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Abstract: FinFET devices and Silicon-On-Insulator (SOI) devices are two mainstream technical routes
after the planar MOSFET reached the limit for scaling. The SOI FinFET devices combine the benefits
of FinFET and SOI devices, which can be further boosted by SiGe channels. In this work, we develop
an optimizing strategy of the Ge fraction in SiGe Channels of SGOI FinFET devices. The simulation
results of ring oscillator (RO) circuits and SRAM cells reveal that altering the Ge fraction can improve
the performance and power of different circuits for different applications.

Keywords: CMOS; FinFET; Silicon-On-Insulator (SOI); technology computer-aided design (TCAD);
Design Technology Co-optimization (DTCO)

1. Introduction

The Moore’s Law predicts the scaling of semiconductor devices in very large scale
integration circuits (VLSI). The process for planar metal oxide semiconductor field effect
transistor (MOSFET) came to an end after reaching the limit for Dennard’s scaling [1]. In
searching for the successor after the 20 nm technology node, FinFET devices and Silicon-On-
Insulator (SOI) devices became two promising competitors [2,3]. FinFET devices provide
enhanced gate controlling capability by the gate surrounding the channel [4], and SOI
devices reduce the substrate leakage through buried oxide layers, providing lower delay
and dynamic power consumption with no latch-up effect [5]. Eventually, FinFET won this
competition due to its lower cost in fabrication. However, according to the International
Roadmap for Devices and Systems (IRDS) 2022 [6], FinFET also faces the same problem of
the scaling limit after the 7 nm node. As a potential candidate, FinFET on SOI devices were
studied [7,8], for they share the advantages of both FinFET devices and SOI devices.

In many previous works, SiGe channel material is mainly used in PMOS rather
than NMOS to enhance the hole mobility in PMOS devices [9–11]. The layer effects
in SiGe channel are also studied [12,13]. The drawback of the SiGe channel in NMOS
devices is the electron mobility degradation due to its high interface trap states [14,15],
which can be eliminated in technology computer-aided design (TCAD) simulations [16].
Both FinFET devices with SiGe channels [17] and Silicon-Germanium-on-Insulator (SGOI)
devices [10,18,19] are studied to improve the performance of the devices. However, there
is a lack of studies on SGOI FinFET devices. Due to the existence of buried oxide layer,
it is possible to fabricate FinFET devices on SOI substrates. For the same reason, the
electrical isolations between source and drain region, and between the adjacent devices,
can effectively suppress leakage and avoid latch-up effects.

In this work, we carried out a parasitic-aware DTCO flow of SGOI FinFET devices.
From a common layout of 7 nm node FinFET, the devices are generated. We therefore
employ state-of-the-art physics-based TCAD simulations and accurate parasitic extraction
schemes to investigate the Ge content optimization strategy in the SiGe channels. Nine-
stage ring oscillator (RO) circuits are built from the BSIM model of the devices and the
parasitic parameters extracted from the devices. Subsequently, we run the SPICE transient
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simulation of the RO circuits, of which the results indicate the performance of each single
RO circuit. Similarly, 6T-SRAM cells are also constructed in the same way. The read state,
the hold state, and the write state of the SRAM cells are simulated by SPICE. These key
performance indicators (KPIs) of both RO circuits and SRAM cells indicate the preferred
optimizing strategy of the Ge content in the SiGe channels of SGOI FinFETs.

This article is arranged as follows. In Section 2, the device structure and simulation
flow are introduced. In Section 3, the simulation results of RO circuits and SRAM cells are
presented and discussed. Finally, the conclusions are given in Section 4.

2. Device Structure and Simulation Flow

Figure 1 displays the layout of the SGOI FinFET devices in this study. As are labeled
in the figure, there are 2 fins of 5 nm fin width (Wch) in each transistor, and the gate length
(Lg) is 15 nm.

Nanomaterials 2023, 13, x FOR PEER REVIEW 2 of 12 
 

 

stage ring oscillator (RO) circuits are built from the BSIM model of the devices and the 
parasitic parameters extracted from the devices. Subsequently, we run the SPICE transient 
simulation of the RO circuits, of which the results indicate the performance of each single 
RO circuit. Similarly, 6T-SRAM cells are also constructed in the same way. The read state, 
the hold state, and the write state of the SRAM cells are simulated by SPICE. These key 
performance indicators (KPIs) of both RO circuits and SRAM cells indicate the preferred 
optimizing strategy of the Ge content in the SiGe channels of SGOI FinFETs. 

This article is arranged as follows. In Section 2, the device structure and simulation 
flow are introduced. In Section 3, the simulation results of RO circuits and SRAM cells are 
presented and discussed. Finally, the conclusions are given in Section 4. 

