Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = silicon-on-insulator MOSFETs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2423 KiB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Viewed by 151
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

21 pages, 4175 KiB  
Article
Dynamic Performance Evaluation of Bidirectional Bridgeless Interleaved Totem-Pole Power Factor Correction Boost Converter
by Hsien-Chie Cheng, Wen-You Jhu, Yu-Cheng Liu, Da-Wei Zheng, Yan-Cheng Liu and Tao-Chih Chang
Micromachines 2025, 16(2), 223; https://doi.org/10.3390/mi16020223 - 16 Feb 2025
Cited by 1 | Viewed by 1436
Abstract
This study aims to conduct an assessment of the dynamic characteristics of a proposed 6.6 kW bidirectional bridgeless three-leg interleaved totem-pole power factor correction (PFC) boost converter developed for the front-end stage of electric vehicle onboard charger applications during load cycles. This proposed [...] Read more.
This study aims to conduct an assessment of the dynamic characteristics of a proposed 6.6 kW bidirectional bridgeless three-leg interleaved totem-pole power factor correction (PFC) boost converter developed for the front-end stage of electric vehicle onboard charger applications during load cycles. This proposed PFC boost converter integrates the self-developed silicon carbide (SiC) power MOSFET modules for achieving high efficiency and high power density. To assess the switching transient behavior, power loss, and efficiency of the SiC MOSFET power modules, a fully integrated electromagnetic-circuit coupled simulation (ECCS) model that incorporates an electromagnetic model, an equivalent circuit model, and an SiC MOSFET characterization model are used. In this simulation model, the impact of parasitic effects on the system’s performance is considered. The accuracy of the ECCS model is confirmed through comparing the calculated results with the experimental data obtained through the double pulse test and the closed-loop converter operation. Furthermore, a comparative study between the interleaved and non-interleaved topologies is also performed in terms of power loss and efficiency. Additionally, the performance of the SiC MOSFET-based PFC boost converter is further compared with that of the silicon (Si) insulated gate bipolar transistor (IGBT)-based one. Finally, a parametric analysis is carried out to explore the impact of several operating conditions on the power loss of the proposed totem-pole PFC boost converter. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

18 pages, 5900 KiB  
Article
Research on Deflection and Stress Analyses and the Improvement of the Removal Uniformity of Silicon in a Single-Sided Polishing Machine Under Pressure
by Guoqing Ye and Zhenqiang Yao
Micromachines 2025, 16(2), 198; https://doi.org/10.3390/mi16020198 - 8 Feb 2025
Cited by 1 | Viewed by 3178
Abstract
The chemical–mechanical polishing (CMP) of silicon wafers involves high-precision surface machining after double-sided lapping. Silicon wafers are subjected to chemical corrosion and mechanical removal under pressurized conditions. The multichip CMP process for 4~6-inch silicon wafers, such as those in MOSFETs (Metal Oxide Semiconductor [...] Read more.
The chemical–mechanical polishing (CMP) of silicon wafers involves high-precision surface machining after double-sided lapping. Silicon wafers are subjected to chemical corrosion and mechanical removal under pressurized conditions. The multichip CMP process for 4~6-inch silicon wafers, such as those in MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), IGBTs (Insulated-Gate Bipolar Transistors), and MEMS (Micro-Electromechanical System) field materials, is conducted to maintain multiple chips to improve efficiency and improve polish removal uniformity; that is, the detected TTV (total thickness variation) gradually increases from 10 μm to less than 3 μm. In this work, first, a mathematical model for calculating the small deflection of silicon wafers under pressure is established, and the limit values under two boundary conditions of fixed support and simple support are calculated. Moreover, the removal uniformity of the silicon wafers is improved by improving the uniformity of the wax-coated adhesion state and adjusting the boundary conditions to reflect a fixed support state. Then, the stress distribution of the silicon wafers under pressure is simulated, and the calculation methods for measuring the TTV of the silicon wafers and the uniformity measurement index are described. Stress distribution is changed by changing the size of the pressure ring to achieve the purpose of removing uniformity. This study provides a reference for improving the removal uniformity of multichip silicon wafer chemical–mechanical polishing. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

