted in significant reduction in lipid droplet formation in porcine preadipocytes. Our research provides new insights into the cellular characteristics of intramuscular fat formation, which may facilitate the development of novel strategies to enhance intramuscular fat deposition and improve pork quality. Full article
Show Figures

Figure 1

Back to TopTop