2. Device Structure and Simulation Flow 
Figure 1 displays the layout of the SGOI FinFET devices in this study. As are labeled 

in the figure, there are 2 fins of 5 nm fin width (Wch) in each transistor, and the gate length 
(Lg) is 15 nm. 

 
Figure 1. Layout of the layout-generated SGOI FinFET devices. 

Figure 2 shows the 3D structure and the cross-sectional view of the devices. The SiGe 
channel and the epi area are based on the oxide layer. As are listed in Table 1, the gate 
length (Lg = 15 nm), the gate oxide thickness (Tox = 2 nm, 0.5 nm SiO2 +1.5 nm HfO2), the 
fin height (H = 30 nm), the spacer length (Lspacer = 5 nm), and the contact poly pitch (CPP = 
40 nm) are consistent with the prediction of the international roadmap for devices and 
system (IRDS) 2018 [20] for 7 nm FinFET devices. The fins are with round corners of 1 nm 
radius to simulate realistic structures. 

Figure 1. Layout of the layout-generated SGOI FinFET devices.

Figure 2 shows the 3D structure and the cross-sectional view of the devices. The SiGe
channel and the epi area are based on the oxide layer. As are listed in Table 1, the gate
length (Lg = 15 nm), the gate oxide thickness (Tox = 2 nm, 0.5 nm SiO2 +1.5 nm HfO2),
the fin height (H = 30 nm), the spacer length (Lspacer = 5 nm), and the contact poly pitch
(CPP = 40 nm) are consistent with the prediction of the international roadmap for devices
and system (IRDS) 2018 [20] for 7 nm FinFET devices. The fins are with round corners of
1 nm radius to simulate realistic structures.

The channel experiences stress from two sources: the substrate and the S/D extent
regions. As the substrate is oxide, the channel experiences little strain from the substrate.
The S/D extent regions are SiGe, and are kept the same for all the devices.

It is possible for the fabrication of SGOI FinFET devices to be compatible with con-
ventional CMOS technology, since it only requires the deposition of SiGe Fin on the
SOI substrates.

To evaluate the performance of the devices, we connected 9 inverters to each other
to form a 9-stage ring oscillation circuit, and we constructed a standard 6T-SRAM. The
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simulation flow is illustrated in Figure 3. The simulation flow is illustrated in Figure 3. The
simulation flow is separated in 3 parts as follows.
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Table 1. Parameters and variables of devices in this work.

Parameter Quantity Value

Lg Gate Length 15 nm
Wch Fin Width 5 nm

H Fin Height 30 nm
Tox Oxide Thickness 2 nm

Lspacer Spacer Length 5 nm
CPP Contact Poly Pitch 40 nm
NSD S/D Doping Concentration 3 × 20 cm−3

NCH Channel Doping Concentration 3 × 15 cm−3

Channel Material Channel Material Si1−xGex

Variable Quantity value

x Ge content 0, 0.05, 0.1, 0.15, 0.2
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2.1. Device Structure Generation

The devices listed previously share a common layout as in Figure 1, and are generated
as in Figure 2. For the devices only differ in doping type and Ge content in the SiGe channel,
all the NMOS and PMOS devices share the same structure. The Ge content of the channels
is altered by the parameter “ChannelMaterialComposition” when the SGOI devices are
generated. The doping concentration in the channel is independent of the Ge content. The
difference in Ge content affects the intrinsic parameters of the channel material such as
density of states (DOS) and carrier mobility.

2.2. Device Simulation and Model Extraction

With help of GTS Minimos-NT, we simulate the transfer characteristics, output charac-
teristics, and CV characteristics of the devices. The parasitic capacitances and resistances
net of the devices are also extracted. The BSIM-CMG 110.0 model of the devices is ex-
tracted in an automatic process through Python script from the results of the characteristics
simulation and the parasitic extraction.

2.3. Cell Circuits SPICE Simulation

For both single FinFET devices and cell circuits (RO and SRAM), the extracting process
of the parasitic parameters is performed by GTS Minimos-NT. The netlist of the RO circuit
for SPICE transient simulation is built from the extracted BSIM models and the parasitic
parameters of the devices. By connecting the transistors and the parasitic capacitances and
resistances, the netlist of a 9-stage RO circuit is built. By analyzing the transient curve of the
output voltage variation with the input voltage, the power consumption and performance
of these RO circuits are derived and evaluated.

The basic working flow for SRAM cells is almost the same, with the same model
cards used. Differently, the SRAM cell structures are layout-generated, and the parasitic
parameters of the SRAM cells are extracted as a whole system. The static and transient
simulations of the SRAM cells are performed by SPICE. The power consumption and
performance of the SRAM cells are analyzed and compared from the simulation results.

