A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Elastomer Characteristics
2.2. Bacterial Species and Culture Conditions Used
2.3. Sample Preparation and Antibacterial Activity Test
2.4. Statistical Analysis
3. Results
3.1. Silicone Elastomers
3.2. Rubber Elastomers
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joseph, B.; Otta, S.K.; Karunasagar, I.; Karunasagar, I. Biofilm formation by salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. J. Food Microbiol. 2001, 64, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Ivers, C.; Kaya, E.C.; Yucel, U.; Boyle, D.; Trinetta, V. Evaluation of Salmonella biofilm attachment and hydrophobicity characteristics on food contact surfaces. BMC Microbiol. 2024, 24, 387. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry-A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Haktaniyan, M.; Bradley, M. Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev. 2022, 51, 8584–8611. [Google Scholar] [CrossRef]
- Alarifi, I.M. A comprehensive review on advancements of elastomers for engineering applications. Adv. Ind. Eng. Polym. Res. 2023, 6, 451–464. [Google Scholar] [CrossRef]
- Meroni, G.; Sora, V.; Zaghen, F.; Laterza, G.; Martino, P.A.; Zecconi, A. Innovative Elastomers with Antimicrobial Activity May Decrease Infection Risks during Milking. Pathogens 2023, 12, 1431. [Google Scholar] [CrossRef] [PubMed]
- Polívková, M.; Hubáček, T.; Staszek, M.; Švorčík, V.; Siegel, J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017, 18, 419. [Google Scholar] [CrossRef]
- Iyigundogdu, Z.; Basar, B.; Couvreur, R.; Tamrakar, S.; Yoon, J.; Ersoy, O.G.; Sahin, F.; Mielewski, D.; Kiziltas, A. Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility applications. Compos. Part B Eng. 2022, 242, 110060. [Google Scholar] [CrossRef]
- Schwartz, J.R. Zinc Pyrithione: A Topical Antimicrobial With Complex Pharmaceutics. J. Drugs Dermatol. 2016, 15, 140–144. [Google Scholar]
- Turner, R.D.; Wingham, J.R.; Paterson, T.E.; Shepherd, J.; Majewski, C. Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts. Sci. Rep. 2020, 10, 892. [Google Scholar] [CrossRef]
- Pittol, M.; Tomacheski, D.; Simões, D.N.; Ribeiro, V.F.; Santana, R.M.C. Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Mater. Res. 2017, 20, 1266–1273. [Google Scholar] [CrossRef]
- Han, J.; Aljahdali, N.; Zhao, S.; Tang, H.; Harbottle, H.; Hoffmann, M.; Frye, J.G.; Foley, S.L. Infection biology of Salmonella enterica. EcoSal Plus 2024, 12, eesp-0001-2023. [Google Scholar] [CrossRef] [PubMed]
- Holzhauer, M.; Wennink, G.J. Zoonotic risks of pathogens from dairy cattle and their milk-borne transmission. J. Dairy Res. 2023, 90, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Mkangara, M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. Int. J. food Sci. 2023, 2023, 8899596. [Google Scholar] [CrossRef]
- Pappa, O.; Chochlakis, D.; Sandalakis, V.; Dioli, C.; Psaroulaki, A.; Mavridou, A. Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates-A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 5809. [Google Scholar] [CrossRef]
- Fang, Z.; Zhou, X.; Liao, H.; Xu, H. A meta-analysis of Legionella pneumophila contamination in hospital water systems. Am. J. Infect. Control 2023, 51, 1250–1262. [Google Scholar] [CrossRef]
- Materials and Articles in Contact with Foodstuffs-Plastics Substances Subject to Limitation. UNI EN 13130-1:2005; UNI—Ente Italiano di Normazione: Milano, Italy, 2005.
