Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves
Abstract
1. Introduction
2. Structural Design and Calculation Method
2.1. Structural Design
2.2. Phononic Crystal Theory and Calculation Method
2.3. Mesh Convergence of FEM
2.4. Method Verification
3. Comparison of Bandgap Characteristics for Various Core Configurations
4. Vibration Experiment
5. Results and Discussion
5.1. Band Curve Analysis
5.2. Transmission Response Analysis
5.3. Effects of Influencing Factors
5.3.1. Effect of Auxetic Core’s Porosity
5.3.2. Effect of Coating Material
5.3.3. Effect of Core Material
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Calibration of Material Properties
References
- Hayakawa, M.; Hattori, K.; Ohta, K. Monitoring of ULF (Ultra-Low-Frequency) Geomagnetic Variations Associated with Earthquakes. Sensors 2007, 7, 1108–1122. [Google Scholar] [CrossRef]
- Luo, Y.M.; He, C.; Tao, Z.; Hao, J.; Xu, H.H.; Zhang, Y.; Zhang, F.; Ren, X. A surface-wave seismic metamaterial filled with auxetic foam. Int. J. Mech. Sci. 2024, 262, 108715. [Google Scholar] [CrossRef]
- Kiggins, S.; Uang, C.M. Reducing residual drift of buckling-restrained braced frames as a dual system. Eng. Struct. 2006, 28, 1525–1532. [Google Scholar] [CrossRef]
- Yan, Y.; Laskar, A.; Cheng, Z.; Menq, F.; Tang, Y.; Mo, Y.L.; Shi, Z. Seismic isolation of two dimensional periodic foundations. J. Appl. Phys. 2014, 116, 044908. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.; Xie, Y. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 023001. [Google Scholar] [CrossRef]
- Kolken, H.M.A.; Zadpoor, A.A. Auxetic mechanical metamaterials. RSC Adv. 2017, 7, 5111–5129. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, S.H.; Wang, J.S. Disordered auxetic metamaterials architected by random peanut-shaped perturbations. Mater. Des. 2021, 212, 110291. [Google Scholar] [CrossRef]
- Liu, Y.X.; Dou, S.H.; Du, Y.P.; Liang, R.Z.; Yue, S.Y.; Zhao, L.X.; Liu, F.; Sun, Z.Y.; Yang, J. Enhanced broadband low-frequency performance of negative Poisson’s ratio metamaterials with added mass. Sci. Rep. 2025, 15, 13838. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Fan, Y.L.; Yang, J.S.; Wu, Y.; Dai, G.H. A new cylindrical acoustic metamaterial for low-frequency vibration attenuation. Structures 2025, 75, 108867. [Google Scholar] [CrossRef]
- Han, S.H.; Han, Q.; Ma, N.F.; Li, C.L. Design and reinforcement-learning optimization of re-entrant cellular metamaterials. Thin-Walled Struct. 2023, 191, 111071. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.X. Low frequency bandgap and high stiffness of innovative auxetic metamaterial with negative thermal expansion. Thin-Walled Struct. 2024, 201, 112010. [Google Scholar] [CrossRef]
- Lymperopoulos, P.N.; Theotokoglou, E.E. Numerical analyses of pentamodes metamaterials behavior under harmonic loading conditions. Eur. J. Mech. A/Solids 2025, 111, 105536. [Google Scholar] [CrossRef]
- Alderson, K.L.; Pickles, A.P.; Neale, P.J.; Evans, K.E. Auxetic polyethylene: The effect of a negative poisson’s ratio on hardness. Acta Metall. Mater. 1994, 42, 2261–2266. [Google Scholar] [CrossRef]
- Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038–1040. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Z.L.; Fu, X.J. Negative refraction realized by band folding effect in resonator-based acoustic metamaterials. Phys. Lett. A 2015, 379, 2097–2101. [Google Scholar] [CrossRef]
- Jia, G.F.; Shi, Z.F. A new seismic isolation system and its feasibility study. Earthq. Eng. Eng. Vib. 2010, 9, 75–82. [Google Scholar] [CrossRef]