In order to improve the in-process and post-process accuracy of the simulation in
this study, the following physical models are activated and considered in the TCAD
simulation process:

1. The carrier transport and electrostatic potential problem is solved from the coupled
Poisson’s equation and continuity equations, with the drift-diffusion model on.

2. The density gradient model is activated to improve the accuracy of the drift diffusion
model in simulating nanoscale devices [21].

3. In order to accelerate the simulation process, the quasi-Fermi potential model is
activated. As no continuity equation is to be solved, the size of the carrier equation
system is reduced and the simulation time is shortened.

4. The bandgap narrowing model from Slotboom is included to modify the bandgap of
silicon at a high doping level [22].

5. A ballistic transport model is considered because the gate length has reached the
ballistic limit [23].

6. The carrier mobility for SiGe alloy is assumed to be linear and positively correlated
to the Ge fraction in SiGe, which can be expressed as µSiGe = µSi·(1 + C0x), where x
denotes the material composition, and C0 is a constant factor that differs for electrons
and holes.

7. The most important effect of altering the Ge content in this work is to modify the
carrier mobility in the SiGe channel. The influence of mechanical stress and trap states
is not taken into consideration of this simulation work.
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3. Results and Discussion
3.1. Device Simulation Results

The results of the saturated transfer characteristic simulation are illustrated in Figure 4.
The linear transfer characteristics are simulated at VDrain = ±0.05 V, and the saturated
transfer characteristics are simulated at VDrain = ±0.7 V. The subthreshold swing (SS) of
the devices is extracted through constant current method at IDrain = ±10−7 A. For NMOS
devices, the transfer characteristics of different devices are essentially the same, and the
SS at saturation is about 79 mV/decade. For PMOS devices, the SS at saturation is about
81 mV/decade. There is hardly any difference in SS and drain-induced barrier lowering
(DIBL), which indicates the surrounding gate offers good control capability over the channel,
and the buried oxide layer suppresses the leakage current.
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Furthermore, the dependence of threshold voltage (Vth) on Ge fraction of the simu-
lated devices varies according to the doping type, as is displayed in Figure 5. The threshold
voltages are extracted by finding the maximum curvature point on the curve. The rela-
tionship between the Vth and Ge fraction is approximately linear, and the slope of NMOS
and PMOS appears to be different. The slope of NMOS devices hardly varies with Ge
fraction, and is roughly −0.48 mV/Ge%. The slope of the absolute value of the threshold
voltage variation with Ge fraction for PMOS devices is roughly −6.41 mV/Ge%. The CV
characteristics of the devices are simulated at VDrain = ±0.05 V, and VGate from −1.5 V to
1.5 V.

The parasitic capacitance and resistance net for each device is extracted. Figure 6a
visualizes the extracted parasitic capacitance net in a single device, and Figure 6b presents
the extracted parasitic resistance net. As is shown in Figure 6, the largest parasitic ca-
pacitance exists between gate and source (or drain). The largest resistance in a device is
the source/drain epi resistance. The parasitic capacitance is a critical factor not only to
the speed performance, but also to the power consumption of the circuit. By reducing
the parasitic capacitance and resistance of a single device, the performance and power
consumption of the circuit can be significantly optimized.

Each BSIM model is extracted from 2 IDVG curves, 3 IDVD curves, 1 CGVG curve, and
the parasitic parameters. To estimate the accuracy of the extracted BSIM model, the IV and
CV characteristics are re-simulated by SPICE simulator, and the correlation coefficients (ρ)
are computed. Take CV characteristics for example, Figure 7 shows the TCAD and SPICE
simulation results of the CV characteristics of the NMOS device with Silicon channel. The
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average correlation coefficient for CV characteristics of all devices is 0.9987, which indicates
that the accuracy is guaranteed in the extraction process.
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3.2. RO Results and Discussion

The 9-stage ring oscillator is constructed by connecting the gates and drains of 9 CMOS
inverters to each other. The equivalent circuit of the simulated 9-stage RO is shown in
Figure 8. To construct a ring oscillator circuit, the number of CMOS inverters needs to
be an odd number. Selecting the 9-stage ring oscillator circuit is sufficient to evaluate the
performance of the circuits, and is simple enough to accelerate the simulation process and
shorten the simulation duration.
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Figure 9 shows the transient simulation result of the RO circuit consists of Si channel
devices with an initial perturbation applied. By extracting the neighboring highest and
lowest points on the curve and multiplying by two, the period (T) of the RO circuit is
calculated. The oscillation frequency (f) of the ring oscillation circuit is the reciprocal of the
period, the transmission delay (tringdelay) is the period divided by 2n (tringdelay = T/(2n)),
and n is the number of stages of the RO circuit.
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By analyzing the key performance indexes, the RO circuits are compared and evaluated
to each other. Except for T, f, and tringdelay, the average power consumption (Pavg), effective
capacity (Ceff), effective resistance (Reff), and average operating current (IDDA) are also
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extracted from the transient curve. By averaging the operating current (IDD) over half a
cycle (integrating the operating current over half a cycle, then divide the integration by
the time), we derived the average operating current (IDDA). Likewise, the average power
consumption (Pavg) is obtained by averaging the product of operating current (IDD) and
operating voltage (VDD) during half a cycle. The effective capacity (Ceff) is calculated by
the formula of Ceff = 2 tringdelay ∗ IDDA/VDD.

