Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,106)

Search Parameters:
Keywords = single solute system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 13095 KB  
Article
Process Optimization for Ultra-Precision Machining of HUD Freeform Surface Mold Cores Based on Slow Tool Servo
by Tianji Xing, Naiming Qi, Huanming Gao, Longkun Xu, Xuesen Zhao and Tao Sun
Micromachines 2026, 17(2), 164; https://doi.org/10.3390/mi17020164 - 27 Jan 2026
Abstract
With the rapid development of Head-Up Display (HUD) technology for vehicles, optical freeform mirrors, as its core optical components, are crucial for achieving system compactness and high imaging quality. However, their complex surface shapes and large-aperture characteristics pose significant challenges to ultra-precision manufacturing. [...] Read more.
With the rapid development of Head-Up Display (HUD) technology for vehicles, optical freeform mirrors, as its core optical components, are crucial for achieving system compactness and high imaging quality. However, their complex surface shapes and large-aperture characteristics pose significant challenges to ultra-precision manufacturing. This study presents a systematic optimization framework for the ultra-precision machining of HUD optical freeform mold cores, integrating surface design, tool path planning, vibration analysis, and process parameter optimization. Firstly, based on the XY polynomial freeform surface model, an off-axis three-mirror HUD system was designed, and the surface parameters and machining dimensions of the mold core were determined. For the Single-Point Diamond Turning (SPDT) Slow Tool Servo (STS) process, a hybrid trajectory planning method combining equidistant projection and cubic spline interpolation was proposed to ensure the smoothness and accuracy of the tool path. Through theoretical analysis and experimental verification, the selection criteria for tool parameters such as tool nose radius and effective cutting angle were clarified, and the mechanistic impact of Z-axis vibration on surface roughness and waviness was quantitatively revealed. Finally, through ultra-precision turning experiments and on-machine measurement, a high-precision freeform surface mold core was successfully fabricated. This validates the effectiveness and feasibility of the proposed process solution and provides technical support for the high-quality manufacturing of HUD optical elements. Full article
(This article belongs to the Special Issue Diamond Micro-Machining and Its Applications)
Show Figures

Figure 1

32 pages, 3217 KB  
Review
Architecting the Orthopedical Clinical AI Pipeline: A Review of Integrating Foundation Models and FHIR for Agentic Clinical Assistants and Digital Twins
by Assiya Boltaboyeva, Zhanel Baigarayeva, Baglan Imanbek, Bibars Amangeldy, Nurdaulet Tasmurzayev, Kassymbek Ozhikenov, Zhadyra Alimbayeva, Chingiz Alimbayev and Nurgul Karymsakova
Algorithms 2026, 19(2), 99; https://doi.org/10.3390/a19020099 - 27 Jan 2026
Abstract
The exponential growth of multimodal orthopedic data, ranging from longitudinal Electronic Health Records to high-resolution musculoskeletal imaging, has rendered manual analysis insufficient. This has established Large Language Models (LLMs) as algorithmically necessary for managing healthcare complexity. However, their deployment in high-stakes surgical environments [...] Read more.
The exponential growth of multimodal orthopedic data, ranging from longitudinal Electronic Health Records to high-resolution musculoskeletal imaging, has rendered manual analysis insufficient. This has established Large Language Models (LLMs) as algorithmically necessary for managing healthcare complexity. However, their deployment in high-stakes surgical environments presents a fundamental algorithmic paradox: while generic foundation models possess vast reasoning capabilities, they often lack the precise, protocol-driven domain knowledge required for safe orthopedic decision support. This review provides a structured synthesis of the emerging algorithmic frameworks required to build modern clinical AI assistants. We deconstruct current methodologies into their core components: large-language-model adaptation, multimodal data fusion, and standardized data interoperability pipelines. Rather than proposing a single proprietary architecture, we analyze how recent literature connects specific algorithmic choices such as the trade-offs between full fine-tuning and Low-Rank Adaptation to their computational costs and factual reliability. Furthermore, we examine the theoretical architectures required for ‘agentic’ capabilities, where AI systems integrate outputs from deep convolutional neural networks and biosensors. The review concludes by outlining the unresolved challenges in algorithmic bias, security, and interoperability that must be addressed to transition these technologies from research prototypes to scalable clinical solutions. Full article
(This article belongs to the Special Issue Artificial Intelligence Algorithms for Healthcare: 2nd Edition)
Show Figures