- Gharibnavaz, M.; Arash, V.; Pournajaf, A.; Najafi, F.; Rahmati Kamel, M.; Seyedmajidi, S. Study on the Antibacterial Properties and Optical Characteristics of Clear Orthodontic Aligners Coated With Zinc Oxide and Magnesium Oxide Nanoparticles. Orthod. Craniofac. Res. 2025, 28, 496–506. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces 2013, 5, 3867–3874. [Google Scholar] [CrossRef]
- Li, T.; Su, Y.; Wang, D.; Mao, Y.; Wang, W.; Liu, L.; Wen, S. High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. Int. J. Biol. Macromol. 2022, 195, 449–455. [Google Scholar] [CrossRef]
- Tian, X.; Lu, Z.; Ma, C.; Wu, M.; Zhang, C.; Yuan, Y.; Yuan, X.; Xie, D.; Liu, C.; Guo, J. Antimicrobial hydroxyapatite and its composites for the repair of infected femoral condyle. Mater. Sci. Eng. C 2021, 121, 111807. [Google Scholar] [CrossRef]
- Xu, Y.; Su, Y.; Xu, X.; Arends, B.; Zhao, G.; Ackerman, D.N.; Huang, H.; Reid, S.P.; Santarpia, J.L.; Kim, C.; et al. Porous liquid metal–elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Sci. Adv. 2024, 9, eadf0575. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Quiroz, C.; Botero, L.E.; Zárate-Triviño, D.; Acevedo-Yepes, N.; Escobar, J.S.; Pérez, V.Z.; Cruz Riano, L.J. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020, 24, 13. [Google Scholar] [CrossRef] [PubMed]
- Sehmi, S.K.; Lourenco, C.; Alkhuder, K.; Pike, S.D.; Noimark, S.; Williams, C.K.; Shaffer, M.S.P.; Parkin, I.P.; MacRobert, A.J.; Allan, E. Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores. ACS Infect. Dis. 2020, 6, 939–946. [Google Scholar] [CrossRef]
- Latko-Durałek, P.; Rzempołuch, J.; Staniszewska, M.; Rosłoniec, K.; Bil, M.; Kozera, R.; Boczkowska, A. The Antifungal Fibers of Polyamide 12 Containing Silver and Metal Oxides. Materials 2023, 16, 5837. [Google Scholar] [CrossRef]
- Montagna, M.T.; Tatò, D.; Napoli, C.; Castiglia, P.; Guidetti, L.; Liguori, G.; Petti, S.; Tanzi, M.L. Pilot study on the presence of Legionella spp in 6 Italian cities’ dental units. Ann. Ig. 2006, 18, 297–303. [Google Scholar]
- Veronesi, L.; Capobianco, E.; Affanni, P.; Pizzi, S.; Vitali, P.; Tanzi, M.L. Legionella contamination in the water system of hospital dental settings. Acta Biomed. 2007, 78, 117–122. [Google Scholar] [PubMed]
- Scaturro, M.; Girolamini, L.; Pascale, M.R.; Mazzotta, M.; Marino, F.; Errico, G.; Monaco, M.; Girolamo, A.; Rota, M.C.; Ricci, M.L.; et al. Case Report: First Report of Fatal Legionella pneumophila and Klebsiella pneumoniae Coinfection in a Kidney Transplant Recipient. Front. Med. 2022, 9, 912649. [Google Scholar] [CrossRef]
- Gamage, S.D.; Ambrose, M.; Kralovic, S.M.; Roselle, G.A. Water Safety and Legionella in Health Care: Priorities, Policy, and Practice. Infect. Dis. Clin. N. Am. 2016, 30, 689–712. [Google Scholar] [CrossRef]
