Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = silicone rubber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4297 KiB  
Article
Application of Carbon–Silicon Hybrid Fillers Derived from Carbonised Rice Production Waste in Industrial Tread Rubber Compounds
by Valeryia V. Bobrova, Sergey V. Nechipurenko, Bayana B. Yermukhambetova, Andrei V. Kasperovich, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Galiya S. Irmukhametova, Gulzhakhan Zh. Yeligbayeva and Grigoriy A. Mun
Polymers 2025, 17(15), 2070; https://doi.org/10.3390/polym17152070 - 29 Jul 2025
Viewed by 317
Abstract
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the [...] Read more.
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the key technological, physico-mechanical, and viscoelastic properties of industrial elastomeric compounds based on synthetic styrene–butadiene rubber, intended for the tread of summer passenger car tyres, when replacing the commercially used highly reinforcing silica filler (SF), Extrasil 150VD brand (white carbon black), with a carbon–silica filler (CSF). The CSF is produced by carbonising a finely ground mixture of rice production waste (rice husks and stems) in a pyrolysis furnace at 550–600 °C without oxygen. It was found that replacing 20 wt.pts. of silica filler with CSF in industrial tread formulations improves processing parameters (Mooney viscosity increases by up to 5.3%, optimal vulcanisation time by up to 9.2%), resistance to plastic deformation (by up to 7.7%), and tackiness of the rubber compounds (by 31.3–34.4%). Viscoelastic properties also improved: the loss modulus and mechanical loss tangent decreased by up to 24.0% and 14.3%, respectively; the rebound elasticity increased by up to 6.3% and fatigue resistance by up to 2.7 thousand cycles; and the internal temperature of samples decreased by 7 °C. However, a decrease in tensile strength (by 10.7–27.0%) and an increase in wear rate (up to 43.3% before and up to 22.5% after thermal ageing) were observed. Nevertheless, the overall results of this study indicate that the CSF derived from the carbonisation of rice production waste—containing both silica and carbon components—can effectively be used as a partial replacement for the commercially utilised reinforcing silica filler in the production of tread rubber for summer passenger car tyres. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

20 pages, 15657 KiB  
Article
Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves
by Yating Gao and Hui Wang
Materials 2025, 18(12), 2857; https://doi.org/10.3390/ma18122857 - 17 Jun 2025
Viewed by 435
Abstract
Low-frequency vibration isolation metamaterials (LFVIMs) remain challenging in generating ultra-low-frequency bandgaps around 10 Hz and below. For this issue, a novel LFVIM composed of a square steel auxetic core perforated with orthogonally aligned peanut-shaped holes and a silicone rubber coating is proposed, leveraging [...] Read more.
Low-frequency vibration isolation metamaterials (LFVIMs) remain challenging in generating ultra-low-frequency bandgaps around 10 Hz and below. For this issue, a novel LFVIM composed of a square steel auxetic core perforated with orthogonally aligned peanut-shaped holes and a silicone rubber coating is proposed, leveraging the auxetic core’s unique resonance behavior. The superiority in bandgap creation of the peanut-shaped perforations is illustrated by comparing them to elliptical and rectangular perforations. Furthermore, a filled auxetic core is explored as well, to enhance its wave attenuation potential. The wave propagation mechanisms of both the unfilled and filled LFVIMs are comparatively studied by finite element simulation validated against an existing LFVIM design and scaled-down vibration testing. Compared to the unfilled LFVIM, the filled case merges smaller bandgaps into three wider full bandgaps, increasing the relative bandgap width (RBW) from 44.25% (unfilled) to 58.93% (filled). Subsequently, the role of each design parameter is identified by parametric analysis for bandgap tuning. The coating material shows a significant influence on the RBW. Particularly, optimizing the coating’s Poisson’s ratio to 0.2 yields a maximum RBW of 93.95%. These findings present a successful strategy for broadening LFVIM applications in the regulation of ultra-low-frequency Lamb waves. Full article
Show Figures