Figure 1

26 pages, 9070 KB  
Article
Research on a General-Type Hydraulic Valve Leakage Diagnosis Method Based on CLAF-MTL Feature Deep Integration
by Chengbiao Tong, Yu Xiong, Xinming Xu and Yihua Wu
Sensors 2026, 26(3), 821; https://doi.org/10.3390/s26030821 - 26 Jan 2026
Abstract
As control and execution components within hydraulic systems, hydraulic valves are critical to system efficiency and operational safety. However, existing research primarily focuses on specific valve designs, exhibiting limitations in versatility and task coordination that constrain their comprehensive diagnostic capabilities. To address these [...] Read more.
As control and execution components within hydraulic systems, hydraulic valves are critical to system efficiency and operational safety. However, existing research primarily focuses on specific valve designs, exhibiting limitations in versatility and task coordination that constrain their comprehensive diagnostic capabilities. To address these issues, this paper innovatively proposes a multi-modal feature deep fusion multi-task prediction (CLAF-MTL) model. This model employs a core architecture based on the CNN-LSTM-Additive Attention module and a fully connected network (FCN) for multi-domain features, while simultaneously embedding a multi-task learning mechanism. It resolves the multi-task prediction challenge of leakage rate regression and fault type classification, significantly enhancing diagnostic efficiency and practicality. This model innovatively designs a complementary fusion mechanism of “deep auto-features + multi-domain features” overcoming the limitations of single-modality representation. It integrates leakage rate regression and fault type classification into a unified modeling framework, dynamically optimizing dual-task weights via the MGDA-UB algorithm to achieve bidirectional complementarity between tasks. Experimental results demonstrate that the proposed method achieves an R2 of 0.9784 for leakage rate prediction and a fault type identification accuracy of 92.23% on the test set. Compared to traditional approaches, this method is the first to simultaneously address the challenge of accurately predicting both leakage rate and fault type. It exhibits superior robustness and applicability across generic valve scenarios, providing an effective solution for intelligent monitoring of valve leakage faults in hydraulic systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

24 pages, 9506 KB  
Article
An SBAS-InSAR Analysis and Assessment of Landslide Deformation in the Loess Plateau, China
by Yan Yang, Rongmei Liu, Liang Wu, Tao Wang and Shoutao Jiao
Remote Sens. 2026, 18(3), 411; https://doi.org/10.3390/rs18030411 - 26 Jan 2026
Abstract
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions [...] Read more.
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions in China due to frequent rains, strong topographical gradients and severe soil erosion. By constructing subsets of interferograms, SBAS-InSAR can mitigate the influence of decorrelation to a certain extent, making it a highly effective technique for monitoring regional surface deformation and identifying landslides. To overcome the limitations of the satellite’s one-dimensional Line-of-Sight (LOS) measurements and the challenge of distinguishing true landslide signals from noise, two optimization strategies were implemented. First, LOS velocities were projected onto the local steepest slope direction, assuming translational movement parallel to the slope. Second, a Z-score clustering algorithm was employed to aggregate measurement points with consistent kinematic signatures, enhancing identification robustness, with a slight trade-off in spatial completeness. Based on 205 Sentinel-1 Single-Look Complex (SLC) images acquired from 2014 to 2024, the integrated workflow identified 69 “active, very slow” and 63 “active, extremely slow” landslides. These results were validated through high-resolution historical optical imagery. Time series analysis reveals that creep deformation in this region is highly sensitive to seasonal rainfall patterns. This study demonstrates that the SBAS-InSAR post-processing framework provides a cost-effective, millimeter-scale solution for updating landslide inventories and supporting regional risk management and early warning systems in loess-covered terrains, with the exception of densely forested areas. Full article
Show Figures

