Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = siloxane molecular weight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 218
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

15 pages, 2112 KiB  
Article
Development of a Method for Blocking Polysodiumoxy(methyl)siloxane Obtained in an Alcohol Medium
by Marina A. Obrezkova, Alina A. Nesterkina and Aziz M. Muzafarov
Polymers 2025, 17(15), 2023; https://doi.org/10.3390/polym17152023 - 24 Jul 2025
Viewed by 237
Abstract
Polysodiumoxy(methyl)siloxane is a highly functional polymer matrix that can be used for the preparation of both functional and non-functional polymers, including molecular brushes. To determine the molecular weight parameters of the matrix, as well as its chemical structure, it is necessary to develop [...] Read more.
Polysodiumoxy(methyl)siloxane is a highly functional polymer matrix that can be used for the preparation of both functional and non-functional polymers, including molecular brushes. To determine the molecular weight parameters of the matrix, as well as its chemical structure, it is necessary to develop an effective method of blocking functional (in our case, sodiumoxy) groups due to their high reactivity. At the same time, the blocking product should represent a complete non-functionalized replica of polysodiumoxy(methyl)siloxane. Since the obtained polysodiumoxy(methyl)siloxane can contain both sodium- and hydroxy groups in its composition, the presence of both types of functional groups should be considered in the blocking process. In this work, we investigated the blocking process of polysodiumoxy(methyl)siloxane and the influence of blocking conditions on the blocked product. We carried out several variants of blocking, which differed in the order and method of introduction of reagents, as well as in the temperature regime. The chemical structure and molecular weight characteristics of the obtained polymers were analyzed by 1H NMR spectroscopy and gel permeation chromatography (GPC), respectively. According to the blocking results, only in one case, complete non-functionalized replicas of polysodiumoxy(methyl)siloxane were obtained, which allows this technique to be used as a tool for the analysis of complex, highly functionalized organosilicon systems. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

13 pages, 3559 KiB  
Article
Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials
by Jiachen Sun, Dengfeng Shu, Fei Huang, Wenbo Qin, Wen Yue and Chengbiao Wang
Materials 2025, 18(12), 2757; https://doi.org/10.3390/ma18122757 - 12 Jun 2025
Viewed by 422
Abstract
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials [...] Read more.
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials (TIMs). Conventional silicone rubber-based TIMs often suffer from silicone oil-bleeding and the volatilization of low-molecular-weight siloxanes under elevated temperatures and mechanical stress. The release of these volatile organic compounds can lead to their deposition on circuit boards and electronic components, causing signal interference or distortion in optical and electronic systems, ultimately compromising device functionality. Additionally, the intrinsic thermal conductivity of traditional TIMs is insufficient to meet the escalating demands for efficient heat dissipation. To overcome these limitations, this study introduces a novel, non-silicone TIM based on a calcium ion-crosslinked sodium alginate matrix, prepared via ion-exchange curing. This bio-derived polymer matrix serves as an environmentally benign alternative to silicone rubber. Furthermore, a brush-coating technique is employed to induce the oriented alignment of boron nitride (BN) fillers within the alginate matrix. Experimental characterization reveals that this aligned microstructure markedly enhances the thermal conductivity of the composite, achieving a value of 7.87 W·m−1·K−1. The resulting material also exhibits outstanding thermal and mechanical stability, with no observable leakage or condensate formation under high-temperature and high-pressure conditions. This work offers a new design paradigm for environmentally friendly, high-performance TIMs with considerable potential for advanced electronic and optoelectronic applications. Full article
Show Figures

Figure 1

43 pages, 1026 KiB  
Review
Most Important Biomedical and Pharmaceutical Applications of Silicones
by Jerzy J. Chruściel
Materials 2025, 18(11), 2561; https://doi.org/10.3390/ma18112561 - 30 May 2025
Viewed by 1391
Abstract
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical [...] Read more.
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical stability, hydrophobicity, low surface tension, biocompatibility, and bio-durability. The important biomedical applications of silicones include drains, shunts, and catheters, used for medical treatment and short-term implants; inserts and implants to replace various body parts; treatment, assembly, and coating of various medical devices; breast and aesthetic implants; specialty contact lenses; and components of cosmetics, drugs, and drug delivery systems. The most important achievements concerning the biomedical and pharmaceutical applications of silicones, their copolymers and blends, and also silanes and low-molecular-weight siloxanes have been summarized and updated. The main physiological properties of organosilicon compounds and silicones, and the methods of antimicrobial protection of silicone implants, have also been described and discussed. The toxicity of silicones, the negative effects of breast implants, and the environmental effects of silicone-containing personal care and cosmetic products have been reported and analyzed. Important examples of the 3D printing of silicone elastomers for biomedical applications have been presented as well. Full article
Show Figures