The relationship between the RO oscillation frequency and the RO frequency is ana-
lyzed and compared, and the results are presented in Figure 10. The line passing through
the point “Si” also passes through the coordinate origin, and so does the line pass through
the point “Si0.85Ge0.15”. The other points lie in the region between the 2 lines. In general,
the power consumption is positively correlated with the frequency, the circuit with higher
Oscillation frequency has higher power consumption. Among the simulated devices, the
Si0.85Ge0.15 device offers fastest speed (highest frequency of 9.99 GHz) with the second
highest power consumption (56.28 µW), and the Si0.95Ge0.05 device provides medium speed
with medium power consumption.
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3.3. SRAM Results and Discussion

Subsequently, we constructed SRAM circuits in SPICE netlist from these devices.
Figure 11a displays the layout of the basic 6T-SRAM cell. The equivalent SRAM cell is
shown in Figure 11b, which is consist of 2 NMOS pass gate (PG) transistors, 2 NMOS pull
down (PD) transistors, and 2 PMOS pull up (PU) transistors. Each SRAM cell is constructed
of NMOS and PMOS devices with identical Ge fraction.

The voltage transfer curves (VTC) of the circuits are simulated at VDD = 0.8 V. The static
read state, the static hold state, and the static write state of the SRAM cells are simulated,
and the devices are evaluated by the KPIs of the SRAM cells. The basic method to extract
static noise margin (SNM) from a voltage transfer curve of an SRAM, as is illustrated in
Figure 12 for read SNM, is to find the largest square that can fit inside the area between the
forward sweeping curve and the backward sweeping curve. The side length of which is the
SNM we need. The read SNM and the hold SNM are both extracted through this method.
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Figure 12. The simulated read voltage transfer curves and the method of extracting read SNM from
the VTC.

The read static noise margin and the hold static noise margin represents the stability
of the SRAM during the read process and in hold state. Figure 13 shows the relationship
between the read SNM and the hold SNM. The RSNM results are simulated by sweeping
VQ forward while BL, BLB, and WL are at VDD = 0.8 V. The HSNM results are simulated by
sweeping VQ forward while BL, BLB at VDD = 0.8 V, and WL at 0 V. For the goal of being
able to resist greater noise, the device on the upper right part is more preferred.

For the read state, the read SNM is positively correlated with the Ge fraction in the
SiGe channel, because higher drive current is presented in devices with higher Ge fraction.
The SRAM with Si0.8Ge0.2 channel shows largest RSNM of 0.162 V. But for the hold state,
the hold SNM reaches its maximum of 0.335 V at a Ge fraction of 0.05. Considering HSNM
and RSNM together, the Si0.95Ge0.05 devices balance the best of the both indices.
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Figure 13. Hold SNM versus read SNM.

For write state simulation, the write trip point (WTP) and the on-state current are
simulated. The WTP marks the voltage when the bit stored in SRAM flips, and the on-state
current refers to the current of BL of SRAM when WL = 1. The relationship between the
WTP and the on-state current is illustrated in Figure 14. The WTP and the on-state current
are both negatively correlated with the Ge fraction in the SiGe channel. The Si devices offer
the highest WTP of 0.31 V and the largest Ion of 5.26 µA. The Si0.8Ge0.2 devices provide the
lowest WTP of 0.19 V and the smallest Ion of 1.64 µA.
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4. Conclusions

In this paper, we performed a parasitic-parameter-involved Design Technology Co-
optimization process on RO circuits and SRAM cells consist of SGOI FinFETs to optimize
the Ge fraction in the SiGe channels, thereby to evaluate and select the SGOI FinFET
devices architecture.
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The simulation result shows the dependence of threshold voltage on channel Ge
fraction differs in the doping type. The threshold voltage for NMOS devices decreases
slightly with increase in Ge content, while the absolute value of the threshold voltage for
PMOS devices decreases significantly. The Ge fraction dependent RO and the SRAM merits
conclude that the optimal Ge fraction varies according to specific circuit structure.
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