Figure 1

28 pages, 2690 KB  
Article
Two-Dimensional Dynamic Logic Resource Allocation for Scalable RIS Channel Emulation
by Dan Fei, Haobo Zhang, Chen Chen, Hao Zhou, Peng Zheng, Guoyu Wang, Cheng Li, Jiayi Zhang, Zhaohui Song and Bo Ai
Sensors 2026, 26(3), 813; https://doi.org/10.3390/s26030813 - 26 Jan 2026
Abstract
This paper addresses the critical scalability challenge in Hardware-in-the-Loop (HIL) channel emulation for massive RIS-assisted 6G environments. We propose a Two-Dimensional Dynamic Logic Resource Allocation (2D-DLRA) architecture that decouples physical RF ports from baseband processing resources through hierarchical pooling at both the session [...] Read more.
This paper addresses the critical scalability challenge in Hardware-in-the-Loop (HIL) channel emulation for massive RIS-assisted 6G environments. We propose a Two-Dimensional Dynamic Logic Resource Allocation (2D-DLRA) architecture that decouples physical RF ports from baseband processing resources through hierarchical pooling at both the session level and the multipath level. By jointly virtualizing Logical Units (LUs) and Multipath Processing Units (MPUs), the proposed architecture overcomes the dual inefficiency of port underutilization and path-level sparsity inherent in conventional static designs. A rigorous analytical framework combining hierarchical queuing theory and non-cooperative game theory is developed to characterize system capacity, blocking probability, and user contention under heterogeneous workloads. Simulation results demonstrate that, under a strict QoS constraint of 1% blocking probability, the proposed 2D-DLRA architecture achieves a multi-fold increase in supported user capacity compared to static allocation with the same hardware resources. Moreover, for an end-to-end emulation error threshold of 3%, 91.8% of users meet the QoS requirement, compared to only 73.6% in static architectures. The results further show that dynamic pooling enables near-saturated hardware utilization, in contrast to the single-digit utilization typical of static designs in sparse RIS scenarios. These findings confirm that 2D-DLRA provides a scalable and hardware-efficient solution for large-scale RIS channel emulation, offering practical design guidelines for next-generation 6G HIL testing platforms. Full article
Show Figures

Figure 1

24 pages, 4205 KB  
Article
Data Fusion Method for Multi-Sensor Internet of Things Systems Including Data Imputation
by Saugat Sharma, Grzegorz Chmaj and Henry Selvaraj
IoT 2026, 7(1), 11; https://doi.org/10.3390/iot7010011 - 26 Jan 2026
Abstract
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in [...] Read more.
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in the loss of all locally redundant sensors. Conventional imputation approaches typically rely on historical trends or multi-sensor fusion within the same target environment; however, historical methods struggle to capture emerging patterns, while same-location fusion remains vulnerable to single-point failures when local redundancy is unavailable. This article proposes a correlation-aware, cross-location data fusion framework for data imputation in IoT networks that explicitly addresses single-point failure scenarios. Instead of relying on co-located sensors, the framework selectively fuses semantically similar features from independent and geographically distributed gateways using summary statistics-based and correlation screening to minimize communication overhead. The resulting fused dataset is then processed using a lightweight KNN with an Iterative PCA imputation method, which combines local neighborhood similarity with global covariance structure to generate synthetic data for missing values. The proposed framework is evaluated using real-world weather station data collected from eight geographically diverse locations across the United States. The experimental results show that the proposed approach achieves improved or comparable imputation accuracy relative to conventional same-location fusion methods when sufficient cross-location feature correlation exists and degrades gracefully when correlation is weak. By enabling data recovery without requiring redundant local sensors, the proposed approach provides a resource-efficient and failure-resilient solution for handling missing data in IoT systems. Full article
Show Figures