Figure 1

14 pages, 3454 KiB  
Article
Synthesis of Star Isotactic Polypropylene via Styryldichlorosilane/Hydrogen Consecutive Chain Transfer Reaction
by Naw Jar, Fengtao Chen and Jin-Yong Dong
Catalysts 2025, 15(4), 331; https://doi.org/10.3390/catal15040331 - 31 Mar 2025
Viewed by 495
Abstract
This paper elucidates the consecutive chain transfer reaction, initially to (p-vinylphenyl) methyl dichlorosilane (or (p-vinylbenzyl) methyl dichlorosilane), followed by hydrogen, during metallocene-catalyzed propylene polymerization by an isospecific metallocene catalyst (i.e., rac-dimethylsilylbis(2-methyl-4-phenylindenyl)zirconium dichloride, I)/ activated with methylaluminoxane (MAO), rendering [...] Read more.
This paper elucidates the consecutive chain transfer reaction, initially to (p-vinylphenyl) methyl dichlorosilane (or (p-vinylbenzyl) methyl dichlorosilane), followed by hydrogen, during metallocene-catalyzed propylene polymerization by an isospecific metallocene catalyst (i.e., rac-dimethylsilylbis(2-methyl-4-phenylindenyl)zirconium dichloride, I)/ activated with methylaluminoxane (MAO), rendering a catalytic access styryldichlorosilane capped isotactic polypropylenes (iPP). The PP molecular weight is inversely related to the molar ratio of [(p-vinylphenyl) methyl dichlorosilane]/[propylene] and [(p-vinylbenzyl) methyl dichlorosilane]/[propylene]. Every polypropylene chain formed presents a terminal (p-vinylphenyl) methyl dichlorosilane (or (p-vinylbenzyl) methyl dichlorosilane) unit. Hydrogen enhances the concentration of the starting arm polymer for the subsequent synthesis of the star polymer by increasing the incorporation of the chain terminal group. In order to create star polymers with isotactic polypropylene(iPP) as the arm and a siloxane cross-linking structure as the core, the terminal dichlorosilane iPP unit can work up (with water) to create cyclic siloxane oligomer interlinkages between iPP chains. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

25 pages, 6110 KiB  
Article
High-Performance Porous Supports Based on Hydroxyl-Terminated Polysulfone and CO2/CO-Selective Composite Membranes
by Dmitry Matveev, Tatyana Anokhina, Alisa Raeva, Ilya Borisov, Evgenia Grushevenko, Svetlana Khashirova, Alexey Volkov, Stepan Bazhenov, Vladimir Volkov and Anton Maksimov
Polymers 2024, 16(24), 3453; https://doi.org/10.3390/polym16243453 - 10 Dec 2024
Viewed by 1155
Abstract
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO2/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of [...] Read more.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO2/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO2) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process. Since the casting solution properties (e.g., viscosity) and the interactions in a three-component system (polymer, solvent, and non-solvent) play noticeable roles in the NIPS process, polysulfone samples in a wide range of molecular weights (Mw = 76,000–122,000 g·mol−1) with terminal hydroxyl groups were synthesized for the first time. Commercial PSF with predominantly terminal chlorine groups (Ultrason® S 6010) was used as a reference. The PSF samples were characterized by NMR, DSC, and TGA methods, and the Hansen solubility parameters were calculated. It was found that increasing the ratio of terminal –OH over –Cl groups improved the “solubility” of PSF in N-methyl-2-pyrrolidone (NMP) and water. A direct dependence of the gas permeance of porous supports on the coagulation rate of the casting solution was identified for the first time. It was shown that the use of synthesized PSF (Mw = 76,000 g·mol−1, Mw/Mn = 3.0, (–OH):(–Cl) ratio of 4.7:1) enabled a porous support with a CO2 permeance of 26,700 GPU to be obtained, while the support formed from a commercial PSF Ultrason® S 6010 (Mw = 68,000 g·mol−1, Mw/Mn = 1.7, (–OH):(–Cl) ratio of 1:1.9) under the same conditions demonstrated 4300 GPU. The siloxane-based materials were used for the selective layer since the thin films based on rubbery polymers do not undergo the same accelerating physical aging as glassy polymers. Two types of materials were screened for the selective layer: synthesized polymethyltrifluoroethylacrylate siloxane-polydecylmethylsiloxane (50F3) copolymer, and polydimethylsiloxane (PDMS). 50F3 siloxane was studied for gas separation applications for the first time. It was shown that the permeance of composite membranes based on high-performance porous supports from the PSF samples synthesized was 3.5 times higher than that from similar composite membranes based on supports from a commercial Ultrason® S 6010 PSF with a permeance value of 4300 GPU for CO2. It was found that the enhanced gas permeance of composite membranes based on the highly permeable porous PSF supports developed was observed for both 50F3 polysiloxane and commercial PDMS. At the same time, the CO2/CO selectivity of the composite membranes with a 50F3-selective layer (9.1–9.3) is 1.5 times higher than that of composite membranes with a PDMS-selective layer. This makes the F-containing 50F3 polysiloxane a promising polymer for CO2/CO separation. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

