Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = silicone acrylates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 339
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation
by Ilze Aulika, Andrejs Ogurcovs, Meldra Kemere, Arturs Bundulis, Jelena Butikova, Karlis Kundzins, Emmanuel Bacher, Martin Laurenzis, Stephane Schertzer, Julija Stopar, Ales Zore and Roman Kamnik
Materials 2025, 18(14), 3287; https://doi.org/10.3390/ma18143287 - 11 Jul 2025
Viewed by 333
Abstract
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability [...] Read more.
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability to curved or flexible surfaces. To overcome these limitations, we developed OptoSkin—a novel tactile platform leveraging direct time-of-flight (ToF) LiDAR principles for robust contact and pressure detection. In this extended study, we systematically evaluate how key optical properties of waveguide materials affect ToF signal behavior and sensing fidelity. We examine a diverse set of materials, characterized by varying light transmission (82–92)%, scattering coefficients (0.02–1.1) cm−1, diffuse reflectance (0.17–7.40)%, and refractive indices 1.398–1.537 at the ToF emitter wavelength of 940 nm. Through systematic evaluation, we demonstrate that controlled light scattering within the material significantly enhances ToF signal quality for both direct touch and near-proximity sensing. These findings underscore the critical role of material selection in designing efficient, low-cost, and geometry-independent optical tactile systems. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

13 pages, 3366 KiB  
Article
Compatibility of Dual-Cure Core Materials with Self-Etching Adhesives
by Zachary K. Greene, Augusto A. Robles and Nathaniel C. Lawson
Dent. J. 2025, 13(7), 276; https://doi.org/10.3390/dj13070276 - 20 Jun 2025
Viewed by 378
Abstract
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. [...] Read more.
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. Methods: Extracted human molars were mounted in acrylic and ground flat with 320-grit silicon carbide paper. Next, 520 specimens (n = 10/group) were assigned to a dual-cure core buildup material group (10 amine-containing, 2 amine-free, and 1 reference light-cure only bulk fill flowable composite) and assigned to a self-etching adhesive subgroup (pH levels of approximately 1.0, 3.0, and 4.0). Within 4 h of surface preparation, the adhesive corresponding to the specimen’s subgroup was applied and light-cured. Composite buttons for the assigned dual-cure core material of each group were placed using a bonding clamp apparatus, allowed to self-cure for 2 h at 37 °C, and then unclamped. An additional group with one adhesive (pH = 3.0) was prepared in which the dual-cure core materials were light-cured. The bonded specimens were stored in water at 37 °C for 24 h. The specimens were mounted on a testing clamp and de-bonded in a universal testing machine with a load applied to a circular notched-edge blade at a crosshead speed of 1 mm/min until bond failure. The maximum load divided by the area of the button was recorded as the shear bond strength. The data was analyzed via 2-way ANOVA. Results: The analysis of bond strength via 2-way ANOVA determined statistically significant differences between the adhesives, the core materials, and their interaction (p < 0.01). There was a general trend in shear bond strength for the adhesives, where pH 4.0 > 3.0 > 1.0. The amine-free core materials consistently demonstrated higher shear bond strengths as compared to the other core materials when chemically cured only. Light-curing improved bond strength for some materials with perceived incompatibility. Conclusions: The results of this study suggest that an incompatibility can exist between self-etching adhesives and dual-cure resin composite core materials. A decrease in the pH of the utilized adhesive corresponded to a decrease in the bond strength of dual-cure core materials when self-curing. This incompatibility may be minimized with the use of core materials formulated with amine-free chemistry. Alternatively, the dual-cure core materials may be light-cured. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

27 pages, 7784 KiB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 535
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

16 pages, 4184 KiB  
Article
Low Shrinkage Transparent UV-Cured 3D Printing Hard Silicone Resins
by Haibo Wu, Qili Shen, Zhu Liu, Xiantai Zhou, Yanxiong Fang, Hongping Xiang and Xiaoxuan Liu
Polymers 2025, 17(8), 1123; https://doi.org/10.3390/polym17081123 - 21 Apr 2025
Viewed by 567
Abstract
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate [...] Read more.
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate silicone resins (LMDT-AE) and silicone oils (PDMS-AE) were synthesized through ring-opening hydrolysis-polycondensation. The structures of LMDT-AE and PDMS-AE, with varying AE contents (molar ratio of organic groups to silicon atoms), were characterized using FTIR, 1H NMR, 13C NMR, and GPC. Additionally, their physical properties, including viscosity, density, refractive index, and transparency, were thoroughly examined. The 3D-AE silicone resin composed of LMDT-AE-2.0 and PDMS-AE-20/1, in a mass ratio of 2:1, demonstrated superior mechanical properties, thermal stability, and curing shrinkage rate compared to other formulations. This curing silicone resin is capable of producing 3D physical entities with smooth surfaces and well-defined contours. It is shown that the successful preparation of transparent and high-strength UV-cured silicone resin based on free radical polymerization can provide a potential path for high-precision biological 3D printing. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