Figure 1

23 pages, 3420 KB  
Article
Design of a Wireless Monitoring System for Cooling Efficiency of Grid-Forming SVG
by Liqian Liao, Jiayi Ding, Guangyu Tang, Yuanwei Zhou, Jie Zhang, Hongxin Zhong, Ping Wang, Bo Yin and Liangbo Xie
Electronics 2026, 15(3), 520; https://doi.org/10.3390/electronics15030520 - 26 Jan 2026
Abstract
The grid-forming static var generator (SVG) is a key device that supports the stable operation of power grids with a high penetration of renewable energy. The cooling efficiency of its forced water-cooling system directly determines the reliability of the entire unit. However, existing [...] Read more.
The grid-forming static var generator (SVG) is a key device that supports the stable operation of power grids with a high penetration of renewable energy. The cooling efficiency of its forced water-cooling system directly determines the reliability of the entire unit. However, existing wired monitoring methods suffer from complex cabling and limited capacity to provide a full perception of the water-cooling condition. To address these limitations, this study develops a wireless monitoring system based on multi-source information fusion for real-time evaluation of cooling efficiency and early fault warning. A heterogeneous wireless sensor network was designed and implemented by deploying liquid-level, vibration, sound, and infrared sensors at critical locations of the SVG water-cooling system. These nodes work collaboratively to collect multi-physical field data—thermal, acoustic, vibrational, and visual information—in an integrated manner. The system adopts a hybrid Wireless Fidelity/Bluetooth (Wi-Fi/Bluetooth) networking scheme with electromagnetic interference-resistant design to ensure reliable data transmission in the complex environment of converter valve halls. To achieve precise and robust diagnosis, a three-layer hierarchical weighted fusion framework was established, consisting of individual sensor feature extraction and preliminary analysis, feature-level weighted fusion, and final fault classification. Experimental validation indicates that the proposed system achieves highly reliable data transmission with a packet loss rate below 1.5%. Compared with single-sensor monitoring, the multi-source fusion approach improves the diagnostic accuracy for pump bearing wear, pipeline micro-leakage, and radiator blockage to 98.2% and effectively distinguishes fault causes and degradation tendencies of cooling efficiency. Overall, the developed wireless monitoring system overcomes the limitations of traditional wired approaches and, by leveraging multi-source fusion technology, enables a comprehensive assessment of cooling efficiency and intelligent fault diagnosis. This advancement significantly enhances the precision and reliability of SVG operation and maintenance, providing an effective solution to ensure the safe and stable operation of both grid-forming SVG units and the broader power grid. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

38 pages, 9992 KB  
Article
Learning-Based Multi-Objective Optimization of Parametric Stadium-Type Tiered-Seating Configurations
by Metin Arel and Fikret Bademci
Mathematics 2026, 14(3), 410; https://doi.org/10.3390/math14030410 - 24 Jan 2026
Viewed by 236
Abstract
Parametric tiered-seating design can be framed as a constrained multi-objective optimization problem in which a low-dimensional decision vector is evaluated by a deterministic operator with sequential feasibility rejection and visibility constraints. This study introduces an oracle-preserving, learning-assisted screening workflow, where a multi-output multilayer [...] Read more.
Parametric tiered-seating design can be framed as a constrained multi-objective optimization problem in which a low-dimensional decision vector is evaluated by a deterministic operator with sequential feasibility rejection and visibility constraints. This study introduces an oracle-preserving, learning-assisted screening workflow, where a multi-output multilayer perceptron (MLP) is used only to prioritize candidates for evaluation. Here, multi-output denotes a single network trained to predict the full objective vector jointly. Candidates are sampled within bounded decision ranges and evaluated by an operator that propagates section-coupled geometric state and enforces hard clearance thresholds through a Vertical Sightline System (VSS), i.e., a deterministic row-wise sightline/clearance evaluator that enforces hard clearance thresholds. The oracle-evaluated set is reduced to its mixed-direction Pareto-efficient subset and filtered by feature-space proximity to a fixed validation reference using nearest-neighbor distances in standardized 11-dimensional features, yielding a robustness-oriented pool. A compact shortlist is derived via TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution; used here strictly as a post-Pareto decision-support ranking rule), and preference uncertainty is assessed by Monte Carlo weight sampling from a symmetric Dirichlet distribution. In an archived run under a fixed oracle budget, 1235 feasible designs are evaluated, producing 934 evaluated Pareto solutions; proximity filtering retains 187 robust candidates and TOPSIS reports a traceable top-30 shortlist. Stability is supported by concentrated top-k frequencies under weight perturbations and by audits under single-feature-drop ablations and tested rounding precisions. Overall, the workflow enables reproducible multi-objective screening and reporting for feasibility-dominated seating design. Full article
Show Figures