Figure 1

13 pages, 3559 KiB  
Article
Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials
by Jiachen Sun, Dengfeng Shu, Fei Huang, Wenbo Qin, Wen Yue and Chengbiao Wang
Materials 2025, 18(12), 2757; https://doi.org/10.3390/ma18122757 - 12 Jun 2025
Viewed by 422
Abstract
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials [...] Read more.
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials (TIMs). Conventional silicone rubber-based TIMs often suffer from silicone oil-bleeding and the volatilization of low-molecular-weight siloxanes under elevated temperatures and mechanical stress. The release of these volatile organic compounds can lead to their deposition on circuit boards and electronic components, causing signal interference or distortion in optical and electronic systems, ultimately compromising device functionality. Additionally, the intrinsic thermal conductivity of traditional TIMs is insufficient to meet the escalating demands for efficient heat dissipation. To overcome these limitations, this study introduces a novel, non-silicone TIM based on a calcium ion-crosslinked sodium alginate matrix, prepared via ion-exchange curing. This bio-derived polymer matrix serves as an environmentally benign alternative to silicone rubber. Furthermore, a brush-coating technique is employed to induce the oriented alignment of boron nitride (BN) fillers within the alginate matrix. Experimental characterization reveals that this aligned microstructure markedly enhances the thermal conductivity of the composite, achieving a value of 7.87 W·m−1·K−1. The resulting material also exhibits outstanding thermal and mechanical stability, with no observable leakage or condensate formation under high-temperature and high-pressure conditions. This work offers a new design paradigm for environmentally friendly, high-performance TIMs with considerable potential for advanced electronic and optoelectronic applications. Full article
Show Figures

Figure 1

16 pages, 2699 KiB  
Article
Investigation of the Mechanical and Thermal Properties of MWCNT/SiC-Filled Ethylene–Butene–Terpolymer Rubber
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Pengxiang Bai, Yuqi Wang, Zuohui Liu, Simin Zhu and Dan Qiao
Crystals 2025, 15(6), 539; https://doi.org/10.3390/cryst15060539 - 5 Jun 2025
Cited by 1 | Viewed by 811
Abstract
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that [...] Read more.
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that the inherent properties of nanofillers themselves, the interfacial bonding force between fillers and the matrix, and the uniform dispersibility of nanofillers in the polymer matrix are the most significant factors for enhancing the performance of rubber nanocomposites. This study systematically investigated the synergistic enhancement effect of silicon carbide (SiC) and multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of ethylene–butene–terpolymer (EBT) composites. By optimizing the addition amount of fillers and improving the interfacial bonding between fillers and the matrix, the influence of filler content on the properties of composites was studied. The results demonstrate that the addition of SiC and MWCNTs significantly improved the storage modulus, tensile strength, hardness, and thermal stability of the composites. In terms of mechanical properties, the tensile strength of the composites increased from 6.68 MPa of pure EBT to 8.46 MPa, and the 100% modulus increased from 2.14 MPa to 3.81 MPa. Moreover, hardness was significantly enhanced under the reinforcement of SiC/CNT fillers. In terms of thermal stability, the composites exhibited excellent resistance to deformation at high temperatures. Through the analysis of the mechanical and thermal properties of the composites, the synergistic enhancement mechanism between SiC and MWCNTs was revealed. The research results provide a theoretical basis for the design and engineering applications of high-performance ethylene–butylene rubber composites. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

43 pages, 1026 KiB  
Review
Most Important Biomedical and Pharmaceutical Applications of Silicones
by Jerzy J. Chruściel
Materials 2025, 18(11), 2561; https://doi.org/10.3390/ma18112561 - 30 May 2025
Viewed by 1391
Abstract
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical [...] Read more.
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical stability, hydrophobicity, low surface tension, biocompatibility, and bio-durability. The important biomedical applications of silicones include drains, shunts, and catheters, used for medical treatment and short-term implants; inserts and implants to replace various body parts; treatment, assembly, and coating of various medical devices; breast and aesthetic implants; specialty contact lenses; and components of cosmetics, drugs, and drug delivery systems. The most important achievements concerning the biomedical and pharmaceutical applications of silicones, their copolymers and blends, and also silanes and low-molecular-weight siloxanes have been summarized and updated. The main physiological properties of organosilicon compounds and silicones, and the methods of antimicrobial protection of silicone implants, have also been described and discussed. The toxicity of silicones, the negative effects of breast implants, and the environmental effects of silicone-containing personal care and cosmetic products have been reported and analyzed. Important examples of the 3D printing of silicone elastomers for biomedical applications have been presented as well. Full article
Show Figures

