Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicone Films, Polyethylene Glycol, and Other Chemical Reagents
2.2. Formulation of COPESIL®
2.3. Bacterial Strains and Culture Conditions
2.4. In Vitro Evaluation of Antimicrobial Activity
2.5. In Vitro Evaluation of Antibiofilm Activity in a Custom Continuous Flow System
2.6. Cellular Cytotoxicity Assay
3. Results
3.1. Microstructural and Chemical Composition Analysis of COPESIL®
3.2. Antimicrobial Efficacy of COPESIL® Against Clinical Pathogens
3.3. Antibiofilm Efficacy of COPESIL®
3.4. Assessment of Cytotoxicity of COPESIL® in HepG2 Cells
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUM | Artificial urine medium |
CAUTIs | Catheter-associated urinary tract infections |
CFUs | Colony-forming units |
CRBSIs | Catheter-related bloodstream infections |
CuNPs | Copper nanoparticles |
EDS | Dispersive spectroscopy |
FBS | Fetal bovine serum |
HAIs | Healthcare-associated infections |
LB | Luria–Bertani |
OD595 | Optical density at 595 nm |
PBS | Phosphate-buffered saline |
PDMS | Poly(dimethylsiloxane) |
PEG | Polyethylene glycol |
PU | Polyurethane |
PVC | Polyvinylchloride |
TSA | Trypticase soy agar |
TSB | Trypticase soy broth |
UPEC | Uropathogenic Escherichia coli |
References
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of Endemic Health-Care-Associated Infection in Developing Countries: Systematic Review and Meta-Analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Arendsen, L.P.; Thakar, R.; Sultan, A.H. The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef]
- Umscheid, C.A.; Mitchell, M.D.; Doshi, J.A.; Agarwal, R.; Williams, K.; Brennan, P.J. Estimating the Proportion of Healthcare-Associated Infections That Are Reasonably Preventable and the Related Mortality and Costs. Infect. Control Hosp. Epidemiol. 2011, 32, 101–114. [Google Scholar] [CrossRef]
- Sikora, A.; Zahra, F. Nosocomial Infections; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shit, S.C.; Shah, P. A Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013, 36, 355–365. [Google Scholar] [CrossRef]
- Lawrence, E.L.; Turner, I.G. Materials for Urinary Catheters: A Review of Their History and Development in the UK. Med. Eng. Phys. 2005, 27, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Rezvani, E.; Prabhuraj, G. Silicone-Based Biomaterials for Biomedical Applications: Antimicrobial Strategies and 3D Printing Technologies. J. Appl. Polym. Sci. 2021, 138, 50969. [Google Scholar] [CrossRef]
- Andersen, M.J.; Flores-mireles, A.L. Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. Coatings 2020, 10, 23. [Google Scholar]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the Prevention of Intravascular Catheter-Related Infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar] [CrossRef]
- Frasca, D.; Dahyot-Fizelier, C.; Mimoz, O. Prevention of Central Venous Catheter-Related Infection in the Intensive Care Unit. Crit. Care 2010, 14, 1–8. [Google Scholar] [CrossRef]
- Trautner, B.W.; Darouiche, R.O. Catheter-Associated Infections. Arch. Intern. Med. 2004, 164, 842. [Google Scholar] [CrossRef]
- Andersen, M.J.; Fong, C.; La Bella, A.A.; Molina, J.J.; Molesan, A.; Champion, M.M.; Howell, C.; Flores-Mireles, A.L. Inhibiting Host Protein Deposition on Urinary Catheters Reduces Associated Urinary Tract Infections. Elife 2022, 11, e75798. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A Scope at Antifouling Strategies to Prevent Catheter-Associated Infections. Adv. Colloid Interface Sci. 2020, 284, 102230. [Google Scholar] [CrossRef]