- De Giglio, O.; D’Ambrosio, M.; Calia, C.; Spagnuolo, V.; Oliva, M.; Lopuzzo, M.; Apollonio, F.; Triggiano, F.; Diella, G.; Scaturro, M.; et al. Case series study of nosocomial Legionnaires’ disease in Apulia region (southern Italy): The role of different molecular methods in identifying the infection source. Acta Biomed. 2023, 94, e2023217. [Google Scholar] [CrossRef]
- La Sorda, M.; Palucci, I.; Natalini, D.; Fillo, S.; Giordani, F.; Paglione, F.; Monte, A.; Lista, F.; Mancini, F.; Girolamo, A.; et al. Case report: First report of Legionella pneumophila and Bordetella bronchiseptica coinfection in an immunocompromised patient. Front. Med. 2024, 11, 1470567. [Google Scholar] [CrossRef]
- Durando, P.; Orsi, A.; Alicino, C.; Tinteri, C.; Di Bella, A.; Parodi, M.C.; Marchese, A.; Gritti, P.R.; Fontana, S.; Rota, M.C.; et al. A Fatal Case of Nosocomial Legionnaires’ Disease: Implications From an Extensive Environmental Investigation and Isolation of the Bacterium From Blood Culture. Infect. Control Hosp. Epidemiol. 2015, 36, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
Main Components | Acronym (In Tables) |
---|---|
Silicon rubber (CAS 63394-02-5) 95–99% Dicumyl peroxide (CAS 80-43-3) 0.3–1.2% 2.5-Dimethyl-2,5-di(tert-butylperox) hexane (CAS 78-63-7) 0.3–1.2% | CONTROL |
Silicon rubber (CAS 63394-02-5) 95–99% Dicumyl peroxide (CAS 80-43-3) 0.3–1.2% 2.5-Dimethyl-2,5-di(tert-butylperox) hexane (CAS 78-63-7) 0.3–1.2% Effectiveness accelerators: Zinc oxide (CAS 1314-13-2) 1–5% Magnesium oxide (CAS 1309-48-4) 1–5% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | VQM105 |
Silicon rubber (CAS 63394-02-5) 95–99% Dicumyl peroxide (CAS 80-43-3) 0.3–1.2% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | VQM500D |
Silicon rubber (CAS 63394-02-5) 95–99% 2.5-Dimethyl-2,5-di(tert-butylperox) hexane (CAS 78-63-7) 0.3–1.2% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | VQM500L |
Silicon rubber (CAS 63394-02-5) 95–99% Dicumyl peroxide (CAS 80-43-3) 0.3–1.2% Effectiveness accelerators: Zinc oxide (CAS 1314-13-2) 1–5% Magnesium oxide (CAS 1309-48-4) 1–5% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | VQM561D |
Silicon rubber (CAS: 63394-02-5) 95–99% 2.5-Dimethyl-2,5-di(tert-butylperox) hexane (CAS 78-63-7) 0.3–1.2% Effectiveness accelerators: Zinc oxide (CAS 1314-13-2) 1–5% Magnesium oxide (CAS 1309-48-4) 1–5% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | VQM561L |
Main Components | Acronym (In Tables) |
---|---|
Ethylene-propylene-diene polymer (CAS 25038-36-2) 35–45% Carbon black (CAS 1333-86-4) 25–35% Residual oils (CAS 64742-01-4) 5–8% Magnesium oxide (CAS 1309-48-4) 1–5% Zinc oxide (CAS 1314-13-2) 0–2% Poly(1,2-dihydro-2,2,4-trimethylquinoline) (CAS 26780-96-1) 0.5–1% bis(tert-butyldioxyisopropyl) benzene (CAS 25155-25-3) 1–2% Triallyl cyanurate (CAS 101-37-1) 0.5–1% | OMCONT |
Ethylene-propylene-diene polymer (CAS 25038-36-2) 35–45% Carbon black (CAS 1333-86-4) 25–35% Residual oils (CAS 64742-01-4) 5–8% Magnesium oxide (CAS 1309-48-4) 1–5% Zinc oxide (CAS 1314-13-2) 0–2% Poly(1,2-dihydro-2,2,4-trimethylquinoline) (CAS 26780-96-1) 0.5–1% bis(tert-butyldioxyisopropyl) benzene (CAS 25155-25-3) 1–2% Triallyl cyanurate (CAS 101-37-1) 0.5–1% Effectiveness accelerators: Zinc oxide (CAS 1314-13-2) 1–5% Magnesium oxide (CAS 1309-48-4) 1–5% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS-308069-39-8) Zinc pyrithione (CAS 13463-41-7) | NBROM |