- Mandolesi, B.; Iandiorio, C.; Belardi, V.G.; Vivio, F. Spinodal decomposition-inspired metamaterial: Tailored homogenized elastic properties via the dimensionless Cahn-Hilliard equation. Eur. J. Mech. A/Solids 2025, 112, 105615. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, H.Y.; Yan, L.W.; Huang, J.Z.; Liang, Y.J. Mechanical properties of homogeneous and functionally graded spinodal structures. Int. J. Mech. Sci. 2024, 269, 109043. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Zhao, Y.H. Sound absorption characteristics of the metamaterial with stochastic parameters. Int. J. Mech. Sci. 2025, 287, 109929. [Google Scholar] [CrossRef]
- Chen, Y.F.; Guo, D.; Li, Y.F.; Li, G.Y.; Huang, X.D. Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization. Ultrasonics 2019, 94, 419–429. [Google Scholar] [CrossRef]
- Hsu, J.C.; Wu, T.T. Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl. Phys. Lett. 2007, 90, 201904. [Google Scholar] [CrossRef]
- Chu, J.M.; Zhou, G.J.; Liang, X.; Liang, H.F.; Yang, Z.; Chen, T. A metamaterial for low-frequency vibration damping. Mater. Today Commun. 2023, 36, 106464. [Google Scholar] [CrossRef]
- Achaoui, Y.; Antonakakis, T.; Brûlé, S.; Craster, R.V.; Enoch, S.; Guenneau, S. Clamped seismic metamaterials: Ultra-low frequency stop bands. New J. Phys. 2017, 19, 063022. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, X.X.; Mao, Y.W.; Zhu, Y.Y.; Yang, Z.Y.; Chan, C.T.; Sheng, P. Locally Resonant Sonic Materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.J.; Zeng, Y.; Xu, Y.; Yang, H.W.; Zeng, Z.X. H-fractal seismic metamaterial with broadband low-frequency bandgaps. J. Phys. D Appl. Phys. 2018, 51, 105104. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Yang, J.S.; Tong, L.L.; Li, S.; Liu, Q.; Hou, G.L.; Sun, P.D.; Xing, M.; Zheng, G. Study on vibration damping performance of a petal-shaped seismic metamaterial. Structures 2023, 56, 104898. [Google Scholar] [CrossRef]
- Yan, Y.; Cheng, Z.; Menq, F.; Mo, Y.L.; Tang, Y.; Shi, Z. Three dimensional periodic foundations for base seismic isolation. Smart Mater. Struct. 2015, 24, 075006. [Google Scholar] [CrossRef]
- Jain, S.; Pujari, S.; Laskar, A. Investigation of one dimensional multi-layer periodic unit cell for structural base isolation. Structures 2021, 34, 2151–2163. [Google Scholar] [CrossRef]
- Gao, Y.T.; Wang, H. Comparative investigation of full bandgap behaviors of perforated auxetic metaconcretes with or without soft filler. Mater. Today Commun. 2024, 38, 108526. [Google Scholar] [CrossRef]
- Fei, X.; Jin, L.; Zhang, X.J.; Li, X.; Lu, M.H. Three-dimensional anti-chiral auxetic metamaterial with tunable phononic bandgap. Appl. Phys. Lett. 2020, 116, 021902. [Google Scholar] [CrossRef]
- Ungureanu, B.; Achaoui, Y.; Enoch, S.; Brûlé, S.; Guenneau, S. Auxetic-like metamaterials as novel earthquake protections. EPJ Appl. Metamater. 2015, 2, 17. [Google Scholar] [CrossRef]
- Martelli, A.; Forni, M. Seismic isolation and other antiseismic systems: Recent applications in Italy and worldwide. Seism. Isol. Prot. Syst. 2010, 1, 75–123. [Google Scholar] [CrossRef]
- Zeng, Y.; Peng, P.; Du, Q.J.; Wang, Y.S.; Assouar, B. Subwavelength seismic metamaterial with an ultra-low frequency bandgap. J. Appl. Phys. 2020, 128, 014901. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, Y.; Deng, K.K.; Zeng, Z.X.; Yang, H.W.; Muzamil, M.; Du, Q.J. Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space. J. Appl. Phys. 2018, 123, 214901. [Google Scholar] [CrossRef]
- Huang, T.T.; Ren, X.; Zeng, Y.; Zhang, Y.; Luo, C.; Zhang, X.Y.; Xie, Y.M. Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves. Eng. Struct. 2021, 246, 112976. [Google Scholar] [CrossRef]
