A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection and Preprocessing
2.2. Quality Control and Cell Filtering
2.3. Normalization and Integration
2.4. Gene Set Definition: Coding, Non-Coding, and Combined
2.5. Clustering
2.6. Cell Type Annotation
2.7. Compositional Analysis
2.8. Data Analysis
3. Results
3.1. Quality Control
3.2. Clustering of Spinal Cell Types
3.3. Annotation of Major Clusters
3.4. Comparison of Clusterings Among ALL, CG, and NCG Datasets
3.5. Cluster Composition Is Retained Among Samples
3.6. Fine Clustering and Neuronal Populations
3.7. Non-Coding RNA Markers of Spinal Populations
4. Discussion
- Inclusion and relevance of non-coding RNAs
- Feasibility of integrated snRNA-seq for spinal cord cell type composition and abundance analysis
- Resolution of neuronal populations and technical limitations
- Limitations and caveats
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Coding + non-coding genes dataset |
CG | Coding genes dataset |
CNS | Central nervous system |
CV | Coefficient of variation |
DE | Dorsal excitatory neurons |
DI | Dorsal inhibitory neurons |
GNR | Glial neuronal ratio |
IF | Isotropic Fractionator |
k-NN | k-nearest neighbor |
lincRNAs | Long intervening non-coding RNAs |
lncRNAs | Long non-coding RNAs |
NCG | Non-coding genes dataset |
ncRNAs | Non-coding RNAs |
nNNR | Non-neuronal to neuronal ratio |
OPCs | Oligodendrocyte precursor cells |
PC | Principal Component |
PCA | Principal Component Analysis |
QC | Quality control |
SCI | Spinal cord injury |
snRNA-seq | Single-nucleus RNA sequencing |
snT | Single nucleus transcriptomics |
STE | Stereology |
UMAP | Uniform Manifold Approximation and Projection |
UMI | Unique molecular identifier |
References
- Russ, D.E.; Cross, R.B.P.; Li, L.; Koch, S.C.; Matson, K.J.E.; Yadav, A.; Alkaslasi, M.R.; Lee, D.I.; Le Pichon, C.E.; Menon, V.; et al. Author Correction: A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 2022, 13, 1033, Erratum in Nat. Commun. 2021, 12, 5722. https://doi.org/10.1038/s41467-021-25125-1. [Google Scholar] [CrossRef]
- Matson, K.J.E.; Russ, D.E.; Kathe, C.; Hua, I.; Maric, D.; Ding, Y.; Krynitsky, J.; Pursley, R.; Sathyamurthy, A.; Squair, J.W.; et al. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 2022, 13, 5628. [Google Scholar] [CrossRef] [PubMed]
- Kathe, C.; Skinnider, M.A.; Hutson, T.H.; Regazzi, N.; Gautier, M.; Demesmaeker, R.; Komi, S.; Ceto, S.; James, N.D.; Cho, N.; et al. The neurons that restore walking after paralysis. Nature 2022, 611, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Gautier, M.; Kathe, C.; Anderson, M.A.; James, N.D.; Hutson, T.H.; Hudelle, R.; Qaiser, T.; Matson, K.J.E.; Barraud, Q.; et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 2021, 12, 5692. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Milano, M.; de Coucy, A.; Gautier, M.; Skinnider, M.A.; James, N.D.; Cho, N.; Lasne, A.; Kathe, C.; Hutson, T.H.; et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 2023, 381, 1338–1345. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Gautier, M.; Teo, A.Y.Y.; Kathe, C.; Hutson, T.H.; Laskaratos, A.; de Coucy, A.; Regazzi, N.; Aureli, V.; James, N.D.; et al. Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica. Nature 2024, 631, 150–163. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wen, Z.J.; Xu, H.M.; Zhang, Y.; Zhang, Y.F. Exosomal noncoding RNAs in central nervous system diseases: Biological functions and potential clinical applications. Front. Mol. Neurosci. 2022, 15, 1004221. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Software]. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 December 2024).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Kaminow, B.; Yusunov, D.; Dobin, A. STARsolo: Accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. bioRxiv 2024. [Google Scholar] [CrossRef]
- Fleming, S.J.; Chaffin, M.D.; Arduini, A.; Akkad, A.D.; Banks, E.; Marioni, J.C.; Philippakis, A.A.; Ellinor, P.T.; Babadi, M. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods. 2023, 20, 1323–1335. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 29 August 2025).