Figure 1

16 pages, 4713 KiB  
Article
Cutting-Edge Vibration Sensor Morphologically Configured by Mimicking a Tactile Cutaneous Receptor Using Magnetic-Responsive Hybrid Fluid (HF)
by Kunio Shimada
Sensors 2025, 25(11), 3366; https://doi.org/10.3390/s25113366 - 27 May 2025
Viewed by 414
Abstract
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain [...] Read more.
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain gauges and piezo materials. The basic principle involves the perception of vibration via touch, with a cutaneous mechanoreceptor that is sensitive to vibration. We investigated the characteristics of the proposed vibratory sensor, in which the mechanoreceptor was covered either in hard rubber (such as silicon oil) or soft rubber (such as urethane), for both low- and high-frequency ranges. The fabricated sensor is based on piezoelectricity with a built-in voltage. It senses applied vibration by means of hairs in the sensor and the hardness of the outer cover. We also investigated two proposed parameters: the sensor response time to stimuli to the vibration aiding the equivalent firing rate (e.f.r.) and the gauge factor (GF,pe) proposed as treated in piezo-resistivity. The evaluation with the parameters was effective in designing a sensor based on piezoelectricity. These parameters were enhanced by the hairs in the sensor and the hardness of the outer cover. Our results were helpful for designing the present novel vibratory sensor. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

13 pages, 839 KiB  
Article
The Role of Fucoidan in Controlling Listeria monocytogenes Biofilms on Seafood-Contact Surfaces
by Anamika Roy, Pantu Kumar Roy and Shin Young Park
Appl. Sci. 2025, 15(11), 5799; https://doi.org/10.3390/app15115799 - 22 May 2025
Viewed by 1938
Abstract
Seafood-borne pathogens, especially Listeria monocytogenes, pose a significant risk to global health, with the formation of biofilm on abiotic surfaces exacerbating contamination risks in the seafood industry. This investigation evaluates the biofilm inhibition efficacy of fucoidan against L. monocytogenes biofilms on commonly [...] Read more.
Seafood-borne pathogens, especially Listeria monocytogenes, pose a significant risk to global health, with the formation of biofilm on abiotic surfaces exacerbating contamination risks in the seafood industry. This investigation evaluates the biofilm inhibition efficacy of fucoidan against L. monocytogenes biofilms on commonly used processing surfaces. The minimum inhibitory concentration (MIC) of fucoidan was determined to be 150 µg/mL, and sub-MIC concentrations (1/8, 1/4, and 1/2 MIC) were assessed for their effects on inhibition of biofilm. This action resulted in a substantial, dose-dependent reduction in formation of biofilm, with maximum reductions of 2.91 log CFU/cm2 on hand gloves (HG), 2.46 log CFU/cm2 on silicone rubber (SR), and 2.11 log CFU/cm2 on stainless steel (SS). Gene expression analysis via real-time quantitative polymerase chain reaction (RT-qPCR) revealed the downregulation of quorum-sensing (QS) and virulence-associated genes (flaA, fbp, prfA, hlyA, and agrA), indicating fucoidan’s potential to inhibition of biofilm and bacterial pathogenicity. These results emphasize fucoidan as a promising environmental antimicrobial agent for mitigating L. monocytogenes biofilm in seafood handling environments, thus improving food safety and reducing contamination risks. Full article
Show Figures