Ethylene-propylene-diene polymer (CAS 25038-36-2) 40–50% Silica gel (CAS 112926-00-8) 15–20% Kaolin (CAS 92704-41-1) 2–6% Carbon black (CAS 1333-86-4) 25–35% Paraffin oil (CAS 97862-82-3) 17–21% Magnesium oxide (CAS 1309-48-4) 0–2% Polyethylene glycol (CAS 25322-68-3) 1–3% Zinc oxide (CAS 1314-13-2) 1–3% Stearic acid (CAS 57-11-4) 0.1–1% 2,2′-Dithiobis(benzothiazole) (CAS 120-78-5) 0.1–1% Tetramethylthiuram Disulfide (CAS 137-26-8) 0.1–1% Rubber Accelerator Zdbc/Bz (CAS 136-23-2) 0.1–1% Sulfur (CAS 7704-34-9) 0.1–1% | CACONT |
Ethylene-propylene-diene polymer (CAS 25038-36-2) 40–50% Silica gel (CAS 112926-00-8) 15–20% Kaolin (CAS 92704-41-1) 2–6% Carbon black (CAS: 1333-86-4) 25–35% Paraffin oil (CAS 97862-82-3) 17–21% Magnesium oxide (CAS 1309-48-4) 0–2% Polyethylene glycol (CAS 25322-68-3) 1–3% Zinc oxide (CAS 1314-13-2) 1–3% Stearic acid (CAS 57-11-4) 0.1–1% 2,2′-Dithiobis(benzothiazole) (CAS 120-78-5) 0.1–1% Tetramethylthiuram Disulfide (CAS 137-26-8) 0.1–1% Rubber Accelerator Zdbc/Bz (CAS 136-23-2) 0.1–1% Sulfur (CAS 7704-34-9) 0.1–1% Effectiveness accelerators: Zinc oxide (CAS 1314-13-2) 1–5% Magnesium oxide (CAS 1309-48-4) 1–5% Antimicrobial additive 1%: Silver chloride (CAS 7783-90-6) Silver phosphate glass (CAS 308069-39-8) Zinc pyrithione (CAS 13463-41-7) | NBRCA |
Pathogen | Median Survival Rate (%) ± std.err. | Control vs. PAA Added p= | |||||
---|---|---|---|---|---|---|---|
CONTROL | VQM105 | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 88 ± 0.41 | 56 ± 0.71 | 0 ± 00 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 93 ± 0.11 | 58 ± 0.25 | 0 ± 0.00 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 98 ± 0.49 | 70 ± 1.86 | 27 ± 1.82 | 100 ± 0.00 | 86 ± 1.48 | 43 ± 2.61 | <0.0001 |
104 CFU/mL | 100 ± 0.00 | 68 ± 0.59 | 36 ± 0.65 | 100 ± 0.00 | 60 ± 0.77 | 0 ± 0.00 | <0.0001 |
CONTROL | VMQ500D | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 94 ± 0.17 | 71 ± 0.36 | 3 ± 0.16 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 88 ± 0.08 | 67 ± 0.13 | 5 ± 0.06 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 98 ± 0.49 | 70 ± 1.86 | 27 ± 1.82 | 96 ± 0.19 | 77 ± 0.54 | 14 ± 0.47 | n.s. |
104 CFU/mL | 100 ± 0.00 | 68 ± 0.59 | 36 ± 0.65 | 95 ± 0.07 | 85 ± 0.15 | 6 ± 0.11 | n.s. |
CONTROL | VMQ500L | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 91 ± 0.23 | 76 ± 0.39 | 3 ± 0.17 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 90 ± 0.07 | 75 ± 0.12 | 3 ± 0.07 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 98 ± 0.49 | 70 ± 1.86 | 27 ± 1.82 | 89 ± 0.32 | 75 ± 0.54 | 5 ± 0.25 | <0.0001 |
104 CFU/mL | 100 ± 0.00 | 68 ± 0.59 | 36 ± 0.65 | 91 ± 0.09 | 88 ± 0.14 | 4 ± 0.09 | <0.0001 |