11 pages, 2290 KiB  
Article
A Tunable Sponge-like Lipophilic Gel with Branched Poly(2-propyl aspartamide) Crosslinkers for Enhanced VOC Absorption
by Sunggyu Shin, Naseul Jung, Hyewon Jeong, Eunjin Heo, Kyungsuk Cho and Jaehyun Jeong
Gels 2025, 11(4), 286; https://doi.org/10.3390/gels11040286 - 13 Apr 2025
Viewed by 549
Abstract
In this study, we present a sponge-like lipophilic gel crosslinked with a branched crosslinker as an absorbent for VOC removal. The gel was synthesized by crosslinking the monomer 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) with the branched crosslinker poly(2-propyl aspartamide) grafted methacrylate (PPA-g-MA). The grafted crosslinker, [...] Read more.
In this study, we present a sponge-like lipophilic gel crosslinked with a branched crosslinker as an absorbent for VOC removal. The gel was synthesized by crosslinking the monomer 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) with the branched crosslinker poly(2-propyl aspartamide) grafted methacrylate (PPA-g-MA). The grafted crosslinker, PPA-g-MA, was prepared by introducing acrylate groups as crosslinking moieties to the poly(succinimide) precursor for poly(2-propyl aspartamide) (PPA), which serves as a hydrophobic backbone. Lipophilic gels were synthesized with varying TMSPMA monomer concentrations and freeze-dried to form a porous structure. To evaluate VOC absorption, the toluene removal efficiency of the sponge-like lipophilic gel was tested in a continuous gas flow system. As a result, the optimal TMSPMA monomer content for maximizing toluene removal efficiency was determined. This result suggests that while an increase in silicon content generally enhances VOC removal efficiency, the porous structure of sponge-like lipophilic gels plays a more crucial role in absorption capacity. The collapse of the porous structure, caused by excessive silicon content making the material more rubber-like, explains why there exists an optimal monomer content for effective VOC absorption. Overall, these findings provide valuable insights for developing high-performance VOC absorbents. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

