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Abstract: In the emerging process-based transistors, random telegraph noise (RTN) has become a
critical reliability problem. However, the conventional method to analyze RTN properties may not be
suitable for the advanced silicon-on-insulator (SOI)-based transistors, such as the fully depleted SOI
(FDSOI)-based transistors. In this paper, the mechanism of RTN in a 22-nm FDSOI-based metal–oxide–
semiconductor field-effect transistor (MOSFET) is discussed, and an improved approach to analyzing
the relationship between the RTN time constants, the trap energy, and the trap depth of the device at
cryogenic temperatures is proposed. The cryogenic measurements of RTN in a 22-nm FDSOI-based
MOSFET were carried out and analyzed using the improved approach. In this approach, the quantum
mechanical effects and diffuse scattering of electrons at the oxide–silicon interface are considered,
and the slope of the trap potential determined by the gate voltage relation is assumed to decrease
proportionally with temperature as a result of the electron distribution inside the top silicon, per the
technology computer-aided design (TCAD) simulations. The fitted results of the improved approach
have good consistency with the measured curves at cryogenic temperatures from 10 K to 100 K. The
fitted trap depth was 0.13 nm, and the decrease in the fitted correction coefficient of the electron
distribution proportionally with temperature is consistent with the aforementioned assumption.

Keywords: random telegraph noise (RTN); fully depleted silicon-on-insulator (FDSOI); cryogenic
temperatures; trap depth; inversion layer thickness

1. Introduction

With the scaling down and utilization of high-k metal gates (HKMGs) in metal-oxide-
semiconductor field-effect transistors (MOSFETs), the occurrence of random telegraph
noise (RTN), especially the generation of random telegraph signals (RTSs), is becoming a
critical reliability problem in analog integrated circuits (ICs), digital ICs, and the memories
due to the shift in threshold voltage from the capture and emission of carriers by traps
inside the gate oxide [1–5]. Moreover, RTN is also a severe reliability problem in cryogenic
quantum computing applications [6]. The integrated quantum processor, which contains
quantum bits (q-bits) and peripheral circuits, operates at cryogenic temperatures. Because
its peripheral circuits are based on MOSFETs, the RTN from the cryogenic MOSFETs may
cause reliability problems in the integrated quantum processor. Besides, RTN can also
cause reliability problems in other applications whose peripheral circuits are based on
MOSFETs, such as the two-dimensional material-based applications [7–10]. Past research
studying the mechanism of RTN on cryogenic bulk MOSFETs has already been presented,
where primarily, the properties of RTN, such as time constants and trap depth, have been
discussed [6,11,12]. However, the mechanism of RTN in the cryogenic fully depleted silicon-
on-insulator (FDSOI) MOSFET, especially the relationship between the time constant, trap
energy, and trap depth, is hardly mentioned in recent works. Considering that FDSOI
MOSFETs are promising candidates for the peripheral circuits in integrated quantum
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processors, it is necessary to investigate the mechanism of RTN at cryogenic temperatures
in FDSOI MOSFETs.

In MOSFETs, both bulk and FDSOI MOSFETs, traps in the gate oxide may capture
carriers from the channel or release (emit) carriers into the channel. This capture or
emission of carriers can temporarily change the threshold voltage of the MOSFET, leading
to a temporary shift in the drain current, as shown in Figure 1. The duration of capture and
emission of carriers are denoted by tc and te, respectively.
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Figure 2. The fitting of 𝜏𝛼 to the Poisson distribution and the extraction of 𝜏𝛼. 

Figure 1. RTN in MOSFET, tc is the capture time and te is the emission time.

The tc and te appear randomly, obeying the Poisson distribution, and can be described
as [13,14]:

Pα(tα) =
1
τα

exp
(
− tα

τα

)
α = c or e (1)

where, τα is the time constant of the capture or emission; Pα(tα)dtα is the probability that
the capture or emission occurs between tα and tα + dtα. To extract τα, the distribution of tα

is fitted to Equation (1), as shown in Figure 2. The measured data are the counts of different
tα; by fitting them to the Poisson distribution, τα can be extracted.
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To understand the relationship between the time constants τα and the trap energy ET ,
the grand partition function is adopted. According to the grand partition function, the
relationship between τα and ET can be described by [13,15]:

τc = τ0·[1 + e(ET − EF)/kT] (2)