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S.; Fernandez-Granda, C.; et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024, 42, 293–304. [Google Scholar] [CrossRef]
- Germain, P.L.; Lun, A.; Garcia Meixide, C.; Macnair, W.; Robinson, M.D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Research 2022, 10, 979. [Google Scholar] [CrossRef]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.R.; Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef] [PubMed]
- Zappia, L.; Oshlack, A. Clustering trees: A visualization for evaluating clusterings at multiple resolutions. Gigascience 2018, 7, giy083. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [Google Scholar] [CrossRef]
- Büttner, M.; Ostner, J.; Müller, C.L.; Theis, F.J.; Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 2021, 12, 6876. [Google Scholar] [CrossRef]
- DeJong, T.M. A comparison of three diversity indices based on their components of richness and evenness. Oikos 1975, 26, 222–227. [Google Scholar] [CrossRef]
- JASP Team. JASP (Version 0.19.3) Computer Software; University of Amsterdam: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Open AI. ChatGPT. Large Language Model. 2025. Available online: https://chat.openai.com/ (accessed on 31 July 2025).
- Bjugn, R. The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse--with a comparative note on the rat spinal cord. Brain Res. 1993, 627, 25–33. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, Y.; Paxinos, G.; Watson, C.; Rusznák, Z. Aging-dependent changes in the cellular composition of the mouse brain and spinal cord. Neuroscience 2015, 290, 406–420. [Google Scholar] [CrossRef]
- Fu, Y.; Rusznák, Z.; Herculano-Houzel, S.; Watson, C.; Paxinos, G. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain Struct. Funct. 2013, 218, 1337–1354. [Google Scholar] [CrossRef]
- Zeisel, A.; Hochgerner, H.; Lönnerberg, P.; Johnsson, A.; Memic, F.; van der Zwan, J.; Häring, M.; Braun, E.; Borm, L.E.; La Manno, G.; et al. Molecular Architecture of the Mouse Nervous System. Cell 2018, 174, 999–1014.e22. [Google Scholar] [CrossRef]
- Sathyamurthy, A.; Johnson, K.R.; Matson, K.J.E.; Dobrott, C.I.; Li, L.; Ryba, A.R.; Bergman, T.B.; Kelly, M.C.; Kelley, M.W.; Levine, A.J. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep. 2018, 22, 2216–2225. [Google Scholar] [CrossRef]
- Katsel, P.; Roussos, P.; Fam, P.; Khan, S.; Tan, W.; Hirose, T.; Nakagawa, S.; Pletnikov, M.V.; Haroutunian, V. The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ Schizophr. 2019, 5, 3. [Google Scholar] [CrossRef]