23 pages, 8456 KiB  
Article
Dual pH- and Temperature-Responsive Performance and Cytotoxicity of N-Isopropylacrylamide and Acrylic Acid Functionalized Bimodal Mesoporous Silicas with Core–Shell Structure and Fluorescent Feature for Hela Cell
by Huijie Ge, Xiaoli Wang, Shiyang Bai, Yuhua Bi, Fei Liu, Jihong Sun, Wenliang Fu and Donggang Xu
Pharmaceutics 2025, 17(2), 206; https://doi.org/10.3390/pharmaceutics17020206 - 6 Feb 2025
Viewed by 884
Abstract
Background: Polymer-coated mesoporous silica nanoparticles have attracted immense research interest in stimuli-responsive drug delivery systems due to their drug-releasing ability on demand at specific sites in response to external or internal signals. However, the relationships between the coated-copolymer encapsulation and drug delivery performance [...] Read more.
Background: Polymer-coated mesoporous silica nanoparticles have attracted immense research interest in stimuli-responsive drug delivery systems due to their drug-releasing ability on demand at specific sites in response to external or internal signals. However, the relationships between the coated-copolymer encapsulation and drug delivery performance in the hybrid nanocomposites was rarely reported. Therefore, the main objectives of the present work are to explore the cell uptake, cellular internalization, cytotoxicity, and hemolysis performance of the fluorescent hybrid materials with different polymer-encapsulated amounts. Methods: Using (2-(2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione)-doped poly[(N-isopropylacrylamide)-co-(acrylic acid)] (PAN) as a shell and bimodal mesoporous silicas (BMMs) as a core, the dual pH- and temperature-responsive mesoporous PAN@M-BMMs with the fluorescent performances were synthesized via a radical polymerization approach. The effects of the PAN-coated thicknesses on their physicochemical properties and structural features were demonstrated via XRD and SAXS patterns, SEM and TEM images, FT-IR spectra, and TG analysis. Their mass fractal (Dm) evolutions were elucidated on the basis of the SAXS patterns and fluorescence spectra. Results: The Dm values increased from 2.74 to 2.87 with an increase of the PAN-coated amount from 17 to 26.5% along with the particle size from 76.1 to 85.6 nm and blue-shifting of their fluorescent emission wavelength from 470 to 444 nm. Meanwhile, the PAN@M-BMMs exhibited a high ibuprofen (IBU) loading capacity (13.8%) and strong dual pH-/temperature-responsive drug-releasing performances (83.1%) at pH 7.4 and 25 °C, as comparison with that (17.9%) at pH 2.0 and 37 °C. The simulated results confirmed that the adsorption energy decreased from −67.18 kJ/mol for pure BMMs to −116.76 kJ/mol for PAN@M-BMMs, indicating the PAN-grafting on the surfaces of the BMMs core was beneficial to improve its IBU-adsorption capacity. Its uptake in the HeLa cell line was performed via microplate readers, confocal microscopy, flow cytometry, and ICP measurement, showing a low cytotoxicity at a concentration up to 100 µg/mL. Specially, P0.2AN@M-BMMs had a superior cellular uptake and fluorescence properties via the time-dependent uptake experiments, and exhibited the highest silicon content via the cellular internalization analysis, as compared to other carriers. Hemolysis tests confirmed the hemolysis rates below 5%. Conclusions: These demonstrations verified that PAN@M-BMMs should be a promising biomedical application prospect. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 - 1 Feb 2025
Cited by 1 | Viewed by 1044
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

18 pages, 2757 KiB  
Article
Nano-Titania Photocatalysis and Metal Doping to Deter Fungal Growth on Outdoor and Indoor Paint Surfaces Using UV and Fluorescent Light
by Kathryn A. Whitehead, Mark Brown, Lucia Caballero, Stephen Lynch, Michele Edge, Claire Hill, Joanna Verran and Norman S. Allen
Micro 2025, 5(1), 5; https://doi.org/10.3390/micro5010005 - 28 Jan 2025
Cited by 1 | Viewed by 1105
Abstract
This work determined the resistance of paint formulations containing TiO2 particles to fungal growth. Siloxane, acrylic and silicone paints were placed outdoors, and the fungal species growing thereon were recorded after 3, 6 and 9 months. In addition, three paint types containing [...] Read more.
This work determined the resistance of paint formulations containing TiO2 particles to fungal growth. Siloxane, acrylic and silicone paints were placed outdoors, and the fungal species growing thereon were recorded after 3, 6 and 9 months. In addition, three paint types containing TiO2 with/without biocide were inoculated with fungal spores and irradiated using UV. Acrylic paints were also doped with different metals and were inoculated and incubated under fluorescent light. Following outdoor incubation, the silicone paint was the least colonised by different fungal species. The species most recovered from the surfaces were Aspergillus spp. and Penicillium spp. Following UV irradiation on different paints containing biocide and/or a photocatalyst, no fungal growth was demonstrated on some of the paint combinations. When the paint samples were doped with different metals and incubated using light, the sample most efficient at preventing fungal growth contained lanthanum (0.004%). The paint samples containing praseodymium (light:1.72) facilitated the densest fungal colonies. Most of the surfaces demonstrated heterogeneous coverage by the fungi. The most clustered fungal colonisation was on surfaces incubated in the light. This work demonstrated that fungal colonisation on paints changed over time and that the antimicrobial efficacy of TiO2 was affected by the chemical composition, biocide and doping of the paint. Full article
Show Figures