Figure 1

20 pages, 1385 KB  
Article
Development of an IoT System for Acquisition of Data and Control Based on External Battery State of Charge
by Aleksandar Valentinov Hristov, Daniela Gotseva, Roumen Ivanov Trifonov and Jelena Petrovic
Electronics 2026, 15(3), 502; https://doi.org/10.3390/electronics15030502 - 23 Jan 2026
Viewed by 160
Abstract
In the context of small, battery-powered systems, a lightweight, reusable architecture is needed for integrated measurement, visualization, and cloud telemetry that minimizes hardware complexity and energy footprint. Existing solutions require high resources. This limits their applicability in Internet of Things (IoT) devices with [...] Read more.
In the context of small, battery-powered systems, a lightweight, reusable architecture is needed for integrated measurement, visualization, and cloud telemetry that minimizes hardware complexity and energy footprint. Existing solutions require high resources. This limits their applicability in Internet of Things (IoT) devices with low power consumption. The present work demonstrates the process of design, implementation and experimental evaluation of a single-cell lithium-ion battery monitoring prototype, intended for standalone operation or integration into other systems. The architecture is compact and energy efficient, with a reduction in complexity and memory usage: modular architecture with clearly distinguished responsibilities, avoidance of unnecessary dynamic memory allocations, centralized error handling, and a low-power policy through the usage of deep sleep mode. The data is stored in a cloud platform, while minimal storage is used locally. The developed system combines the functional requirements for an embedded external battery monitoring system: local voltage and current measurement, approximate estimation of the State of Charge (SoC) using a look-up table (LUT) based on the discharge characteristic, and visualization on a monochrome OLED display. The conducted experiments demonstrate the typical U(t) curve and the triggering of the indicator at low charge levels (LOW − SoC ≤ 20% and CRITICAL − SoC ≤ 5%) in real-world conditions and the absence of unwanted switching of the state near the voltage thresholds. Full article
Show Figures