Figure 1

12 pages, 2235 KiB  
Article
The Influence of Anisotropic Microstructures on the Ice Adhesion Performance of Rubber Surfaces
by Fangyuan Zhang, Xiaosen Wang, Shilin Zhang, Xiaoqing Cao, Qiang He and Lu Li
Coatings 2025, 15(5), 612; https://doi.org/10.3390/coatings15050612 - 21 May 2025
Viewed by 437
Abstract
Anti-icing and de-icing technologies are crucial in modern aviation, with optimising ice adhesion performance on material surfaces being a key challenge. This study proposes a straightforward method for fabricating hydrophobic silicone rubber surfaces using a mesh to construct microstructures. The influence of microstructure [...] Read more.
Anti-icing and de-icing technologies are crucial in modern aviation, with optimising ice adhesion performance on material surfaces being a key challenge. This study proposes a straightforward method for fabricating hydrophobic silicone rubber surfaces using a mesh to construct microstructures. The influence of microstructure size and anisotropy on surface wettability and ice adhesion performance is systematically investigated. The experimental results demonstrate that introducing microstructures significantly enhances the hydrophobicity of silicone rubber surfaces, achieving a maximum static contact angle of 149.3 ± 1.3°. For microstructures with identical shapes, dimensional variations affect surface roughness and functional performance. Although the structure with the most significant dimension (600#-SR) exhibits the highest surface roughness, smaller structures (e.g., 1400#-SR) demonstrate superior hydrophobicity and lower ice adhesion strength, likely due to enhanced air entrapment and reduced effective solid–liquid and solid–ice contact areas. Furthermore, due to anisotropic microstructures, a marked directional difference in ice adhesion strength is observed: the lowest strength in the X direction is 38.6 kPa, compared to 63.3 kPa in the Y direction. Fine-tuning the size and configuration of microstructures effectively minimises the ice adhesion strength and enables targeted optimisation of surface properties. This research offers theoretical support for developing innovative, energy-efficient materials with superior anti-icing properties and provides new insights for crafting solutions tailored to various anti-icing needs. Full article
Show Figures

Figure 1

17 pages, 1888 KiB  
Article
Effects of Coating Thickness and Aggregate Size on the Damping Properties of Concrete: A Numerical Simulation Approach
by Yisihak Gebre Tarekegn, Tom Lahmer, Abrham Gebre Tarekegn and Esayas Gebreyouhannes Ftwi
Coatings 2025, 15(5), 610; https://doi.org/10.3390/coatings15050610 - 21 May 2025
Cited by 1 | Viewed by 439
Abstract
Concrete properties are investigated using intensive physical testing processes that require large amounts of labor and materials that are costly and time-consuming. Properly validated computer models can replace most of the existing physical testing procedures with computer simulations that are relatively quick and [...] Read more.
Concrete properties are investigated using intensive physical testing processes that require large amounts of labor and materials that are costly and time-consuming. Properly validated computer models can replace most of the existing physical testing procedures with computer simulations that are relatively quick and inexpensive. Therefore, in this study, the effects of coating thickness and aggregate size on the damping properties of concrete were investigated using numerical simulation with Abaqus/CAE 6.14-1 software. Two different groups of aggregates were used in the simulation, with maximum aggregate sizes of 25 mm and 32 mm. The coating thickness ranged from 0.4 mm to 5.0 mm, using epoxy, silicone, and rubber coatings. The results showed that coatings with smaller aggregate size led to an increase in the damping ratio compared to those with larger aggregate size. Moreover, replacing 20% of coarse aggregates with rubber-coated aggregates results in a damping ratio of 5.75% to 6.21%, reflecting an increase of 22.8% to 32.7%. This variation occurs with coating thicknesses ranging from 0.4 mm to 5.0 mm, with the optimal thickness of 5.0 mm leading to the maximum increase (32.7%) in the damping ratio of concrete. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 2082 KiB  
Article
Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications
by Sara Ramírez Pastén, Carolina Paz Quezada, Carolina Arellano, Roberto M. Vidal, Alejandro Escobar, Faustino Alonso, Javier Villarroel, David A. Montero and María C. Paredes
Polymers 2025, 17(10), 1404; https://doi.org/10.3390/polym17101404 - 20 May 2025
Viewed by 1322
Abstract
Background: Healthcare-associated infections (HAIs) significantly increase morbidity, mortality, and healthcare costs. Among HAIs, catheter-associated infections are particularly prevalent due to the susceptibility of catheters to microbial contamination and biofilm formation, especially with prolonged use. Biofilms act as infection reservoirs, complicating treatment and [...] Read more.
Background: Healthcare-associated infections (HAIs) significantly increase morbidity, mortality, and healthcare costs. Among HAIs, catheter-associated infections are particularly prevalent due to the susceptibility of catheters to microbial contamination and biofilm formation, especially with prolonged use. Biofilms act as infection reservoirs, complicating treatment and often requiring catheter removal, thus extending hospital stays and increasing costs. Recent technological advances in catheter design have focused on integrating antifouling and antimicrobial coatings to mitigate or prevent biofilm formation. Methods: We developed COPESIL®, a novel silicone rubber embedded with PEGylated copper nanoparticles designed to reduce microbial contamination on catheter surfaces. We conducted in vitro assays to evaluate the antimicrobial and antibiofilm efficacy of COPESIL® against pathogens commonly implicated in catheter-associated urinary tract infections. Additionally, the safety profile of the material was assessed through cytotoxicity evaluations using HepG2 cells. Results: COPESIL® demonstrated substantial antimicrobial activity, reducing contamination with Escherichia coli and Klebsiella pneumoniae by >99.9% and between 93.2% and 99.8%, respectively. Biofilm formation was reduced by 5.2- to 7.9-fold for E. coli and 2.7- to 2.8-fold for K. pneumoniae compared to controls. Cytotoxicity assays suggest the material is non-toxic, with cell viability remaining above 95% after 24 h of exposure. Conclusions: The integration of PEGylated copper nanoparticles into a silicone matrix in COPESIL® represents a promising strategy to enhance the antimicrobial properties of catheters. Future studies should rigorously evaluate the long-term antimicrobial efficacy and clinical safety of COPESIL®-coated catheters, with a focus on their impact on patient outcomes and infection rates in clinical settings. Full article
(This article belongs to the Special Issue Advanced Antibacterial Polymers and Their Composites)
Show Figures