τe = τ0·
[
1 + e− (ET − EF)/kT

]
(3)

where, τ0 is the characteristic time constant, EF is the Fermi level, k is the Boltzmann
constant, and T is the absolute temperature. Then, it can be inferred that:

ln
τc

τe
=

(ET − EF)

kT
(4)

In the bulk MOSFET, when the device is operating in the strong inversion region
(assuming the potential of the inversion layer is pinned to the gate voltage), the trap depth
can be extracted by Equation (4) [16–20]:

XT
tox

= − kT
q

d lnτc/τe

d Vg
(5)

where, XT is the trap depth from the oxide-silicon interface, tox is the thickness of the gate
oxide, Vg is the gate voltage, and q is the charge of the electron.

Although the bulk MOSFET and the FDSOI MOSFET are both planar devices, it is still
uncertain as to whether the relationship between the RTN time constants, the trap energy,
and the trap depth in the bulk MOSFET (Equation (5)) is suitable for the FDSOI MOSFET
or not. Thus, exploring an appropriate method to analyze the RTN properties in FDSOI
MOSFETs, especially at cryogenic temperatures, is meaningful for reliability analysis in
emerging SOI processes.

In this paper, the mechanism of RTN at cryogenic temperatures on a 22-nm FDSOI
MOSFET is reported, and the relationship between the time constants, trap energy, and
trap depth at cryogenic temperatures of the 22-nm FDSOI MOSFET is discussed. The
paper is organized as follows: Section 2 introduces the experimental configuration of the
cryogenic measurement of RTN in the 22-nm FDSOI MOSFET. Next, Section 3 presents the
measurement results and the problems with the analysis of RTN. Then, Section 4 attempts
to explain the problems mentioned in Section 3 and proposes an improved approach to
analyzing the RTN in FDSOI MOSFETs at cryogenic temperatures. Finally, Section 5 makes
a brief conclusion.

2. Experimental Configurations

To measure the RTN properties of the 22-nm FDSOI MOSFET at cryogenic temper-
atures, the device under test (DUT) of this experiment is based on the 22FDX technol-
ogy from Global Foundries [21,22]. The 22FDX technology provides low threshold volt-
age (LVT) and super low threshold voltage (SLVT) N- and P-type MOSFETs with differ-
ent gate lengths (L) and widths (W). For the experiment, a LVT N-type MOSFET with
W/L = 160 nm/20 nm was chosen. The main dimensions of the chosen MOSFET are shown
in Table 1. In Table 1, tSi, tBOX, tOX, Lg, and W are the thickness of the top silicon, thickness
of the buried oxide (BOX), thickness of the gate oxide, channel length, and channel width,
respectively. The 22FDX technology uses the HKMG technology, where the traps inside the
high-k gate oxide or at the oxide-silicon interface make the RTN problems worse.

The cryogenic experiments were conducted between 10 K and 100 K on a Lakeshore
cryogenic probe station, and the RTN measurements were performed using the Keithley
4200A. To explore the changes in the properties related to RTN, in the measurements, the
drain voltage was kept constant while Vg was varied and the time-domain characteristics
of the drain current were sampled.
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Table 1. The main dimensions of the 22-nm FDSOI MOSFET.

Name Geometric Size

tSi 7 nm
tBOX 25 nm
tOX 2 nm
Lg 20 nm
W 160 nm

3. Measurement Results

In the cryogenic RTN measurements on the FDSOI, it was observed that the tc (high)
and te (low) vary with the change in the Vg and T, which reveals that the time constants
also vary with the Vg and T, as shown in Figure 3. Thereafter, the time constants were
extracted as introduced in Section 1.
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Figure 4 illustrates the relationship of τc and τe with Vg at different cryogenic tem-
peratures from 10 K to 100 K. With the increase in temperature, both τc and τe decrease.
However, when Vg decreases, τc increases exponentially, while τe only slightly increases.
This is different from the phenomenon in [23] where τc increases exponentially and τe
decreases exponentially with the decrease in Vg at room temperature.

At room temperature, the characteristic time constant, τ0, in Equations (2) and (3) is
considered as constant that will not change with Vg. Thus, the relationship of τc and τe
with Vg according to Equations (2) and (3) would be different than what was observed
in this study: if one time constant increases exponentially, the other should decrease
exponentially [23]. However, according to the thermal activation theory [13], τ0 may not be
treated as a constant at cryogenic temperatures. Figure 5 shows the plots of τ0 with Vg of the
FDSOI at different cryogenic temperatures. It can be seen that τ0 decreases exponentially
as Vg increases, which may be due to the increasing carrier density in the inversion layer
with the increase of Vg.
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Figure 5. τ0 versus Vg at different cryogenic temperatures.