- Li, P.Y.; Wang, P.; Gao, S.G.; Dong, D.Y. Long Noncoding RNA SOX2-OT: Regulations, Functions, and Roles on Mental Illnesses, Cancers, and Diabetic Complications. Biomed. Res. Int. 2020, 2020, 2901589. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.G.; Al-Dalahmah, O.; Wu, J.; Gold, M.P.; Reidling, J.C.; Tang, G.; Adam, M.; Dansu, D.K.; Park, H.J.; Casaccia, P.; et al. Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation. Nat. Commun. 2022, 13, 7791. [Google Scholar] [CrossRef] [PubMed]
- Chamling, X.; Kallman, A.; Fang, W.; Berlinicke, C.A.; Mertz, J.L.; Devkota, P.; Pantoja, I.E.M.; Smith, M.D.; Ji, Z.; Chang, C.; et al. Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nat. Commun. 2021, 12, 652. [Google Scholar] [CrossRef]
- Lau, P.; Verrier, J.D.; Nielsen, J.A.; Johnson, K.R.; Notterpek, L.; Hudson, L.D. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J. Neurosci. 2008, 28, 11720–11730. [Google Scholar] [CrossRef]
- Tan, M.C.; Widagdo, J.; Chau, Y.Q.; Zhu, T.; Wong, J.J.; Cheung, A.; Anggono, V. The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Front. Cell Neurosci. 2017, 3, 124. [Google Scholar] [CrossRef]
- Zhou, H.J.; Wang, L.Q.; Zhan, R.Y.; Zheng, X.J.; Zheng, J.S. lncRNA MEG3 restrained the M1 polarization of microglia in acute spinal cord injury through the HuR/A20/NF-κB axis. Brain Pathol. 2022, 32, e13070. [Google Scholar] [CrossRef]
- Kiss, T.; Nyúl-Tóth, Á.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; DelFavero, J.; Yabluchanskiy, A.; Csipo, T.; Farkas, E.; Wiley, G.; et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 2020, 42, 429–444. [Google Scholar] [CrossRef]
- Dobrott, C.I.; Sathyamurthy, A.; Levine, A.J. Decoding Cell Type Diversity Within the Spinal Cord. Curr. Opin. Physiol. 2019, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
GEO Series ID | 10x Genomics Chromium Version | GEO Samples ID (Number of Runs in SRA) | Reads (M) | Sex | Age (Weeks) | Publication |
---|---|---|---|---|---|---|
GSE158380 | Single Cell 3’ Kit Version 3 | GSM4798623 (6) | 172.4 | M | 9 | [1] |
GSM4798624 (6) | 166.0 | M | ||||
GSM4798625 (6) | 174.2 | F | ||||
GSM4798626 (6) | 178.7 | F | ||||
GSE165003 | Single Cell Kit Version 2 | GSM5024317 (8) * | 267.2 | F | 12–30 | [4] |
GSM5024318 (8) * | 282.8 | F | ||||
GSM5024319 (8) * | 274.5 | F | ||||
GSE198949 | Single Cell 3’ Kit Version 3 | GSM5961586 (1) | 84.1 | F | 8–15 | [5] |
GSM5961588 (2) | 100.6 | F | ||||
GSM5961591 (8) | 903.2 | F | ||||
GSE172167 | Single Cell Kit Version 2 | GSM5243301 (15) | 505.6 | F | 12–30 | [2] |
GSM5243302 (15) | 593.9 | F | ||||
GSM5243303 (15) | 648 | F | ||||
GSE184370 | Single Cell Kit Version 2 | GSM5585219 (8) | 267.2 | F | 12–30 | [3] |
GSM5585220 (8) | 282.8 | F | ||||
GSM5585221 (8) | 274.5 | F | ||||
GSE234774 | Single Cell Kit Version 3.1 | GSM7474501 (8) | 698.2 | F | 8 | [6] |
GSM7474502 (8) | 465 | F | ||||
GSM7474503 (8) | 480.2 | F |
Lineage | Coding Genes | Non-Coding Genes | All Genes |
---|---|---|---|