CONTROL | VMQ561D | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 93 ± 0.20 | 84 ± 0.38 | 2 ± 0.17 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 93 ± 0.07 | 82 ± 0.13 | 10 ± 0.10 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 98 ± 0.49 | 70 ± 1.86 | 27 ± 1.82 | 93 ± 0.26 | 73 ± 0.53 | 9 ± 0.44 | <0.0001 |
104 CFU/mL | 100 ± 0.00 | 68 ± 0.59 | 36 ± 0.65 | 97 ± 0.06 | 66 ± 0.16 | 11 ± 0.21 | <0.0001 |
CONTROL | VMQ561L | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 100 ± 0.00 | 79 ± 0.57 | 7 ± 0.41 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 82 ± 0.10 | 85 ± 0.13 | 21 ± 0.13 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 98 ± 0.49 | 70 ± 1.86 | 27 ± 1.82 | 97 ± 0.00 | 91 ± 1.48 | 10 ± 2.61 | <0.0001 |
104 CFU/mL | 100 ± 0.00 | 68 ± 0.59 | 36 ± 0.65 | 97 ± 0.06 | 83 ± 0.16 | 17 ± 0.21 | <0.0001 |
Pathogen | Median Survival Rate (%) ± std.err. | Control vs. PAA Added p= | |||||
---|---|---|---|---|---|---|---|
OMCONT | NBROM | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 86 ± 0.40 | 54 ± 0.64 | 0 ± 0.00 | 91 ± 0.37 | 53 ± 0.74 | 0 ± 0.00 | <0.0001 |
104 CFU/mL | 71 ± 0.21 | 16 ± 0.17 | 0 ± 0.00 | 87 ± 0.16 | 51 ± 0.26 | 0 ± 0.00 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 93 ± 0.89 | 68 ± 1.93 | 14 ± 1.35 | 81 ± 0.86 | 65 ± 1.15 | 21 ± 0.85 | <0.0001 |
104 CFU/mL | 100 ± 0.00 | 62 ± 0.75 | 10 ± 0.42 | 95 ± 0.21 | 82 ± 0.45 | 16 ± 0.46 | <0.0001 |
CACONT | NBRCA | ||||||
L. pneumophila | T1 a | T2 | T3 | T1 | T2 | T3 | |
103 CFU/mL | 80 ± 0.53 | 82 ± 0.66 | 15 ± 0.54 | 91 ± 0.23 | 83 ± 0.39 | 3 ± 0.17 | <0.0001 |
104 CFU/mL | 97 ± 0.09 | 60 ± 0.31 | 71 ± 0.40 | 89 ± 0.07 | 83 ± 0.12 | 5 ± 0.07 | <0.0001 |
S. enteritidis | |||||||
103 CFU/mL | 93 ± 0.89 | 68 ± 1.93 | 14 ± 1.35 | 87 ± 1.02 | 78 ± 1.57 | 11 ± 1.13 | n.s. |
104 CFU/mL | 100 ± 0.00 | 62 ± 0.75 | 10 ± 0.42 | 70 ± 0.15 | 52 ± 0.16 | 1 ± 0.02 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesauro, M.; Sora, V.M.; Meroni, G.; Consonni, M.; Zaghen, F.; Laterza, G.; Martino, P.A.; Zecconi, A. A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis. Appl. Sci. 2025, 15, 5632. https://doi.org/10.3390/app15105632
Tesauro M, Sora VM, Meroni G, Consonni M, Zaghen F, Laterza G, Martino PA, Zecconi A. A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis. Applied Sciences. 2025; 15(10):5632. https://doi.org/10.3390/app15105632
Chicago/Turabian StyleTesauro, Marina, Valerio M. Sora, Gabriele Meroni, Michela Consonni, Francesca Zaghen, Giulia Laterza, Piera Anna Martino, and Alfonso Zecconi. 2025. "A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis" Applied Sciences 15, no. 10: 5632. https://doi.org/10.3390/app15105632
APA StyleTesauro, M., Sora, V. M., Meroni, G., Consonni, M., Zaghen, F., Laterza, G., Martino, P. A., & Zecconi, A. (2025). A Pilot Study on Novel Elastomers’ Antimicrobial Activity Against Legionella pneumophila and Salmonella Enteritidis. Applied Sciences, 15(10), 5632. https://doi.org/10.3390/app15105632