Figure 1

15 pages, 2185 KB  
Article
Concept Assessment for an Application of a Crossflow Turbine Module for an In-Stream Hydropower System
by Georgi Todorov, Konstantin Kamberov, Tsvetozar Ivanov and Radoslav Miltchev
Energies 2026, 19(3), 591; https://doi.org/10.3390/en19030591 - 23 Jan 2026
Viewed by 69
Abstract
The study presents a concept assessment of a crossflow turbine with vertical-axis application in a “zero-head” system for rivers with high discharge. The evaluation of system output parameters, such as generated power and efficiency, is performed through numerical simulations over a virtual prototype. [...] Read more.
The study presents a concept assessment of a crossflow turbine with vertical-axis application in a “zero-head” system for rivers with high discharge. The evaluation of system output parameters, such as generated power and efficiency, is performed through numerical simulations over a virtual prototype. The approach used is validated in previous studies through a physical prototype of the downscaled system. The focus is on the virtual prototyping results for a single module of two Bánki–Michell/Ossberger turbines across a range of rotational speeds to assess system robustness. An overall efficiency of about 60% is calculated, indicating opportunities for design improvement. The obtained results relate to a complete channel system with five site stations, each with four modules. The study also includes a preliminary financial assessment of parameters, such as the investment period and the overall financial efficiency of such a solution. The main result of the study is an evaluated concept, with certain directions for further improvement in the next stage of detailed design development, using the validated simulation model. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 10584 KB  
Article
Multi-Temporal Point Cloud Alignment for Accurate Height Estimation of Field-Grown Leafy Vegetables
by Qian Wang, Kai Yuan, Zuoxi Zhao, Yangfan Luo and Yuanqing Shui
Agriculture 2026, 16(2), 280; https://doi.org/10.3390/agriculture16020280 - 22 Jan 2026
Viewed by 75
Abstract
Accurate measurement of plant height in leafy vegetables is challenging due to their short stature, high planting density, and severe canopy occlusion during later growth stages. These factors often limit the reliability of single-plant monitoring across the full growth cycle in open-field environments. [...] Read more.
Accurate measurement of plant height in leafy vegetables is challenging due to their short stature, high planting density, and severe canopy occlusion during later growth stages. These factors often limit the reliability of single-plant monitoring across the full growth cycle in open-field environments. To address this, we propose a multi-temporal point cloud alignment method for accurate plant height measurement, focusing on Choy Sum (Brassica rapa var. parachinensis). The method estimates plant height by calculating the vertical distance between the canopy and the ground. Multi-temporal point cloud maps are reconstructed using an enhanced Oriented FAST and Rotated BRIEF–Simultaneous Localization and Mapping (ORB-SLAM3) algorithm. A fixed checkerboard calibration board, leveled using a spirit level, ensures proper vertical alignment of the Z-axis and unifies coordinate systems across growth stages. Ground and plant points are separated using the Excess Green (ExG) index. During early growth stages, when the soil is minimally occluded, ground point clouds are extracted and used to construct a high-precision reference ground model through Cloth Simulation Filtering (CSF) and Kriging interpolation, compensating for canopy occlusion and noise. In later growth stages, plant point cloud data are spatially aligned with this reconstructed ground surface. Individual plants are identified using an improved Euclidean clustering algorithm, and consistent measurement regions are defined. Within each region, a ground plane is fitted using the Random Sample Consensus (RANSAC) algorithm to ensure alignment with the X–Y plane. Plant height is then determined by the elevation difference between the canopy and the interpolated ground surface. Experimental results show mean absolute errors (MAEs) of 7.19 mm and 18.45 mm for early and late growth stages, respectively, with coefficients of determination (R2) exceeding 0.85. These findings demonstrate that the proposed method provides reliable and continuous plant height monitoring across the full growth cycle, offering a robust solution for high-throughput phenotyping of leafy vegetables in field environments. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

30 pages, 1726 KB  
Article
A Sensor-Oriented Multimodal Medical Data Acquisition and Modeling Framework for Tumor Grading and Treatment Response Analysis
by Linfeng Xie, Shanhe Xiao, Bihong Ming, Zhe Xiang, Zibo Rui, Xinyi Liu and Yan Zhan
Sensors 2026, 26(2), 737; https://doi.org/10.3390/s26020737 - 22 Jan 2026
Viewed by 36
Abstract
In precision oncology research, achieving joint modeling of tumor grading and treatment response, together with interpretable mechanism analysis, based on multimodal medical imaging and clinical data remains a challenging and critical problem. From a sensing perspective, these imaging and clinical data can be [...] Read more.
In precision oncology research, achieving joint modeling of tumor grading and treatment response, together with interpretable mechanism analysis, based on multimodal medical imaging and clinical data remains a challenging and critical problem. From a sensing perspective, these imaging and clinical data can be regarded as heterogeneous sensor-derived signals acquired by medical imaging sensors and clinical monitoring systems, providing continuous and structured observations of tumor characteristics and patient states. Existing approaches typically rely on invasive pathological grading, while grading prediction and treatment response modeling are often conducted independently. Moreover, multimodal fusion procedures generally lack explicit structural constraints, which limits their practical utility in clinical decision-making. To address these issues, a grade-guided multimodal collaborative modeling framework was proposed. Built upon mature deep learning models, including 3D ResNet-18, MLP, and CNN–Transformer, tumor grading was incorporated as a weakly supervised prior into the processes of multimodal feature fusion and treatment response modeling, thereby enabling an integrated solution for non-invasive grading prediction, treatment response subtype discovery, and intrinsic mechanism interpretation. Through a grade-guided feature fusion mechanism, discriminative information that is highly correlated with tumor malignancy and treatment sensitivity is emphasized in the multimodal joint representation, while irrelevant features are suppressed to prevent interference with model learning. Within a unified framework, grading prediction and grade-conditioned treatment response modeling are jointly realized. Experimental results on real-world clinical datasets demonstrate that the proposed method achieved an accuracy of 84.6% and a kappa coefficient of 0.81 in the tumor-grading prediction task, indicating a high level of consistency with pathological grading. In the treatment response prediction task, the proposed model attained an AUC of 0.85, a precision of 0.81, and a recall of 0.79, significantly outperforming single-modality models, conventional early-fusion models, and multimodal CNN–Transformer models without grading constraints. In addition, treatment-sensitive and treatment-resistant subtypes identified under grading conditions exhibited stable and significant stratification differences in clustering consistency and survival analysis, validating the potential value of the proposed approach for clinical risk assessment and individualized treatment decision-making. Full article
(This article belongs to the Special Issue Application of Optical Imaging in Medical and Biomedical Research)
Show Figures