- Neoh, K.G.; Li, M.; Kang, E.-T.; Chiong, E.; Tambyah, P.A. Surface Modification Strategies for Combating Catheter-Related Complications: Recent Advances and Challenges. J. Mater. Chem. B 2017, 5, 2045–2067. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Suleman, L.; Donelli, G. Healthcare-Associated Infections, Medical Devices and Biofilms: Risk, Tolerance and Control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef]
- Trautner, B.W.; Darouiche, R.O. Role of Biofilm in Catheter-Associated Urinary Tract Infection. Am. J. Infect. Control 2004, 32, 177–183. [Google Scholar] [CrossRef]
- Ricardo, S.I.C.; Anjos, I.I.L.; Monge, N.; Faustino, C.M.C.; Ribeiro, I.A.C. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect. Dis. 2020, 6, 3109–3130. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.; Marco, F.; Soriano, A.; Almela, M.; Martínez, J.A.; Pitart, C.; Mensa, J. Epidemiology and Prognostic Determinants of Bacteraemic Catheter-Acquired Urinary Tract Infection in a Single Institution from 1991 to 2010. J. Infect. 2013, 67, 282–287. [Google Scholar] [CrossRef]
- Hadjesfandiari, N.; Yu, K.; Mei, Y.; Kizhakkedathu, J.N. Polymer Brush-Based Approaches for the Development of Infection-Resistant Surfaces. J. Mater. Chem. B 2014, 2, 4968–4978. [Google Scholar] [CrossRef]
- Swierczewska, M.; Lee, K.C.; Lee, S. What Is the Future of PEGylated Therapies? Expert Opin. Emerg. Drugs 2015, 20, 531–536. [Google Scholar] [CrossRef]
- Park, K.D.; Kim, Y.S.; Han, D.K.; Kim, Y.H.; Lee, E.H.; Suh, H.; Choi, K.S. Bacterial Adhesion on PEG Modified Polyurethane Surfaces. Biomaterials 1998, 19, 851–859. [Google Scholar] [CrossRef]
- Francolini, I.; Silvestro, I.; Di Lisio, V.; Martinelli, A.; Piozzi, A. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers. Int. J. Mol. Sci. 2019, 20, 1001. [Google Scholar] [CrossRef] [PubMed]
- Kolewe, K.W.; Zhu, J.; Mako, N.R.; Nonnenmann, S.S.; Schiffman, J.D. Bacterial Adhesion Is Affected by the Thickness and Stiffness of Poly(Ethylene Glycol) Hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 2275–2281. [Google Scholar] [CrossRef]
- Gon, S.; Kumar, K.N.; Nüsslein, K.; Santore, M.M. How Bacteria Adhere to Brushy PEG Surfaces: Clinging to Flaws and Compressing the Brush. Macromolecules 2012, 45, 8373–8381. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Lo, J.C.Y.; Yan, M.; Yang, X.; Brooks, D.E.; Hancock, R.E.W.; Lange, D.; Kizhakkedathu, J.N. Anti-Adhesive Antimicrobial Peptide Coating Prevents Catheter Associated Infection in a Mouse Urinary Infection Model. Biomaterials 2017, 116, 69–81. [Google Scholar] [CrossRef]
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-Polymer Nanocomposites: An Excellent and Cost-Effective Biocide for Use on Antibacterial Surfaces. Mater. Sci. Eng. C 2016, 69, 1391–1409. [Google Scholar] [CrossRef]
- Ermini, M.L.; Voliani, V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano 2021, 15, 6008–6029. [Google Scholar] [CrossRef]
- Ingle, A.P.; Duran, N.; Rai, M. Bioactivity, Mechanism of Action, and Cytotoxicity of Copper-Based Nanoparticles: A Review. Appl. Microbiol. Biotechnol. 2014, 98, 1001–1009. [Google Scholar] [CrossRef]