19 pages, 13812 KiB  
Article
Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures
by Maria Daniela Stelescu, Ovidiu-Cristian Oprea, Maria Sonmez, Anton Ficai, Ludmila Motelica, Denisa Ficai, Mihai Georgescu and Dana Florentina Gurau
Polysaccharides 2024, 5(4), 504-522; https://doi.org/10.3390/polysaccharides5040032 - 24 Sep 2024
Cited by 5 | Viewed by 2454
Abstract
The paper presents the production of thermoplastic starch (TPS) mixtures using potato starch and two types of plasticizers: glycerol and sorbitol. The effects of plasticizers, citric acid, organically modified montmorillonite clay nanofiller (OMMT) and an additive based on ultrahigh molecular weight siloxane polymer [...] Read more.
The paper presents the production of thermoplastic starch (TPS) mixtures using potato starch and two types of plasticizers: glycerol and sorbitol. The effects of plasticizers, citric acid, organically modified montmorillonite clay nanofiller (OMMT) and an additive based on ultrahigh molecular weight siloxane polymer on the structure and physical–mechanical and thermal properties of TPS samples were analysed. Starch mixtures plasticized with glycerol were obtained, where the starch/glycerol mass ratio was 70:30, as well as starch mixtures plasticized with glycerol and sorbitol, with a starch/glycerol/sorbitol mass ratio of 60:20:20. The starch gelatinization process to obtain TPS was carried out in a Brabender Plasti-Corder internal mixer at 120 °C, with a mixing speed of 30–80 rpm, for 10 min. The obtained results indicate that by adding 2% (weight percentage) of citric acid to the TPS mixtures, there is an improvement in the physical–mechanical properties, as well as structural changes that can indicate both cross-linking reactions by esterification in stages and depolymerisation reactions. The sample of TPS plasticized with glycerol, which contains OMMT, shows an increase in tensile strength by 34.4%, compared to the control sample. Full article
Show Figures

Figure 1

16 pages, 8399 KiB  
Article
The Hydrogen Bonding in the Hard Domains of the Siloxane Polyurea Copolymer Elastomers
by Ming Bao, Tianyu Liu, Ying Tao and Xiuyuan Ni
Polymers 2024, 16(17), 2438; https://doi.org/10.3390/polym16172438 - 28 Aug 2024
Cited by 1 | Viewed by 1742
Abstract
For probing the structure–property relationships of the polyurea elastomers, we synthesize the siloxane polyurea copolymer elastomer by using two aminopropyl-terminated polysiloxane monomers with low and high number-average molecular weight (Mn), i.e., L-30D and H-130D. To study the influence of the [...] Read more.
For probing the structure–property relationships of the polyurea elastomers, we synthesize the siloxane polyurea copolymer elastomer by using two aminopropyl-terminated polysiloxane monomers with low and high number-average molecular weight (Mn), i.e., L-30D and H-130D. To study the influence of the copolymer structures on the film properties, these films are analyzed to obtain the tensile performance, UV-vis spectra, cross-sectional topographies, and glass transition temperature (Tg). The two synthetic thermoplastic elastomer films are characterized by transparency, ductility, and the Tg of the hard domains, depending on the reacting compositions. Furthermore, the film elasticity behavior is studied by the strain recovery and cyclic tensile test, and then, the linear fitting of the tensile data is used to describe the film elasticity based on the Mooney–Rivlin model. Moreover, the temperature-dependent infrared (IR) spectra during heating and cooling are conducted to study the strength and recovery rate of the hydrogen bonding, respectively, and their influence on the film performance is further analyzed; the calculated Mn of the hard segment chains is correlated to the macroscopic recovery rate of the hydrogen bonding. These results can add deep insight to the structure–property relationships of the siloxane polyurea copolymer. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