Figure 1

28 pages, 5519 KB  
Article
Study of Fermentation Conditions Optimization for Xylanase Production by Aspergillus tubingensis FS7Y52 and Application in Agricultural Wastes Degradation
by Tianjiao Wang, Jinghao Ma, Yujun Zhong, Shaokang Liu, Wenqi Cui, Xiaoyan Liu and Guangsen Fan
Foods 2026, 15(2), 399; https://doi.org/10.3390/foods15020399 - 22 Jan 2026
Viewed by 41
Abstract
This study aimed to systematically optimize the fermentation process for xylanase production by Aspergillus tubingensis FS7Y52, elucidate its enzymatic properties, and evaluate its application potential in the biodegradation of agricultural wastes. Key influencing factors were initially identified through single-factor experiments, followed by the [...] Read more.
This study aimed to systematically optimize the fermentation process for xylanase production by Aspergillus tubingensis FS7Y52, elucidate its enzymatic properties, and evaluate its application potential in the biodegradation of agricultural wastes. Key influencing factors were initially identified through single-factor experiments, followed by the screening of significant factors using the Plackett–Burman design. The optimal values were then approached employing the steepest ascent path method and Response Surface Methodology. The final determined optimal fermentation conditions were: corn husk (20–40 mesh) 40 g/L, tryptone 13.7 g/L, Tween-20 0.75 g/L, pH 6.5, fermentation temperature 42.1 °C, fermentation time 2 days, shaking speed 140 rpm, inoculum size 1 × 107 spores/30 mL, and liquid loading volume 30 mL/250 mL. Under these conditions, xylanase activity reached 115.23 U/mL, representing a significant increase of 90.7% compared to pre-optimization levels. Studies on enzymatic properties revealed that the enzyme exhibited maximum activity at pH 5.0 and 55 °C, and demonstrated good stability within the pH range of 4.5–7.0 and at temperatures below 50 °C. In the degradation of agricultural waste, the enzyme system produced by this strain exhibits significant degradation effects on agricultural waste. A pronounced additive effect exists between xylanase and cellulase. When the dosages were 2430 U/g and 15.7 U/g for xylanase and cellulase, respectively, the maximum reducing sugar release reached 23.3%. The degradation rates of cellulose, hemicellulose, and lignin reached 57.8%, 51.9%, and 55.0%, respectively. Additionally, the strain itself exhibits significant degradation effects on substances such as cellulose in agricultural waste, achieving degradation rates of 78.8%, 70.8%, and 52.5% for cellulose, hemicellulose, and lignin, respectively. This study provides a solid theoretical foundation and technical support for the efficient production of xylanase by A. tubingensis and its industrial application in the resource utilization of agricultural wastes. From an economic perspective, the optimized strategy significantly enhances enzyme production efficiency while reducing substrate consumption and operational costs per unit of enzyme produced. This makes the resulting enzyme mixture more economically viable for large-scale applications. The utilization of this enzyme system to convert tobacco stems into sugars represents a compelling case for agricultural wastes reuse. It transforms residual biomass into high-value products, contributing to a circular bioeconomy by reducing waste and creating new renewable alternatives to conventional products. It provides an economically viable solution for the high-value utilization of woody lignocellulosic biomass. Full article
Show Figures