13 pages, 4937 KiB  
Article
Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs
by Zhanpeng Yan, Hongxia Liu, Menghao Huang, Shulong Wang, Shupeng Chen, Xilong Zhou, Junjie Huang and Chang Liu
Micromachines 2024, 15(11), 1292; https://doi.org/10.3390/mi15111292 - 24 Oct 2024
Cited by 1 | Viewed by 1075
Abstract
In this paper, the degradation mechanism of the RF performance of 22 nm fully depleted (FD) silicon-on-insulator nMOSFETs at different total ionizing dose levels has been investigated. The RF figures of merit (the cut-off frequency fT, maximum oscillation frequency fmax [...] Read more.
In this paper, the degradation mechanism of the RF performance of 22 nm fully depleted (FD) silicon-on-insulator nMOSFETs at different total ionizing dose levels has been investigated. The RF figures of merit (the cut-off frequency fT, maximum oscillation frequency fmax) show significant degradation of approximately 14.1% and 6.8%, respectively. The variation of the small-signal parameters (output conductance (gds), transconductance (gm), reflection coefficient (|Γin|), and capacitance (Cgg)) at different TID levels has been discussed. TID-induced trapped charges in the gate oxide and buried oxide increase the vertical channel field, which leads to more complex degradation of small-signal parameters across a wide frequency range. Full article
Show Figures

Figure 1

12 pages, 3372 KiB  
Article
Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET
by Zhen Cao, Qi Sun, Chuanfeng Ma, Biao Hou and Licheng Jiao
Micromachines 2024, 15(3), 411; https://doi.org/10.3390/mi15030411 - 19 Mar 2024
Cited by 1 | Viewed by 1458
Abstract
This paper presents a machine learning-based figure of merit model for superjunction (SJ) U-MOSFET (SSJ-UMOS) with a modulated drift region utilizing semi-insulating poly-crystalline silicon (SIPOS) pillars. This SJ drift region modulation is achieved through SIPOS pillars beneath the trench gate, focusing on optimizing [...] Read more.
This paper presents a machine learning-based figure of merit model for superjunction (SJ) U-MOSFET (SSJ-UMOS) with a modulated drift region utilizing semi-insulating poly-crystalline silicon (SIPOS) pillars. This SJ drift region modulation is achieved through SIPOS pillars beneath the trench gate, focusing on optimizing the tradeoff between breakdown voltage (BV) and specific ON-resistance (RON,sp). This analytical model considers the effects of electric field modulation, charge-coupling, and majority carrier accumulation due to additional SIPOS pillars. Gaussian process regression is employed for the figure of merit (FOM = BV2/RON,sp) prediction and hyperparameter optimization, ensuring a reasonable and accurate model. A methodology is devised to determine the optimal BV-RON,sp tradeoff, surpassing the SJ silicon limit. The paper also delves into a discussion of optimal structural parameters for drift region, oxide thickness, and electric field modulation coefficients within the analytical model. The validity of the proposed model is robustly confirmed through comprehensive verification against TCAD simulation results. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 3457 KiB  
Article
Recovery Effect of Hot-Carrier Stress on γ-ray-Irradiated 0.13 μm Partially Depleted SOI n-MOSFETs
by Lan Lin, Zhongchao Cong and Chunlei Jia
Electronics 2023, 12(20), 4233; https://doi.org/10.3390/electronics12204233 - 13 Oct 2023
Cited by 1 | Viewed by 1667
Abstract
Many silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFETs) are used in deep space detection systems because they have higher radiation resistance than bulk silicon devices. However, SOI devices have to face the double challenge of radiation and conventional reliability problems, such as hot carrier [...] Read more.
Many silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFETs) are used in deep space detection systems because they have higher radiation resistance than bulk silicon devices. However, SOI devices have to face the double challenge of radiation and conventional reliability problems, such as hot carrier stress, at the same time. Thus, we wondered whether there is any interaction between reliability degradation and irradiation damage. In this paper, the effect of hot-carrier injection (HCI) on γ-ray-irradiated partially depleted (PD) SOI n-MOSFETs with a T-shaped gate structure is investigated. A strange phenomenon that accelerated the annealing effect on irradiation devices caused by HCI in 5 s was observed. That is, HCI has fast recovery ability on the irradiated narrow-channel n-MOSFETs. We explain the physical mechanism of this recovery effect qualitatively. Moreover, we designed a comparable experiment to evaluate the effect on the wide-channel devices. These results show that the narrow-channel devices are more sensitive to irradiation and HCI effects than wide-channel devices. Full article
(This article belongs to the Special Issue Radiation Effects of Advanced Electronic Devices and Circuits)
Show Figures