Figure 1

22 pages, 1557 KiB  
Review
Innovative Polymeric Biomaterials for Intraocular Lenses in Cataract Surgery
by Kevin Y. Wu, Rebecca Khammar, Hafsah Sheikh and Michael Marchand
J. Funct. Biomater. 2024, 15(12), 391; https://doi.org/10.3390/jfb15120391 - 23 Dec 2024
Viewed by 3127
Abstract
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, [...] Read more.
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality. Traditional polymeric materials, including polymethyl methacrylate (PMMA), silicone, and acrylic polymers, are critically analyzed alongside cutting-edge innovations such as hydrogels, shape memory polymers, and light-adjustable lenses (LALs). Advances in polymer engineering have enabled these materials to achieve enhanced flexibility, transparency, and biocompatibility, driving their adoption in modern IOL design. Functionalization strategies, including surface modifications and drug-eluting designs, highlight advancements in preventing inflammation, infection, and other complications. The incorporation of UV-blocking and blue-light-filtering agents is also examined for their potential in reducing retinal damage. Furthermore, emerging technologies like nanotechnology and smart polymer-based biomaterials offer promising avenues for personalized, biocompatible IOLs with enhanced performance. Clinical outcomes, including visual acuity, contrast sensitivity, and patient satisfaction, are evaluated to provide an understanding of the current advancements and limitations in IOL development. We also discuss the current challenges and future directions, underscoring the need for cost-effective, innovative polymer-based solutions to optimize surgical outcomes and improve patients’ quality of life. Full article
(This article belongs to the Special Issue Polymers Materials Used in Biomedical Engineering)
Show Figures

Figure 1

15 pages, 4330 KiB  
Article
Comparison of Various Surface Treatment Procedures on the Roughness and Susceptibility to Staining of Provisional Prosthodontic Materials
by Satheesh B. Haralur, Abdullah Turki Albarqi, Abdulellah Gharmallah Alamodi, Abdulmajeed Ali Alamri, Saad Awdah Aldail, Mohammed A. Al-Qarni, Saeed M. AlQahtani and Nasser M. Alqahtani
J. Funct. Biomater. 2024, 15(9), 256; https://doi.org/10.3390/jfb15090256 - 3 Sep 2024
Cited by 5 | Viewed by 2044
Abstract
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological [...] Read more.
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological and esthetic issues associated with rough surfaces. The purpose of this in vitro study was to assess and compare the impact of various polishing protocols on the surface roughness and color stability of three resin materials used for provisional crowns. A total of 150 specimens were fabricated from auto-polymerizing polymethyl methacrylate, bis-acryl composite, and Methyl methacrylate-LC resin using a stainless steel mold. Each material group was divided into five groups (n = 10) based on the applied surface treatment: positive control group (G1): no roughening or surface treatment, Negative control group (G2): acrylic bur-roughened surface without any polishing, the different surface treatment groups of silicon carbide and aluminum oxide stone polishing (G3), diamond-coated rubber twist (G4), and Surface Glaze (G5). An optical profilometer was used to assess the surface roughness of all samples. After undergoing 6000 cycles of thermocycling followed by immersion in a coffee solution for 15 days at 37 °C, color parameters were measured using a spectrophotometer both before and after a storage period to evaluate color differences. A two-way ANOVA test with α = 0.05 significance level was carried out to determine the impacts of both the materials utilized and the polishing protocol. Among the three types of resin examined, the bisacryl group exhibited superior surface quality in positive control groups, while PMMA resin demonstrated higher polishability. The diamond-coated rubber twits resulted in lower Ra values of 0.36 (0.01) µm, 0.52 (0.11) µm, and 0.28 (0.05) µm for PMMA, BAMA, and MMLC resins, respectively. The application of photo-polymerized surface glaze led to a plaque accumulation threshold of 0.2 µm across all resin groups. The greatest mean color change occurred in the negative control group, indicating a propensity for more staining on rougher surfaces. The Bisacryl resin exhibited higher ΔE values, whereas PMMA showed better color stability. The lowest ΔE values were found when the surface glaze was applied to all of the provisional crown resins. Untreated Bisacryl resin exhibited the lowest Ra values, while PMMA resins demonstrated superior surface morphology after polishing. PMMA provisional crown resins showed increased resistance to staining. The use of surface glaze enhanced both smoothness and color stability on the surfaces. Full article
Show Figures