10 pages, 1335 KiB  
Article
Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA
by Olivia Ventresca, Ashley Acevedo, Kristina Nicholas, Jonathan Craig, Sophia Carpenter, Christia Fisher, Madeleine Danzberger, Cassidy Williams, Barbara Balestra and Stephen MacAvoy
Water 2024, 16(14), 2059; https://doi.org/10.3390/w16142059 - 20 Jul 2024
Cited by 1 | Viewed by 1698
Abstract
The waterways adjacent to Washington DC, USA have a history of contamination from heavy metals, nutrients, pesticides, and industrial chemicals. Among the chemicals of concern are PAHs, which are a historical contaminant but also have modern pyrogenic and petrogenic sources in the area’s [...] Read more.
The waterways adjacent to Washington DC, USA have a history of contamination from heavy metals, nutrients, pesticides, and industrial chemicals. Among the chemicals of concern are PAHs, which are a historical contaminant but also have modern pyrogenic and petrogenic sources in the area’s waterways. Another group of contaminants that are of emerging interest are siloxanes (silicones), which are widely used as lubricants, sealants, and cosmetics. Some lower-molecular-weight siloxanes are regulated by the EU in recognition of harm to aquatic life, but there are no restrictions in the United States. In fact, studies examining water pollutants do not typically test for siloxanes. Here, we present the concentrations of specific PAHs and siloxanes from surface sediments in the Potomac and Anacostia Rivers (including the Anacostia’s tributaries) collected between 2018 and 2023. Both D5 (decamethylcyclopentasiloxane) and D6 (dodecamethylcyclohexasiloxane) were found in most locations, with concentrations averaging 0.13 and 0.006 mg/g (dry mass), respectively. Pyrene, fluoranthene, bibenzyl, and phenanthrene were also found in the Anacostia and some of its tributaries, with concentrations increasing downstream. In the Potomac, concentrations were generally lower than those observed in the Anacostia. Based on ratios of pyrene to fluoranthene + pyrene, the likely source of PAHs was petrogenic. Full article
Show Figures

Figure 1

25 pages, 6597 KiB  
Article
The Preparation of Acryloxyl Group Functionalized Siloxane Polymers and the Study of Their Ultra Violet Curing Properties
by Dan Du, Xupeng Chen, Yue Wu, Chuan Wu, Zhirong Qu, Yanjiang Song, Dawei Qin, Qiao Li and Hong Dong
Polymers 2024, 16(4), 465; https://doi.org/10.3390/polym16040465 - 7 Feb 2024
Cited by 3 | Viewed by 2186
Abstract
Polysiloxane with multiple acryloxyl groups at the terminal site of the polymer chain was synthesized by the condensation reaction between hydroxyl-terminated polysiloxane and acryloyl chloride and used to improve the cross-linking density of UV-curable silicone materials initiated from dual acryloxy-terminated symmetric polysiloxane or [...] Read more.
Polysiloxane with multiple acryloxyl groups at the terminal site of the polymer chain was synthesized by the condensation reaction between hydroxyl-terminated polysiloxane and acryloyl chloride and used to improve the cross-linking density of UV-curable silicone materials initiated from dual acryloxy-terminated symmetric polysiloxane or single acryloxy-terminated asymmetric polysiloxane with the mixture of Irgacure 1173 and Irgacure 184 at a mass ratio of 1:1 as the photoinitiator. The effects of factors such as initiator composition, UV irradiation time, structure, and molecular weight of linear dual acryloxy-terminated or single acryloxy-terminated asymmetric siloxane oligomers on the gelation yield, thermal properties, water absorption, and water contact angle of UV-cured film were investigated. The synthesized cross-linking density modifier can be copolymerized with acryloxy-functionalized linear polysiloxanes under the action of a photoinitiator to increase the cross-link density of UV-cured products effectively. Both linear dual acryloxy-terminated or single acryloxy-terminated asymmetric siloxane oligomers can be copolymerized with cross-link density modifiers within 20 s of UV irradiation. The gelation yields of the UV-cured products obtained from the dual acryloxy-terminated siloxane oligomers were greater than 85%, and their surface water contact angles increased from 72.8° to 95.9° as the molecular weight of the oligomers increased. The gelation yields of UV-cured products obtained from single acryloxy-terminated asymmetric siloxane oligomers were less than 80%, and their thermal stabilities were inferior to those obtained from the dual acryloxy-terminated siloxane oligomers. However, the water contact angles of UV-cured products obtained from these single acryloxy-terminated asymmetric siloxane oligomers were all greater than 90°. Full article
(This article belongs to the Special Issue Thermal Characterization and Applications of Polymer Composites)
Show Figures