Oligodendrocytes | 1 (34,836) 98.9% | 2 (32,302/3021) 97.6% | 1 (34,834) 98.9% |
Oligodendrocyte precursor cells | 1 (2968) 89.2% | 1 (2697) 98.2% | 1 (2986) 88.7% |
Astrocytes | 1 (6635) 93.9% | 1 (6313) 98.7% | 1 (6728) 92.6% |
Ependymal | 1 (491) 93.7% | 1 (492) 93.5% | 1 (494) 93.1% |
Vascular | 1 (5603) 89.7% * | 2 (6158/2893) 89.2% | 1 (5485) 90.8% |
Microglia/immune | 1 (3405) | 1 (3407) | |
Neurons | 5 (32,440) 98.7% | 3 (32,464) 98.6% | 5 (32,444) 98.7% |
VE, VI, DI | 1 (21,168) | 1 (22,903) | 1 (21,396) |
DE | 3 (5141/2601/2542) | 1 (9455) | 3 (5179/2573/2307) |
DI-Gal | 1 (988) | 1 (989) | |
VE-VI | 1 (106) | ||
Other | 1 (38 **) | ||
Total clusters | 11 (86,378) |
Source | Oligodendrocytes | Neurons | Astrocytes | Vascular Cells | Immune Cells | OPCs | Ependymal Cells | Other Cells | nN/N | GNR | Methodology |
---|---|---|---|---|---|---|---|---|---|---|---|
ALL Dataset (Median) | 43.0 | 35.5 | 9.0 | 6.0 | 2.5 | 4.0 | 1.0 | 1.8 | 1.6 | snT | |
ALL Dataset (Mean) | 41.1 | 36.5 | 8.9 | 6.1 | 3.1 | 3.4 | 0.6 | 1.7 | 1.5 | snT | |
[24] | 3.7 | IF | |||||||||
[25]—4 weeks | 3.2 | IF | |||||||||
[25]—40 weeks | 4.1 | IF | |||||||||
[23] | 39.3 | 33.6 | 19.1 | 8.0 | 2.0 | 1.2 | STE | ||||
[26] (in [1]) | 40.4 | 9.2 | 18.0 | 18.6 | 5.2 | 6.4 | 2.0 | 0.1 | 9.9 | 7.3 | snT |
[6] | 49.7 | 35.3 | 3.4 | 4.2 | 3.1 | 3.3 | 0.7 | 1.8 | 1.6 | snT | |
[27] (in [1]) | 24.8 | 28.0 | 13.6 | 7.9 | 2.4 | 1.6 | 2.4 | 19.3 | 2.6 | 1.5 | snT |
[27] | 16.0 | 52.0 | 9.0 | 5.0 | 1.0 | 1.0 | 14.0 | 0.9 | 0.5 | snT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Amezcua, P.; Nieto Hernández, M.; Flores, J.G.; Plaza Alonso, C.; Reigada, D.; Muñoz-Galdeano, T.; Vargas, E.; Maza, R.M.; Esteban, F.J.; Nieto-Díaz, M. A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs. BioTech 2025, 14, 70. https://doi.org/10.3390/biotech14030070
Ruiz-Amezcua P, Nieto Hernández M, Flores JG, Plaza Alonso C, Reigada D, Muñoz-Galdeano T, Vargas E, Maza RM, Esteban FJ, Nieto-Díaz M. A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs. BioTech. 2025; 14(3):70. https://doi.org/10.3390/biotech14030070
Chicago/Turabian StyleRuiz-Amezcua, Pablo, Miguel Nieto Hernández, Javier García Flores, Clara Plaza Alonso, David Reigada, Teresa Muñoz-Galdeano, Eva Vargas, Rodrigo M. Maza, Francisco J. Esteban, and Manuel Nieto-Díaz. 2025. "A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs" BioTech 14, no. 3: 70. https://doi.org/10.3390/biotech14030070
APA StyleRuiz-Amezcua, P., Nieto Hernández, M., Flores, J. G., Plaza Alonso, C., Reigada, D., Muñoz-Galdeano, T., Vargas, E., Maza, R. M., Esteban, F. J., & Nieto-Díaz, M. (2025). A Single-Nucleus Transcriptomic Atlas of the Mouse Lumbar Spinal Cord: Functional Implications of Non-Coding RNAs. BioTech, 14(3), 70. https://doi.org/10.3390/biotech14030070