Figure 1

16 pages, 5828 KiB  
Article
Material Characterization of Silicones for Additive Manufacturing
by Danka Katrakova-Krüger, Simon Öchsner and Ester S. B. Ferreira
Polymers 2024, 16(17), 2437; https://doi.org/10.3390/polym16172437 - 28 Aug 2024
Cited by 1 | Viewed by 1156
Abstract
Three-dimensional printing is ideally suited to produce unique and complex shapes. In this study, the material properties of polysiloxanes, commonly named silicones, produced additively by two different methods, namely, multi-jet fusion (MJF) and material extrusion (ME) with liquid printing heads, are investigated. The [...] Read more.
Three-dimensional printing is ideally suited to produce unique and complex shapes. In this study, the material properties of polysiloxanes, commonly named silicones, produced additively by two different methods, namely, multi-jet fusion (MJF) and material extrusion (ME) with liquid printing heads, are investigated. The chemical composition was compared via Fourier-transform infrared spectroscopy, evolved gas analysis mass spectrometry, pyrolysis gas chromatography coupled to mass spectrometry, and thermogravimetry (TGA). Density and low-temperature flexibility, mechanical properties and crosslink distance via freezing point depression were measured before and after post-treatment at elevated temperatures. The results show significant differences in the chemical composition, material properties, as well as surface quality of the tested products produced by the two manufacturing routes. Chemical analysis indicates that the investigated MJF materials contain acrylate moieties, possibly isobornyl acrylate linking branches. The hardness of the MJF samples is associated with crosslinking density. In the ashes after TGA, traces of phosphorus were found, which could originate from initiators or catalysts of the curing process. The ME materials contain fillers, most probably silica, that differ in their amount. It is possible that silica also plays a role in the processing to stabilize the extrusion strand. For the harder material, a higher crosslink density was found, which was supported also by the other tested properties. The MJF samples have smooth surfaces, while the ME samples show grooved surface structures typical for the material extrusion process. Post-treatment did not improve the material properties. In the MJF samples, significant color changes were observed. Full article
(This article belongs to the Special Issue Advances in Polymeric Additive Manufacturing)
Show Figures

Figure 1

11 pages, 2125 KiB  
Article
Bond Strength of Nanocomposite Hard Liner to CAD-CAM Milled, 3D Printed, and Conventionally Fabricated Denture Base Resins
by Zainab Albazroun, Atheer Alabdullatif, Sarah Aldehaileb, Ferdoos Alhalimi, Faris A. Alshahrani, Soban Q. Khan, Shaimaa M. Fouda, Hamad S. AlRumaih and Mohammed M. Gad
Dent. J. 2024, 12(9), 275; https://doi.org/10.3390/dj12090275 - 23 Aug 2024
Cited by 4 | Viewed by 2053
Abstract
Background: To investigate the effect of zirconium dioxide nanoparticles (ZrO2NPs) on the shear bond strength (SBS) of hard denture lines bonded to different denture base resins. Methods: Five different denture bases were used in this study: conventional heat-cured resin, IvoCad, AvaDent, [...] Read more.
Background: To investigate the effect of zirconium dioxide nanoparticles (ZrO2NPs) on the shear bond strength (SBS) of hard denture lines bonded to different denture base resins. Methods: Five different denture bases were used in this study: conventional heat-cured resin, IvoCad, AvaDent, NextDent, and FormLabs, in acrylic specimens of 10 × 10 × 2.5 mm3 (N = 150, n = 10). Specimens were centered at the bottom of a silicon mold to create an auto-polymerized holder. Three major groups of reline material were used: no ZrO2NPs (control), 2 wt.%, and 4 wt.% ZrO2NPs. Reline was bonded to the resin surface using a customized jig. After polymerization, specimens were stored in distilled water, and 5000 thermal cycles were performed. Each specimen was fixed to an Instron machine, and SBS was tested using a blade loaded (1 mm/min) at the resin interface until failure. Data was collected and analyzed using two-way ANOVA and post hoc Tukey test (α = 0.05). Results: AvaDent showed the highest SBS when compared with other denture base materials (p < 0.001) except for IvoCad. The addition of ZrO2NPs significantly decreased the SBS of AvaDent (p = 0.003) and IvoCad (p = 0.001), while heat polymerized resin, Formlabs, and NextDent showed no significant change in SBS (p > 0.05). Conclusion: CAD-CAM milled denture base resin showed higher SBS with pure denture reline. The addition of ZrO2NPs decreased the SBS of reline with CAD-CAM milled denture base resins but did not change bond strength with 3D printed and conventional denture base resins. Full article
Show Figures