Graphical abstract

17 pages, 2731 KiB  
Article
Synthesis of Vinyl-Containing Polydimethylsiloxane in An Active Medium
by Alina G. Khmelnitskaia, Aleksandra A. Kalinina, Ivan B. Meshkov, Rinat S. Tukhvatshin, Georgii V. Cherkaev, Sergey A. Ponomarenko and Aziz M. Muzafarov
Polymers 2024, 16(2), 257; https://doi.org/10.3390/polym16020257 - 16 Jan 2024
Cited by 1 | Viewed by 3426
Abstract
This research deals with the synthesis of copoly(methylvinyl)(dimethyl)siloxanes by the copolycondensation of dimethyldiethoxy- and methylvinyldimethoxysilane in an active medium, followed by thermal condensation in a vacuum. We achieved a range of copolymers exhibiting finely tuned molecular weights spanning between 1500 and 20,000 with [...] Read more.
This research deals with the synthesis of copoly(methylvinyl)(dimethyl)siloxanes by the copolycondensation of dimethyldiethoxy- and methylvinyldimethoxysilane in an active medium, followed by thermal condensation in a vacuum. We achieved a range of copolymers exhibiting finely tuned molecular weights spanning between 1500 and 20,000 with regulated functional methylvinylsiloxane units. Analysis of the microstructure showed that the copolymerization predominantly formed products demonstrating a random distribution of units (R~1). However, an increase in the content of vinyl-containing monomers increases the R parameter, indicating an enhanced tendency towards alternating linkages within the copolymer matrix. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

13 pages, 4094 KiB  
Article
The Impact of the Molecular Weight of Degradation Products with Silicon from Porous Chitosan–Siloxane Hybrids on Neuronal Cell Behavior
by Yuki Shirosaki, Federica Fregnan, Luisa Muratori, Saki Yasutomi, Stefano Geuna and Stefania Raimondo
Polymers 2023, 15(15), 3272; https://doi.org/10.3390/polym15153272 - 1 Aug 2023
Viewed by 1443
Abstract
Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan–3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation [...] Read more.
Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan–3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan–GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components. Full article
(This article belongs to the Special Issue Novel Synthetic Methodologies for Organosilicon Materials)
Show Figures

Graphical abstract

19 pages, 4472 KiB  
Article
Interaction of Polyphenylsilsesquioxane with Various β-Diketonate Complexes of Titanium by Mechanochemical Activation
by Vitalii Libanov, Alevtina Kapustina, Nikolay Shapkin, Anna Tarabanova and Anna Rumina
Powders 2023, 2(2), 445-463; https://doi.org/10.3390/powders2020027 - 8 Jun 2023
Viewed by 1576
Abstract
In the present work, we studied the interaction of polyphenylsilsesquioxane with various β-diketonate complexes of titanium by mechanochemical activation. Polyphenylsilsesquioxane, bis-(2,4-pentanedionate) titanium dichloride, bis-(1-phenyl-1,3-butanedionate) titanium dichloride, and bis-(1,3-diphenyl-1,3-propanedionate) titanium dichloride were used as starting reagents. Various chemical and physicochemical methods of analysis were [...] Read more.
In the present work, we studied the interaction of polyphenylsilsesquioxane with various β-diketonate complexes of titanium by mechanochemical activation. Polyphenylsilsesquioxane, bis-(2,4-pentanedionate) titanium dichloride, bis-(1-phenyl-1,3-butanedionate) titanium dichloride, and bis-(1,3-diphenyl-1,3-propanedionate) titanium dichloride were used as starting reagents. Various chemical and physicochemical methods of analysis were used to study the synthesis products. The composition of the obtained compounds has been determined. It is shown that under conditions of mechanochemical activation, high-molecular-weight products with a Si/Ti ratio different from the specified ones are formed. In addition, under the action of mechanical stresses, the initial titanium complexes (except for acetylacetonate complex) polymerize with the formation of coordination of high-molecular-weight compounds, which are destroyed by the addition of ethyl alcohol. It has been established that with an increase in the volume of the organic ligand, titanium atoms enter the polymer siloxane chain to a lesser extent. This work is aimed at finding efficient and environmentally friendly methods for the synthesis and modification of organometallic macromolecular compounds. Full article
(This article belongs to the Special Issue Particle Technologies)
Show Figures