Figure 1

12 pages, 263 KiB  
Article
A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis
by Marina Tesauro, Valerio M. Sora, Gabriele Meroni, Michela Consonni, Francesca Zaghen, Giulia Laterza, Piera Anna Martino and Alfonso Zecconi
Appl. Sci. 2025, 15(10), 5632; https://doi.org/10.3390/app15105632 - 18 May 2025
Viewed by 450
Abstract
Both synthetic and natural rubber-like elastomers are widely employed in industrial applications (such as tires, seals, protective gloves, and damping absorbers) as well as in the food and animal husbandry industries. These materials should be regularly checked for contamination and the associated infectious [...] Read more.
Both synthetic and natural rubber-like elastomers are widely employed in industrial applications (such as tires, seals, protective gloves, and damping absorbers) as well as in the food and animal husbandry industries. These materials should be regularly checked for contamination and the associated infectious risk since they frequently come into contact with food, animals, and people. Additionally, they could act as vehicle of microbes and, as a result, diseases. This pilot study investigates the antibacterial efficacy of novel elastomer formulations against Salmonella enterica subsp. enterica serovar Enteritidis and Legionella pneumophila, with possible applications in drinking water distribution systems (DWDSs). This study aims to evaluate the antimicrobial activity of two rubber and five silicone patented elastomers with antibacterial additives. Two microbiological concentrations (103 and 104 CFU/mL) were used to compare the efficacy of the elastomers. The results showed a significant decrease in bacterial load in several silicone formulations, with two of them showing the strongest bactericidal efficacy against L. pneumophila (0% and 3% survival rates for VMQ105 and VMQ500L formulations, respectively), despite the wide variations in S. Enteritidis inhibition. One rubber elastomer performed better than the other in terms of reducing bacterial survival for both pathogens (NBRCA) while NBROM showed a 0% survival rate only for L. pneumophila. The findings suggest that certain elastomer compositions might lessen the potential infectious risks in water systems or contaminated matrices. Future research may investigate in situ applications, particularly in hospitals or dental offices where these pathogens pose major health risks. Full article
15 pages, 3629 KiB  
Article
Dual-Layer Flexible Capacitance Sensor with Wide Range and High Sensitivity
by Benyuan Fu, Zipei Wang, Kun Chen, Zebing Mao, Hao Wang, Benxiang Ju and Yanhong Peng
Actuators 2025, 14(5), 251; https://doi.org/10.3390/act14050251 - 16 May 2025
Viewed by 612
Abstract
Flexible pressure sensors have attracted great attention due to their extensive applications in human–computer interaction and health monitoring. So far, the development of flexible pressure sensors that balance high sensitivity and a wide measurement range remains a challenge. Herein, a double-layer dielectric structure [...] Read more.
Flexible pressure sensors have attracted great attention due to their extensive applications in human–computer interaction and health monitoring. So far, the development of flexible pressure sensors that balance high sensitivity and a wide measurement range remains a challenge. Herein, a double-layer dielectric structure with a surface convex structure is reported for the preparation of flexible capacitive pressure sensors. The double-layer dielectric structure, which is composed of a silicone rubber-based conductive elastomer with a surface micro-convex structure and a PVA-H-based conductive elastomer, balances the advantages and disadvantages of the two conductive elastomer dielectrics. It can form a complete micro-capacitive network under relatively large pressures, enabling the sensor to have high sensitivity at different stages (1.7 kPa−1, 0–104 kPa; 19.14 kPa−1, 104–140 kPa), thus achieving a dual enhancement of sensitivity and sensing range. Additionally, the sensor has been successfully applied to scenarios such as monitoring of human breathing, speaking, and movement, as well as mouse clicks, demonstrating its great potential in the fields of health monitoring and human–computer interaction applications. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Robots)
Show Figures