Figure 1

27 pages, 6329 KiB  
Review
Technology and Applications of Wide Bandgap Semiconductor Materials: Current State and Future Trends
by Omar Sarwar Chaudhary, Mouloud Denaï, Shady S. Refaat and Georgios Pissanidis
Energies 2023, 16(18), 6689; https://doi.org/10.3390/en16186689 - 18 Sep 2023
Cited by 33 | Viewed by 7194
Abstract
Silicon (Si)-based semiconductor devices have long dominated the power electronics industry and are used in almost every application involving power conversion. Examples of these include metal-oxide-semiconductor field-effect transistors (MOSFETs), insulated-gate bipolar transistors (IGBTs), gate turn-off (GTO), thyristors, and bipolar junction transistor (BJTs). However, [...] Read more.
Silicon (Si)-based semiconductor devices have long dominated the power electronics industry and are used in almost every application involving power conversion. Examples of these include metal-oxide-semiconductor field-effect transistors (MOSFETs), insulated-gate bipolar transistors (IGBTs), gate turn-off (GTO), thyristors, and bipolar junction transistor (BJTs). However, for many applications, power device requirements such as higher blocking voltage capability, higher switching frequencies, lower switching losses, higher temperature withstand, higher power density in power converters, and enhanced efficiency and reliability have reached a stage where the present Si-based power devices cannot cope with the growing demand and would usually require large, costly cooling systems and output filters to meet the requirements of the application. Wide bandgap (WBG) power semiconductor materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond (Dia) have recently emerged in the commercial market, with superior material properties that promise substantial performance improvements and are expected to gradually replace the traditional Si-based devices in various power electronics applications. WBG power devices can significantly improve the efficiency of power electronic converters by reducing losses and making power conversion devices smaller in size and weight. The aim of this paper is to highlight the technical and market potential of WBG semiconductors. A detailed short-term and long-term analysis is presented in terms of cost, energy impact, size, and efficiency improvement in various applications, including motor drives, automotive, data centers, aerospace, power systems, distributed energy systems, and consumer electronics. In addition, the paper highlights the benefits of WBG semiconductors in power conversion applications by considering the current and future market trends. Full article
Show Figures

Figure 1

11 pages, 3733 KiB  
Article
Experimental Study on Critical Parameters Degradation of Nano PDSOI MOSFET under TDDB Stress
by Tianzhi Gao, Jianye Yang, Hongxia Liu, Yong Lu and Changjun Liu
Micromachines 2023, 14(8), 1504; https://doi.org/10.3390/mi14081504 - 27 Jul 2023
Cited by 3 | Viewed by 2892
Abstract
In today’s digital circuits, Si-based MOS devices have become the most widely used technology in medical, military, aerospace, and aviation due to their advantages of mature technology, high performance, and low cost. With the continuous integration of transistors, the characteristic size of MOSFETs [...] Read more.
In today’s digital circuits, Si-based MOS devices have become the most widely used technology in medical, military, aerospace, and aviation due to their advantages of mature technology, high performance, and low cost. With the continuous integration of transistors, the characteristic size of MOSFETs is shrinking. Time-dependent dielectric electrical breakdown (TDDB) is still a key reliability problem of MOSFETs in recent years. Many researchers focus on the TDDB life of advanced devices and the mechanism of oxide damage, ignoring the impact of the TDDB effect on device parameters. Therefore, in this paper, the critical parameters of partially depleted silicon-on-insulator (PDSOI) under time-dependent dielectric electrical breakdown (TDDB) stress are studied. By applying the TDDB acceleration stress experiment, we obtained the degradation of the devices’ critical parameters including transfer characteristic curves, threshold voltage, off-state leakage current, and the TDDB lifetime. The results show that TDDB acceleration stress will lead to the accumulation of negative charge in the gate oxide. The negative charge affects the electric field distribution. The transfer curves of the devices are positively shifted, as is the threshold voltage. Comparing the experimental data of I/O and Core devices, we can conclude that the ultra-thin gate oxide device’s electrical characteristics are barely affected by the TDDB stress, while the opposite is true for a thick-gate oxide device. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