- Montero, D.A.; Arellano, C.; Pardo, M.; Vera, R.; Gálvez, R.; Cifuentes, M.; Berasain, M.A.; Gómez, M.; Ramírez, C.; Vidal, R.M. Antimicrobial Properties of a Novel Copper-Based Composite Coating with Potential for Use in Healthcare Facilities. Antimicrob. Resist. Infect. Control 2019, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Thampi, V.V.A.; Thanka Rajan, S.; Anupriya, K.; Subramanian, B. Functionalization of Fabrics with PANI/CuO Nanoparticles by Precipitation Route for Anti-Bacterial Applications. J. Nanoparticle Res. 2015, 17, 1–12. [Google Scholar] [CrossRef]
- Laha, D.; Pramanik, A.; Laskar, A.; Jana, M.; Pramanik, P.; Karmakar, P. Shape-Dependent Bactericidal Activity of Copper Oxide Nanoparticle Mediated by DNA and Membrane Damage. Mater. Res. Bull. 2014, 59, 185–191. [Google Scholar] [CrossRef]
- Tamayo, L.A.; Zapata, P.A.; Rabagliati, F.M.; Azócar, M.I.; Muñoz, L.A.; Zhou, X.; Thompson, G.E.; Páez, M.A. Antibacterial and Non-Cytotoxic Effect of Nanocomposites Based in Polyethylene and Copper Nanoparticles. J. Mater. Sci. Mater. Med. 2015, 26, 1–5. [Google Scholar] [CrossRef]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial Activities of Biologically Synthesized Metal Nanoparticles: An Insight into the Mechanism of Action. J. Biol. Inorg. Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Okyere, D.; Manso, R.H.; Tong, X.; Chen, J. Stability of Polyethylene Glycol-Coated Copper Nanoparticles and Their Optical Properties. Coatings 2022, 12, 776. [Google Scholar] [CrossRef]
- Prociak, P.; Prociak, J.P.; Staroń, A.; Staroń, P.; Korzeniowska, A.C.; Drabik, A. Preparation and of PVA–Based Compositions with Embedded Silver, Copper and Zinc Oxide Nanoparticles and Assessment of Their Antibacterial Properties. J. Nanobiotechnology 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Giuffrida, S.; Costanzo, L.L.; Ventimiglia, G.; Bongiorno, C. Photochemical Synthesis of Copper Nanoparticles Incorporated in Poly(Vinyl Pyrrolidone). J. Nanoparticle Res. 2008, 10, 1183–1192. [Google Scholar] [CrossRef]
- Dabera, G.D.M.R.; Walker, M.; Sanchez, A.M.; Pereira, H.J.; Beanland, R.; Hatton, R.A. Retarding Oxidation of Copper Nanoparticles without Electrical Isolation and the Size Dependence of Work Function. Nat. Commun. 2017, 8, 1894. [Google Scholar] [CrossRef] [PubMed]
- Sehmi, S.K.; Noimark, S.; Weiner, J.; Allan, E.; MacRobert, A.J.; Parkin, I.P. Potent Antibacterial Activity of Copper Embedded into Silicone and Polyurethane. ACS Appl. Mater. Interfaces 2015, 7, 22807–22813. [Google Scholar] [CrossRef]
- Al-Qahtani, M.; Safan, A.; Jassim, G.; Abadla, S. Efficacy of Anti-Microbial Catheters in Preventing Catheter Associated Urinary Tract Infections in Hospitalized Patients: A Review on Recent Updates. J. Infect. Public Health 2019, 12, 760–766. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Li, S.; Yuan, X. Antimicrobial Strategies for Urinary Catheters. J. Biomed. Mater. Res.–Part A 2019, 107, 445–467. [Google Scholar] [CrossRef]
- Desai, D.G.; Liao, K.S.; Cevallos, M.E.; Trautner, B.W. Silver or Nitrofurazone Impregnation of Urinary Catheters Has a Minimal Effect on Uropathogen Adherence. J. Urol. 2010, 184, 2565–2571. [Google Scholar] [CrossRef]
- Ballo, M.K.S.; Rtimi, S.; Pulgarin, C.; Hopf, N.; Berthet, A.; Kiwi, J.; Moreillon, P.; Entenza, J.M.; Bizzini, A. In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus Aureus Infection. Antimicrob. Agents Chemother. 2016, 60, 5349–5356. [Google Scholar] [CrossRef]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.; Smith, E.F.; Fay, M.; Parmenter, C.D.J.; et al. Biomaterial Modification of Urinary Catheters with Antimicrobials to Give Long-Term Broadspectrum Antibiofilm Activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Sui, G.; Wang, J.; Lee, C.C.; Lu, W.; Lee, S.P.; Leyton, J.V.; Wu, A.M.; Tseng, H.R. Solution-Phase Surface Modification in Intact Poly(Dimethylsiloxane) Microfluidic Channels. Anal. Chem. 2006, 78, 5543–5551. [Google Scholar] [CrossRef]