Figure 1

24 pages, 7375 KiB  
Article
Effect of Silicone Rubbers on the Properties of RDX-Based PBXs and Their Application in the Explosive Hardening of Steel
by Konrad Szydło, Agnieszka Stolarczyk, Tomasz Jarosz, Barbara Lisiecka, Sylwia Waśkiewicz, Krzysztof Lukaszkowicz, Klaudiusz Gołombek, Jakub Polis and Mateusz Polis
Materials 2025, 18(10), 2311; https://doi.org/10.3390/ma18102311 - 15 May 2025
Viewed by 433
Abstract
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of [...] Read more.
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of our investigation on the explosive hardening of S235JR Steel with PBX formulations containing silicone binders and 1,3,5-trinitro-1,3,5-triazinane (RDX). In terms of safety, the impact (5–15 J) and friction (240–360 N) sensitivity of the tested plastic-bonded explosives (PBXs) was verified, simultaneously with DSC tests, energy of activation calculations, and critical diameter measurement. The developed material, prepared with techniques similar to the anticipated working conditions, is characterized by a high detonation velocity (up to 7300 m/s), low sensitivity for mechanical factors (10 J, 288 N), and a small critical diameter (3.3 mm). The developed PBX based on a silicone binder demonstrated grain fragmentation, recrystallization, and an increase in the surface hardness of S235JR steel, which was confirmed with SEM, EBSD, microstructure analysis, and microhardness studies. Full article
Show Figures