12 pages, 4639 KiB  
Article
Design Technology Co-Optimization Strategy for Ge Fraction in SiGe Channel of SGOI FinFET
by Shixin Li and Zhenhua Wu
Nanomaterials 2023, 13(11), 1709; https://doi.org/10.3390/nano13111709 - 23 May 2023
Cited by 1 | Viewed by 1758
Abstract
FinFET devices and Silicon-On-Insulator (SOI) devices are two mainstream technical routes after the planar MOSFET reached the limit for scaling. The SOI FinFET devices combine the benefits of FinFET and SOI devices, which can be further boosted by SiGe channels. In this work, [...] Read more.
FinFET devices and Silicon-On-Insulator (SOI) devices are two mainstream technical routes after the planar MOSFET reached the limit for scaling. The SOI FinFET devices combine the benefits of FinFET and SOI devices, which can be further boosted by SiGe channels. In this work, we develop an optimizing strategy of the Ge fraction in SiGe Channels of SGOI FinFET devices. The simulation results of ring oscillator (RO) circuits and SRAM cells reveal that altering the Ge fraction can improve the performance and power of different circuits for different applications. Full article
(This article belongs to the Special Issue Nanomaterials for Electron Devices)
Show Figures

Figure 1

10 pages, 3139 KiB  
Communication
Performance Comparison of Si IGBT and SiC MOSFET Power Module Driving IPMSM or IM under WLTC
by Hirokatsu Umegami, Toshikazu Harada and Ken Nakahara
World Electr. Veh. J. 2023, 14(4), 112; https://doi.org/10.3390/wevj14040112 - 17 Apr 2023
Cited by 10 | Viewed by 8886
Abstract
The cumulative inverter losses and power consumption of a silicon insulated gate bipolar transistor (Si IGBT) and three types of silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFETs) were evaluated on an electric motor test bench under a worldwide harmonized light vehicles test cycle [...] Read more.
The cumulative inverter losses and power consumption of a silicon insulated gate bipolar transistor (Si IGBT) and three types of silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFETs) were evaluated on an electric motor test bench under a worldwide harmonized light vehicles test cycle (WLTC). SiC MOSFETs showed higher performance than Si IGBT regardless of the motor type and test vehicles. In the case of driving an interior permanent magnet synchronous motor (IPMSM), the latest 4th generation SiC MOSFET (SiC-4G) in ROHM has the lowest inverter loss and energy consumption compared with the other generations. In the case of driving an induction motor (IM), on the other hand, the 2nd generation SiC MOSFET (SiC-2G) in ROHM has the best energy consumption despite the fact that the inverter losses of SiC-2G are slightly larger than the loss of SiC-4G. The latest or later generation power device does not necessarily contribute to better performance in a total system by simply replacing early power devices. Full article
Show Figures

Figure 1

13 pages, 4357 KiB  
Article
Investigation of Anomalous Degradation Tendency of Low-Frequency Noise in Irradiated SOI-NMOSFETs
by Rui Liu, Linchun Gao, Juanjuan Wang, Tao Ni, Yifan Li, Runjian Wang, Duoli Li, Jianhui Bu, Chuanbin Zeng, Bo Li and Jiajun Luo
Micromachines 2023, 14(3), 602; https://doi.org/10.3390/mi14030602 - 4 Mar 2023
Viewed by 1965
Abstract
In this work, we present new evidence of the physical mechanism behind the generation of low-frequency noise with high interface-trap density by measuring the low-frequency noise magnitudes of partially depleted (PD) silicon-on-insulator (SOI) NMOSFETs as a function of irradiation dose. We measure the [...] Read more.
In this work, we present new evidence of the physical mechanism behind the generation of low-frequency noise with high interface-trap density by measuring the low-frequency noise magnitudes of partially depleted (PD) silicon-on-insulator (SOI) NMOSFETs as a function of irradiation dose. We measure the DC electrical characteristics of the devices at different irradiation doses and separate the threshold-voltage shifts caused by the oxide-trap charge and interface-trap charge. Moreover, the increased densities of the oxide-trap charge projected to the Si/SiO2 interface and interface-trap charge are calculated. The results of our experiment suggest that the magnitudes of low-frequency noise do not necessarily increase with the increase in border-trap density. A novel physical explanation for the low-frequency noise in SOI-NMOSFETs with high interface-trap density is proposed. We reveal that the presence of high-density interface traps after irradiation has a repressing effect on the generation of low-frequency noise. Furthermore, the exchange of some carriers between border traps and interface traps can cause a decrease in the magnitude of low-frequency noise when the interface-trap density is high. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