Figure 1

16 pages, 3665 KiB  
Article
Polyether-Thiourea-Siloxane Copolymer Based on H-Bonding Interaction for Marine Antifouling
by Mengyu Li, Liyang Nan, Boxuan Zhang, Junjun Kong, Yufeng Wang and Miao Ba
Molecules 2023, 28(8), 3574; https://doi.org/10.3390/molecules28083574 - 19 Apr 2023
Cited by 4 | Viewed by 1892
Abstract
By introducing thiourea and ether groups into MQ silicone resin polymer via free radical polymerization, a polyether-thiourea-siloxane (PTS) copolymer was synthesized. The characterization of the synthesized copolymer indicated the occurrence of H-bonding interactions and a narrow molecular weight polydispersity index. Antifouling coatings were [...] Read more.
By introducing thiourea and ether groups into MQ silicone resin polymer via free radical polymerization, a polyether-thiourea-siloxane (PTS) copolymer was synthesized. The characterization of the synthesized copolymer indicated the occurrence of H-bonding interactions and a narrow molecular weight polydispersity index. Antifouling coatings were produced by incorporating the synthesized copolymer and phenylmethylsilicone oil (PSO). The addition of a minute amount of copolymer enhanced the hydrophobicity of the coating by increasing its surface roughness. However, excessive addition of copolymer resulted in a significant deterioration of the coating surface smoothness. The copolymer improved the mechanical properties of the coating, but excessive addition decreased the crosslinking density and weakened the mechanical performance. With increasing copolymer addition, the leaching of PSO was significantly improved due to the change in the storage form of PSO in the coating caused by the copolymer. Based on the H-bonding interaction of the copolymer, the adhesion strength between the coating and the substrate was significantly improved. However, excessive addition of copolymer did not infinitely enhance the adhesion strength. The antifouling performance demonstrated that an appropriate amount of copolymer could obtain adequate PSO leaching efficiency, thereby effectively enhancing the antifouling performance of the coating. In this study, the prepared coating P12 (12 g of PTS in 100 g of PDMS) showed the most effective antifouling performance. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

16 pages, 18243 KiB  
Article
True Molecular Composites: Unusual Structure and Properties of PDMS-MQ Resin Blends
by Artem V. Bakirov, Sergey V. Krasheninnikov, Maxim A. Shcherbina, Ivan B. Meshkov, Aleksandra A. Kalinina, Vadim V. Gorodov, Elena A. Tatarinova, Aziz M. Muzafarov and Sergey N. Chvalun
Polymers 2023, 15(1), 48; https://doi.org/10.3390/polym15010048 - 22 Dec 2022
Cited by 13 | Viewed by 3426
Abstract
Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin [...] Read more.
Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils. In the produced materials, MQ particles play a role of the molecular entanglements, so rubber molecular weight and MQ filler concentration are the parameters determining the structure and properties of such composites. Moreover, a need for a saturation of the reactive groups and minimization of the surface energy of MQ particles also determine the size and distribution of the filler at different filler rates. An unusual correlation of the concentration of MQ component and the interparticle spacing was revealed. Based on the extraordinary mechanical properties and structure features, a model of the structure poly(dimethyl siloxane)-rubber molecular composites and of its evolution in the process of stretching, was proposed. Full article
(This article belongs to the Special Issue Polymers of the Future)
Show Figures

Figure 1

Back to TopTop