- Gou, L.; Murphy, C.J. Controlling the Size of Cu2O Nanocubes from 200 to 25 Nm. J. Mater. Chem. 2004, 14, 735–738. [Google Scholar] [CrossRef]
- Brooks, T.; Keevil, C.W. A Simple Artificial Urine for the Growth of Urinary Pathogens. Lett. Appl. Microbiol. 1997, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H. The TcrB Gene Is Part of the TcrYAZB Operon Conferring Copper Resistance in Enterococcus Faecium and Enterococcus Faecalis. Microbiology 2005, 151, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Virieux-Petit, M.; Hammer-Dedet, F.; Aujoulat, F.; Jumas-Bilak, E.; Romano-Bertrand, S. From Copper Tolerance to Resistance in Pseudomonas Aeruginosa towards Patho-Adaptation and Hospital Success. Genes 2022, 13, 301. [Google Scholar] [CrossRef]
- González-Guerrero, M.; Raimunda, D.; Cheng, X.; Argüello, J.M. Distinct Functional Roles of Homologous Cu+ Efflux ATPases in Pseudomonas Aeruginosa. Mol. Microbiol. 2010, 78, 1246–1258. [Google Scholar] [CrossRef]
- Teitzel, G.M.; Geddie, A.; De Long, S.K.; Kirisits, M.J.; Whiteley, M.; Parsek, M.R. Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas Aeruginosa. J. Bacteriol. 2006, 188, 7242–7256. [Google Scholar] [CrossRef]
- Ding, R.; Xu, H.; Zhang, J.; Cai, Z.; Peng, P.; Zhang, Y.; Li, P. Copper-Phenolic Coating Constructed on Silicone Urinary Catheters to Prevent Catheter-Associated Infections. Mater. Today Commun. 2024, 39, 109162. [Google Scholar] [CrossRef]
- Dohnt, K.; Sauer, M.; Müller, M.; Atallah, K.; Weidemann, M.; Gronemeyer, P.; Rasch, D.; Tielen, P.; Krull, R. An in Vitro Urinary Tract Catheter System to Investigate Biofilm Development in Catheter-Associated Urinary Tract Infections. J. Microbiol. Methods 2011, 87, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Mersch-Sundermann, V.; Knasmüller, S.; Wu, X.J.; Darroudi, F.; Kassie, F. Use of a Human-Derived Liver Cell Line for the Detection of Cytoprotective, Antigenotoxic and Cogenotoxic Agents. Toxicology 2004, 198, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Silva, A.M.; Matos, M.; Monteiro, S.M.; Álvaro, A.R. Copper Induced Apoptosis in Caco-2 and Hep-G2 Cells: Expression of Caspases 3, 8 and 9, AIF and P53. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 185, 138–146. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Time (h) | Batch | Number of CFUs Recovered per Sample * | % Reduction Achieved by COPESIL ** | % Average Reduction (±SD) | |
---|---|---|---|---|---|---|
Silicone | COPESIL®-1 | |||||
E. coli Inoculum: 6 × 106–3 × 107 CFU | 2 | 1 | 2.25 × 107 | 1.63 × 104 | 99.9 | 81.8 (±25.6) |
2 | 3.88 × 106 | 1.41 × 106 | 63.7 | |||
4 | 1 | 4.50 × 106 | 4.15 × 105 | 90.8 | 95.3 (±6.4) | |
2 | 6.63 × 106 | 9.75 × 103 | 99.9 | |||
6 | 1 | 8.25 × 106 | <1 | >99.9 | >99.9 | |
2 | 6.75 × 106 | <1 | >99.9 | |||
K. pneumoniae Inoculum: 1 × 107–2 × 107 CFU | 2 | 1 | 7.50 × 106 | 1.13 × 106 | 84.9 | 76.2 (±12.4) |
2 | 9.38 × 106 | 3.06 × 106 | 67.4 | |||
4 | 1 | 1.13 × 107 | 9.38 × 104 | 99.2 | 81.5 (±25) | |
2 | 5.88 × 106 | 2.13 × 106 | 63.8 | |||