14 pages, 4088 KiB  
Article
Mechanism of Random Telegraph Noise in 22-nm FDSOI-Based MOSFET at Cryogenic Temperatures
by Yue Ma, Jinshun Bi, Hanbin Wang, Linjie Fan, Biyao Zhao, Lizhi Shen and Mengxin Liu
Nanomaterials 2022, 12(23), 4344; https://doi.org/10.3390/nano12234344 - 6 Dec 2022
Cited by 7 | Viewed by 3265
Abstract
In the emerging process-based transistors, random telegraph noise (RTN) has become a critical reliability problem. However, the conventional method to analyze RTN properties may not be suitable for the advanced silicon-on-insulator (SOI)-based transistors, such as the fully depleted SOI (FDSOI)-based transistors. In this [...] Read more.
In the emerging process-based transistors, random telegraph noise (RTN) has become a critical reliability problem. However, the conventional method to analyze RTN properties may not be suitable for the advanced silicon-on-insulator (SOI)-based transistors, such as the fully depleted SOI (FDSOI)-based transistors. In this paper, the mechanism of RTN in a 22-nm FDSOI-based metal–oxide–semiconductor field-effect transistor (MOSFET) is discussed, and an improved approach to analyzing the relationship between the RTN time constants, the trap energy, and the trap depth of the device at cryogenic temperatures is proposed. The cryogenic measurements of RTN in a 22-nm FDSOI-based MOSFET were carried out and analyzed using the improved approach. In this approach, the quantum mechanical effects and diffuse scattering of electrons at the oxide–silicon interface are considered, and the slope of the trap potential determined by the gate voltage relation is assumed to decrease proportionally with temperature as a result of the electron distribution inside the top silicon, per the technology computer-aided design (TCAD) simulations. The fitted results of the improved approach have good consistency with the measured curves at cryogenic temperatures from 10 K to 100 K. The fitted trap depth was 0.13 nm, and the decrease in the fitted correction coefficient of the electron distribution proportionally with temperature is consistent with the aforementioned assumption. Full article
Show Figures

Figure 1

11 pages, 1703 KiB  
Article
A Compact Model for Single-Event Transient in Fully Depleted Silicon on Insulator MOSFET Considering the Back-Gate Voltage Based on Time-Domain Components
by Kewei Wang, Xinyi Zhang, Bo Li, Duoli Li, Fazhan Zhao, Jianhui Bu and Zhengsheng Han
Electronics 2022, 11(23), 4022; https://doi.org/10.3390/electronics11234022 - 4 Dec 2022
Cited by 1 | Viewed by 1710
Abstract
FDSOI (Fully Depleted Silicon On Insulator) devices have a good performance in anti-single-event circuits. However, the bipolar amplification effect becomes a severe problem due to the buried oxide. The previous models for Single Event Transient (SET) of FDSOI did not fully consider the [...] Read more.
FDSOI (Fully Depleted Silicon On Insulator) devices have a good performance in anti-single-event circuits. However, the bipolar amplification effect becomes a severe problem due to the buried oxide. The previous models for Single Event Transient (SET) of FDSOI did not fully consider the current of all components. Most importantly, they did not take the influence of the back-gate voltage into account. Thus, this paper presents a modeling method for the SET current in FDSOI MOSFET where all three components are modeled individually. The prompt current and diffusion current are modeled with a current source respectively. The Berkeley Short-channel IGFET Model for Silicon-on-Insulator (BSIMSOI) model is integrated into this model to calculate the bipolar amplification current. Compared to using the bipolar transistor model, this method avoids additional current input from the base electrode. It is more consistent with the mechanism of bipolar amplification effect for FDSOI devices without body contact. Instantaneously, an improved model is proposed that considers the influence of the back-gate voltage on the SET of the FDSOI devices. All models are validated through Technology Computer Aided Design (TCAD)simulation results. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