- Li, P.F.; Yang, F.; Zhao, M.; Du, Z.L.; Fan, H.L. A new seismic metamaterial design with ultra-wide low-frequency wave suppression band utilizing negative Poisson’s ratio material. Eng. Struct. 2024, 319, 118821. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, S.H.; Qin, Q.H.; Wang, H. Tunable compressive properties of a novel auxetic tubular material with low stress level. Thin-Walled Struct. 2021, 164, 107882. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Y.; Wang, H. Deformation and energy absorption characteristics of graded auxetic metamaterials featuring peanut-shaped perforations under in-plane compression. Int. J. Solids Struct. 2025, 313, 113318. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, D.; Dong, Q.; Wang, H. Bending resistance and transverse energy absorption behaviors of auxetic tubes with orthogonal pattern of peanut-shaped perforations. Mech. Adv. Mater. Struct. 2025, 1–14. [Google Scholar] [CrossRef]
- Choi, H.; Min, B.-K.; Joo, S.-J.; Kim, B.-S.; Lee, K.; Kang, H.; Sim, Y.H.; Yun, M.J.; Lee, D.Y.; Cha, S.I. Partially Air-Filled Skin-Attachable Deformable Gasket with Negative Poisson’s Ratio for Highly-Efficient Stretchable Thermoelectric Generators. Adv. Energy Mater. 2023, 13, 2301252. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Y.; Meng, Z.; Liang, M.; Wan, Z.; Šavija, B. Peanut shaped auxetic cementitious cellular composite (ACCC). Constr. Build. Mater. 2024, 419, 135539. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Cai, X.; Xu, Z.; Wen, Y. Cyclic behavior of ellipse and peanut-shaped perforated buckling-restrained braces. Eng. Struct. 2023, 291, 116432. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Cai, X.; Wen, Y.; Wang, P. Hysteresis behavior of Auxetic Perforated Steel Plate Shear Walls with elliptical and peanut-shaped cutouts. J. Build. Eng. 2023, 79, 107875. [Google Scholar] [CrossRef]
- Gao, Y.T.; Chang, Y.F.; Bai, Y.; Wang, H. Ultra-wide low-frequency bandgap characteristics of auxeticity-based composite resonator for elastic wave manipulation and machine learning-based inverse structural design. Mater. Today Commun. 2024, 41, 111049. [Google Scholar] [CrossRef]
- Cheng, Z.B.; Shi, Z.F. Novel composite periodic structures with attenuation zones. Eng. Struct. 2013, 56, 1271–1282. [Google Scholar] [CrossRef]
- Liu, Y.F.; Huang, J.K.; Li, Y.G.; Shi, Z.F. Trees as large-scale natural metamaterials for low-frequency vibration reduction. Constr. Build. Mater. 2019, 199, 737–745. [Google Scholar] [CrossRef]
1000 | 100 | 800 | 1000 | 40 | 160 | 200 |
Material | ||||||
Concrete | 4 × 104 | 0.300 | 2500 | |||
Rubber | 0.1175 | 0.469 | 1300 | |||
Steel | 2.07 × 105 | 0.300 | 7784 |
100 | 10 | 80 | 50 | 7.5 | 30 |
Material | |||||
Epoxy resin | 1620 | 0.300 | 1835 | ||
Rubber | 4.28 | 0.469 | 1185 | ||
Steel | 2.07 × 105 | 0.300 | 7850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Wang, H. Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves. Materials 2025, 18, 2857. https://doi.org/10.3390/ma18122857
Gao Y, Wang H. Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves. Materials. 2025; 18(12):2857. https://doi.org/10.3390/ma18122857
Chicago/Turabian StyleGao, Yating, and Hui Wang. 2025. "Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves" Materials 18, no. 12: 2857. https://doi.org/10.3390/ma18122857
APA StyleGao, Y., & Wang, H. (2025). Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves. Materials, 18(12), 2857. https://doi.org/10.3390/ma18122857