Figure 1

37 pages, 5411 KB  
Systematic Review
Mapping the Transition to Automotive Circularity: A Systematic Review of Reverse Supply Chain Implementation
by Lei Zhang, Eric Ng and Mohammad Mafizur Rahman
Sustainability 2026, 18(2), 1129; https://doi.org/10.3390/su18021129 - 22 Jan 2026
Viewed by 79
Abstract
The automotive industry’s shift to a Circular Economy for global sustainability is vital, but it faces challenges when establishing efficient Reverse Supply Chains. Reverse Supply Chain implementation is dependent on multiple barriers and enablers, including eco-nomic, managerial, technological, regulatory, and social domains, thus [...] Read more.
The automotive industry’s shift to a Circular Economy for global sustainability is vital, but it faces challenges when establishing efficient Reverse Supply Chains. Reverse Supply Chain implementation is dependent on multiple barriers and enablers, including eco-nomic, managerial, technological, regulatory, and social domains, thus making single-factor solutions ineffective. The purpose of this review is to conduct a systematic literature review to understand how these interconnected barriers and enablers can collectively shape Reverse Supply Chain implementation and performance, specifically within the automotive sector, which remains little known. The PRISMA framework was utilised, which resulted in 129 peer-reviewed articles being selected for review. Findings showed that the literature focuses primarily on Electric Vehicle batteries within developing economies, particularly China. Reverse Supply Chain implementation is governed not only by isolated barriers but by complex systemic interdependencies between enablers as well. This complex inter-relationship between barriers and enablers can be categorised into five key dimensions: economic and financial; managerial and organisational; technological and infrastructural; policy and regulatory; and market and social. The study reveals two systemic patterns driving the transition: technology–policy interdependence and the conflicting relationship between large-scale production and value extraction. Our findings also presented a research agenda focusing on strategic value creation through material streams of automotive electronics, plastic, and composites with high potential value, and further insights are needed in regions such as the Middle East, Oceania, and the Americas. Organisations should consider Reverse Supply Chain as a strategic approach for securing critical material supplies, while policymakers could leverage the use of digital tools as the foundational infrastructure for subsidies allocation and prevent fraud. Full article
Show Figures

Figure 1

17 pages, 26741 KB  
Article
Dual-Agent Deep Reinforcement Learning for Low-Carbon Economic Dispatch in Wind-Integrated Microgrids Based on Carbon Emission Flow
by Wenjun Qiu, Hebin Ruan, Xiaoxiao Yu, Yuhang Li, Yicheng Liu and Zhiyi He
Energies 2026, 19(2), 551; https://doi.org/10.3390/en19020551 - 22 Jan 2026
Viewed by 25
Abstract
High renewable penetration in microgrids makes low-carbon economic dispatch under uncertainty challenging, and single-agent deep reinforcement learning (DRL) often yields unstable cost–emission trade-offs. This study proposes a dual-agent DRL framework that explicitly balances operational economy and environmental sustainability. A Proximal Policy Optimization (PPO) [...] Read more.
High renewable penetration in microgrids makes low-carbon economic dispatch under uncertainty challenging, and single-agent deep reinforcement learning (DRL) often yields unstable cost–emission trade-offs. This study proposes a dual-agent DRL framework that explicitly balances operational economy and environmental sustainability. A Proximal Policy Optimization (PPO) agent focuses on minimizing operating cost, while a Soft Actor–Critic (SAC) agent targets carbon emission reduction; their actions are combined through an adaptive weighting strategy. The framework is supported by carbon emission flow (CEF) theory, which enables network-level tracing of carbon flows, and a stepped carbon pricing mechanism that internalizes dynamic carbon costs. Demand response (DR) is incorporated to enhance operational flexibility. The dispatch problem is formulated as a Markov Decision Process, allowing the dual-agent system to learn policies through interaction with the environment. Case studies on a modified PJM 5-bus test system show that, compared with a Deep Deterministic Policy Gradient (DDPG) baseline, the proposed method reduces total operating cost, carbon emissions, and wind curtailment by 16.8%, 11.3%, and 15.2%, respectively. These results demonstrate that the proposed framework is an effective solution for economical and low-carbon operation in renewable-rich power systems. Full article
Show Figures

Figure 1

Back to TopTop