12 pages, 6293 KiB  
Article
Design of a Capacitorless DRAM Based on Storage Layer Separated Using Separation Oxide and Polycrystalline Silicon
by Geon Uk Kim, Young Jun Yoon, Jae Hwa Seo, Sang Ho Lee, Jin Park, Ga Eon Kang, Jun Hyeok Heo, Jaewon Jang, Jin-Hyuk Bae, Sin-Hyung Lee and In Man Kang
Electronics 2022, 11(20), 3365; https://doi.org/10.3390/electronics11203365 - 18 Oct 2022
Cited by 4 | Viewed by 4397
Abstract
In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on a polycrystalline silicon (Poly-Si) metal-oxide-semiconductor field-effect transistor (MOSFET) with a storage layer separated using a separation oxide was designed and analyzed using technology computer-aided design (TCAD). The channel and storage layers [...] Read more.
In this study, a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on a polycrystalline silicon (Poly-Si) metal-oxide-semiconductor field-effect transistor (MOSFET) with a storage layer separated using a separation oxide was designed and analyzed using technology computer-aided design (TCAD). The channel and storage layers were separated using a separation oxide to improve the inferior retention time of the conventional 1T-DRAM, and we adopted the underlap structure to reduce Shockley-Read-Hall recombination. In addition, poly-Si, which has several advantages, including low manufacturing cost and availability of high-density three-dimensional (3D) memory arrays, is used to easily fabricate silicon-on-insulator (SOI)-like structures. Accordingly, we extracted memory performance by analyzing the effect of grain boundary (GB). The proposed 1T-DRAM achieved a sensing margin of 14.10 μA/μm and a retention time of 251 ms at T = 358 K, even in the existence of a GB. Full article
(This article belongs to the Special Issue Advanced CMOS Devices and Applications)
Show Figures

Figure 1

19 pages, 5820 KiB  
Article
Optimization Design of Packaging Insulation for Half-Bridge SiC MOSFET Power Module Based on Multi-Physics Simulation
by Wenyi Li, Yalin Wang, Yi Ding and Yi Yin
Energies 2022, 15(13), 4884; https://doi.org/10.3390/en15134884 - 3 Jul 2022
Cited by 10 | Viewed by 3434
Abstract
With the development of power modules for high voltage, high temperature, and high power density, their size is becoming smaller, and the packaging insulation experiences higher electrical, thermal, and mechanical stress. Packaging insulation needs to meet the requirement that internal electric field, temperature, [...] Read more.
With the development of power modules for high voltage, high temperature, and high power density, their size is becoming smaller, and the packaging insulation experiences higher electrical, thermal, and mechanical stress. Packaging insulation needs to meet the requirement that internal electric field, temperature, and mechanical stress should be as low as possible. Focusing on the coupling principles and optimization design among electrical, thermal, and mechanical stresses in the power module packaging insulation, a multi-objective optimization design method based on Spice circuit, finite element field numerical calculation, and multi-objective gray wolf optimizer (MOGWO) is proposed. The packaging insulation optimal design of a 1.2 kV SiC MOSFET half-bridge power module is presented. First, the high field conductivity characteristics of the substrate ceramic and encapsulation silicone of the packaging insulation material were tested at different temperatures and external field strengths, which provided the key insulation parameters for the calculation of electric field distribution. Secondly, according to the mutual coupling principles among electric–thermal–mechanical stress, the influence of packaging structure parameters on the electric field, temperature, and mechanical stress distribution of packaging insulation was studied by finite element calculation and combined with Spice circuit analysis. Finally, the MOGWO algorithm was used to optimize the electric field, temperature, and mechanical stress in the packaging insulation. The optimal structural parameters of the power module were used to fabricate the corresponding SiC MOSFET module. The fabricated module is compared with a commercial module by the double-pulse experiment and partial discharge experiment to verify the feasibility of the proposed design method. Full article
Show Figures

Figure 1

Back to TopTop