6 | 1 | 3.75 × 105 | 5.31 × 103 | 99.8 | 99.8 | |
2 | 3.50 × 106 | 7.50 × 102 | 99.8 | |||
E. faecalis Inoculum: 7 × 106–9 × 106 CFU | 2 | 1 | 8.75 × 106 | 1.94 × 106 | 77.8 | 59.1 (±6.4) |
2 | 8.38 × 106 | 5.00 × 106 | 40.3 | |||
4 | 1 | 7.50 × 106 | 3.19 × 106 | 57.5 | 56.0 (±6.4) | |
2 | 9.88 × 106 | 4.50 × 106 | 54.5 | |||
6 | 1 | 2.13 × 106 | 7.00 × 105 | 67.1 | 75.3 (±11.5) | |
2 | 4.75 × 106 | 7.88 × 105 | 83.4 | |||
P. aeruginosa Inoculum: 1 × 107–3 × 107 CFU | 2 | 1 | 2.00 × 107 | 6.56 × 106 | 67.2 | 69.6 (±3.3) |
2 | 1.26 × 107 | 3.54 × 106 | 71.9 | |||
4 | 1 | 2.13 × 107 | 9.05 × 106 | 55.4 | 77.7 (±31.5) | |
2 | 7.25 × 106 | 1.44 × 103 | >99.9 | |||
6 | 1 | 1.63 × 107 | 9.50 × 106 | 41.7 | 67.8 (±36.9) | |
2 | 1.69 × 107 | 1.02 × 106 | 94.0 |
Bacteria | Time (h) | Batch | Number of CFUs Recovered per Sample * | % Reduction Achieved by COPESIL ** | % Average Reduction (± SD) | |
---|---|---|---|---|---|---|
Silicone | COPESIL®-2 | |||||
E. coli Inoculum: 9 × 106–2 × 107 CFU | 2 | 1 | 1.60 × 106 | <1 | >99.9 | >99.9 |
2 | 1.50 × 106 | <1 | >99.9 | |||
4 | 1 | 1.76 × 106 | <1 | >99.9 | >99.9 | |
2 | 1.70 × 106 | <1 | >99.9 | |||
6 | 1 | 1.28 × 106 | <1 | >99.9 | >99.9 | |
2 | 1.00 × 106 | <1 | >99.9 | |||
K. pneumoniae Inoculum: 1.2 × 107–1.4 × 107 CFU | 2 | 1 | 1.21 × 107 | 1.13 × 106 | 90.7 | 69.9 (±29.4) |
2 | 7.25 × 106 | 3.69 × 106 | 49.1 | |||
4 | 1 | 1.41 × 107 | 9.63 × 105 | 93.2 | 87.8 (±7.7) | |
2 | 6.00 × 106 | 1.06 × 106 | 82.3 | |||
6 | 1 | 1.16 × 107 | 2.14 × 105 | 98.2 | 97.7 (±0.7) | |
2 | 5.25 × 106 | 1.47 × 105 | 97.2 | |||
E. faecalis Inoculum: 9.0 × 106–9.1 × 106 CFU | 2 | 1 | 8.75 × 106 | 3.69 × 106 | 57.8 | 43.9 (±19.7) |
2 | 7.50 × 106 | 5.25 × 106 | 30.0 | |||
4 | 1 | 1.38 × 107 | 4.00 × 106 | 71.0 | 67.8 (±4.6) | |
2 | 1.00 × 107 | 3.55 × 106 | 64.5 | |||
6 | 1 | 6.25 × 106 | 1.00 × 106 | 84.0 | 64.5 (±27.5) | |
2 | 5.50 × 105 | 3.02 × 105 | 45.1 | |||
P. aeruginosa Inoculum: 2.1 × 107–2.9 × 107 CFU | 2 | 1 | 3.75 × 107 | 5.88 × 106 | 84.3 | 62.7 (±30) |
2 | 1.59 × 107 | 9.38 × 106 | 41.0 | |||
4 | 1 | 3.88 × 107 | 1.10 × 107 | 71.6 | 85.6 (±19.7) | |
2 | 1.78 × 107 | 7.95 × 104 | 99.6 | |||
6 | 1 | 5.38 × 107 | 8.80 × 106 | 83.6 | 91.3 (±10.8) | |
2 | 5.63 × 105 | 6.38 × 103 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastén, S.R.; Quezada, C.P.; Arellano, C.; Vidal, R.M.; Escobar, A.; Alonso, F.; Villarroel, J.; Montero, D.A.; Paredes, M.C. Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications. Polymers 2025, 17, 1404. https://doi.org/10.3390/polym17101404
Pastén SR, Quezada CP, Arellano C, Vidal RM, Escobar A, Alonso F, Villarroel J, Montero DA, Paredes MC. Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications. Polymers. 2025; 17(10):1404. https://doi.org/10.3390/polym17101404
Chicago/Turabian StylePastén, Sara Ramírez, Carolina Paz Quezada, Carolina Arellano, Roberto M. Vidal, Alejandro Escobar, Faustino Alonso, Javier Villarroel, David A. Montero, and María C. Paredes. 2025. "Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications" Polymers 17, no. 10: 1404. https://doi.org/10.3390/polym17101404
APA StylePastén, S. R., Quezada, C. P., Arellano, C., Vidal, R. M., Escobar, A., Alonso, F., Villarroel, J., Montero, D. A., & Paredes, M. C. (2025). Antimicrobial Properties of a Novel PEGylated Copper Nanoparticle-Embedded Silicone Rubber with Potential for Use in Biomedical Applications. Polymers, 17(10), 1404. https://doi.org/10.3390/polym17101404