Figure 1

16 pages, 19307 KiB  
Article
Advancing the Multifaceted Performance of Chemical-Grafted Silicone Rubbers via Molecular Simulation
by Yu Zou and Weifeng Sun
Polymers 2025, 17(10), 1308; https://doi.org/10.3390/polym17101308 - 11 May 2025
Viewed by 401
Abstract
The present study explores and verifies the chemical modifications achieved by grafting 4-formylcyclohexyl heptanoate (FH) and 4-(2,5-dioxopyrrolidin-1-yl) cyclohexane-1-carbaldehyde (CC) onto addition-curing silicone rubber (SiR). These modifications aim to enhance the electrical insulation performance, moisture resistance, and pyrolysis tolerance of the SiR material, thereby [...] Read more.
The present study explores and verifies the chemical modifications achieved by grafting 4-formylcyclohexyl heptanoate (FH) and 4-(2,5-dioxopyrrolidin-1-yl) cyclohexane-1-carbaldehyde (CC) onto addition-curing silicone rubber (SiR). These modifications aim to enhance the electrical insulation performance, moisture resistance, and pyrolysis tolerance of the SiR material, thereby improving its suitability for reinforced insulation in power transmission systems. First-principles calculations demonstrate that both the chemical graft modifications can introduce shallow hole traps of 0.3~0.4 eV and deep electron traps of 0.9~1.0 eV into the polymer molecule of addition-curing SiR for inhibiting charge transport and injection. It is indicated from first-principles oxidation reaction pathways that the chemical grafting of FH or CC contributes positively, rather than impacts negatively, to the oxidative stability of addition-curing SiR. We also reveal how the two proposed species of organic molecules as grafting agents can act on modifying water adsorption uptake, heat capacity, molecular thermal vibration, and polymer pyrolysis of the SiR material, which are highly accountable for its resistances to high-temperature electrical breakdown, moisture aging, and thermal spikes of partial discharge. The comprehensive molecular simulations and material calculations demonstrate that both the grafted agents can significantly intensify polymer molecule aggregations, restrain molecular thermal vibrations, and reduce water adsorption uptakes. One of the preferable graft agents (CC) can also considerably improve polymer pyrolysis tolerance, while contributing to improved high-temperature electrical breakdown strength and moisture resistance of addition-curing SiR. This research highlights the significant potential of graft modification in molecular compositions to improve the electrical insulation, moisture resistance, ambient-temperature thermal stability, and pyrolysis tolerance of addition-curing SiR, offering valuable insights to develop competent elastomeric polymer applied for cable accessory insulation. Full article
(This article belongs to the Special Issue Simulation and Calculation of Polymer Composite Materials)
Show Figures

Figure 1

17 pages, 8548 KiB  
Article
A High-Temperature-Resistant and Conductive Flexible Silicone Rubber with High Phenyl Content Based on Silver-Coated Glass Fibers
by Ao Liu, Linlin Ouyang, Depeng Gong and Chaocan Zhang
Polymers 2025, 17(9), 1187; https://doi.org/10.3390/polym17091187 - 27 Apr 2025
Cited by 1 | Viewed by 781
Abstract
To enhance the high-temperature resistance of silicone rubber and meet the application requirements of flexible conductive silicone rubber under elevated temperature conditions, this study adopts a chemical modification strategy by introducing phenyl groups into the molecular chains of silicone rubber to improve its [...] Read more.
To enhance the high-temperature resistance of silicone rubber and meet the application requirements of flexible conductive silicone rubber under elevated temperature conditions, this study adopts a chemical modification strategy by introducing phenyl groups into the molecular chains of silicone rubber to improve its thermal resistance. High-phenyl-content hydroxyl-terminated silicone oil (MPPS) was used as the polymer backbone, and vinylmethyldimethoxysilane (VDMS) served as the chain extender. Through a silanol condensation reaction, vinylmethylphenyl polysiloxane (VMPPS) with a crosslinkable structure was synthesized, providing reactive sites for subsequent vulcanization and molding. Subsequently, needle-like silver-coated glass fiber (AGF) conductive fillers were prepared via a green and environmentally friendly electroless silver plating method. These fillers were incorporated into the phenyl polysiloxane matrix to impart electrical conductivity to the phenyl silicone rubber while synergistically enhancing its thermal resistance. Finally, thermally resistant conductive silicone rubber was fabricated through high-temperature vulcanization, and the key properties of the material were systematically characterized. The synthesized phenyl polysiloxane exhibited a number-averaged molecular weight of up to 181,136, with a PDI of 2.43. When the loading of AGF reached 25 phr, the phenyl silicone rubber composite achieved the electrical percolation threshold, exhibiting a conductivity of 7.12 S/cm. With a further increase in AGF content to 35 phr, the composite demonstrated excellent thermal stability, with a 5% weight loss temperature of 478 °C and a residual mass of 37.36% at 800 °C. Moreover, after thermal aging at 100 °C for 72 h, the conductivity degradation of the phenyl silicone rubber was significantly lower than that of commercial silicone rubber, indicating outstanding electrical stability. This study provides an effective approach for the application of flexible electronic materials under extreme thermal environments. Full article
Show Figures

Figure 1

Back to TopTop