Figure 1

15 pages, 4932 KiB  
Article
Thermally Stable UV-Curable Pressure-Sensitive Adhesives Based on Silicon–Acrylate Telomers and Selected Adhesion Promoters
by Agnieszka Kowalczyk, Krzysztof Kowalczyk, Jan Gruszecki, Tomasz J. Idzik and Jacek G. Sośnicki
Polymers 2024, 16(15), 2178; https://doi.org/10.3390/polym16152178 - 30 Jul 2024
Cited by 1 | Viewed by 1824
Abstract
A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. [...] Read more.
A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. Selected commercial adhesion promoters were tested as additives in the formulation of adhesive compositions, i.e., (i) an organic copolymer with polar groups (carboxyl and hydroxyl); (ii) a hydroxymetal-organic compound; and (iii) a quaternary ammonium salt and (iv) a chlorinated polyolefin. No fillers, crosslinking agents, or photoinitiators were used in the adhesive compositions. NMR techniques confirmed the incorporation of silicon atoms into the polyacrylate structure. The influence of adhesion promoters on the kinetics of the UV-crosslinking process of Si-PSAs was investigated by a photo-DSC technique. The obtained Si-PSAs were characterized by adhesion (to steel, glass, PMMA, and PE), tack, and cohesion at 20 °C. Finally, the wetting angle of Si-PSAs with water was checked and their thermal stability was proved (TGA). Unexpectedly, the quaternary ammonium salt had the most favorable effect on improving the thermal stability of Si-PSAs (302 °C) and adhesion to glass and PMMA. In contrast, Si-PSAs containing the hydroxymetal-organic compound showed excellent adhesion to steel. Full article
(This article belongs to the Special Issue Advances in Photopolymerization Process and Applications)
Show Figures

Figure 1

15 pages, 1634 KiB  
Article
Comparative Assessment of the Adhesion Forces of Soft Silicone Materials to the Denture Base Material (PMMA) Conditioned with Sandblasting
by Amadeusz Kuźniarski, Weronika Huss, Tomasz Dąbrowa and Edward Kijak
Materials 2024, 17(14), 3439; https://doi.org/10.3390/ma17143439 - 11 Jul 2024
Cited by 1 | Viewed by 1256
Abstract
Background: In patients undergoing surgery for oral cancer, soft support materials are used to minimise trauma to the soft tissues. Silicone-based liners are widely used in prosthetic dentistry. A prerequisite for long-term Adhesion of the liner to the denture base is largely dependent [...] Read more.
Background: In patients undergoing surgery for oral cancer, soft support materials are used to minimise trauma to the soft tissues. Silicone-based liners are widely used in prosthetic dentistry. A prerequisite for long-term Adhesion of the liner to the denture base is largely dependent on the surface preparation of the denture material. Objectives: The aim of the present study was to investigate whether surface preparation of the acrylic material by sandblasting increases the adhesion of the silicone support material to the acrylic denture plate. Material and Methods: The study included adhesion testing of four silicone-based soft cushioning materials (Silagum Comfort, Elite Soft Re-lining, Ufi Gel SC, Mucopren Soft) on a total of 270 samples. Each material was tested on 15 samples. Three subgroups with different surfaces were separated: 1 raw—standard surface treatment with a cutter, and 2 sandblasted, with 100 and 350 µm alumina grain at 90°. The samples were subjected to seasoning: 24 h and six weeks. The adhesion force of silicone to acrylic was measured by performing a tensile test using a universal two-column testing machine. Results: The highest bond strength was recorded for Silagum on the surface prepared using 100 µm abrasive and seasoned for 6 weeks (291.5 N). The smallest among the maximum forces was recorded for the Mucopren material (81.1 N). For the Mucopren system with a raw and sand-blasted surface (350 µm), the adhesion strength increased after six weeks. In contrast, the durability of the joint decreased for the 100 µm sandblasted surface. The Elite material exhibited similar values for maximum forces (271.8 N) and minimum forces (21.1 N). The highest strength (226.1 N) was recorded for the sample from the group prepared with 350 µm abrasive and seasoned for 24 h. The lowest value (72.6 N) occurred for the sample from the group with 100 µm abrasive and seasoned for 6 weeks. Conclusions: Sandblasting of acrylic plastic improves adhesion to selected relining silicones. 2. The size of the abrasive employed has an impact on the adhesion between the acrylic plastic and the bedding silicone. 3. In the case of some relining systems (Mucopren), an increase in roughness through sandblasting has the effect of reducing the durability of the bonded joint. Full article
Show Figures

Figure 1

Back to TopTop