To extract the trap depth using Equation (5), ln τc
τe

is calculated, plotted by Vg, and
linearly fitted to extract the slope. Figure 6a shows the fitting procedure at T of 25 K. The
slope of the fitted curve is −30.37, and according to Equation (5), XT

tox
is 0.06581. Similarly,

the trap depth was extracted for cryogenic temperatures of 10 K, 50 K, 77 K, and 100 K as
well. The absolute errors between measured and linearly fitted ln τc

τe
curves are illustrated

in Table 2. The total maximum error and total average error are 0.63789 and 0.13280,
respectively. As shown in Figure 6b, XT

tox
falls from 0.4443 at 100 K to 0.02599 at 10 K. This is

an abnormal phenomenon because the location of the traps in the gate oxide is unlikely to
change with the change in temperature in the FDSOI MOSFET. Moreover, this also implies
that the conventional method of extracting the trap depth—i.e., Equation (5)—is probably
not suitable for newer types of MOSFETs, such as the FDSOI MOSFET.
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Table 2. The absolute errors between measured and linearly fitted ln τc
τe

curves.

Temperature Max Error Average Error

100 K 0.21419 0.06411
77 K 0.63789 0.17187
50 K 0.29193 0.10779
25 K 0.30458 0.14914
10 K 0.54369 0.17107
Total 0.63789 0.13280
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4. Discussion

In the conventional trap depth extraction, the basic assumptions are that the potential
of the inversion layer is constant and the peak of the carrier density is at the oxide-silicon in-
terface, which are suitable for the bulk MOSFET. To extract the trap depth, from Equation (4),
the first derivative of ln τc

τe
with respect to Vg is taken [24]:

d lnτc/τe

d Vg
= − q

kT
d VTrap

d Vg
(6)

where, VTrap stands for the trap potential.
Figure 7 illustrates the geometric relationship between the Vg, VTrap, and XT . It can be

inferred easily that:

Vtrap = Vinv + EOX XT =
Vg − Vinv

tOX
XT + Vinv = Vg

XT
tOX

+ Vinv

(
1 − XT

tOX

)
(7)

where, Vinv is the inversion layer potential and EOX is the electrical field intensity inside the
gate oxide. Assuming that Vinv is constant in the strong inversion region, the first derivative
of Vtrap with respect to Vg is:

d VTrap

d Vg
=

XT
tOX

(8)

Thus, combining Equations (6) and (8), Equation (5) can be derived.
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Nevertheless, these assumptions, while suitable for bulk MOSFETs, may not be precise
for FDSOI MOSFETs. In the FDSOI MOSFET, carriers are generated inside the entire top
silicon, and most of the time the peak of the carrier density is not located at the oxide-silicon
interface due to quantum processes [25–31] and diffuse scattering [32,33]. Thus, the geo-
metric relationship shown in Figure 7 is not precise for FDSOI MOSFETs, and Equation (8)
cannot be derived by the differentiation of Vtrap. Although Equations (5), (7) and (8) are
no longer suitable for the FDSOI MOSFET, the slope of Vtrap to Vg is still an important
trap-related characteristic.

To explore the influence of the carrier distribution in the top silicon on the slope
of Vtrap with respect to Vg, TCAD simulations were performed. The TCAD simulations
were implemented by Silvaco TCAD tools, and the quantum correction method is a self-
consistent coupled Schrodinger-Poisson model. The device structure in the simulations is
consistent with the real geometric size of a 22-nm FDSOI MOSFET as shown in Table 1.
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Figure 8 illustrates the simulated results. The cutline of the electron density is in the middle
of the channel, and the trap depth is set to 0.1 nm. Figure 8a, shows the results of the
simulation that was performed at 10 K while the quantum correction was disabled. It can
be observed that the peak of the electron density is at the oxide-silicon interface, resulting
in a Vtrap − Vg slope of 0.05333. The slope from the simulation has good consistency with
Equation (8), where XT

tOX
= 0.05. In Figure 8b, the temperature of the simulation was 100 K

and the quantum correction was enabled. As a result of the quantum correction and the
diffuse scattering, the peak of the electron density is at about 1.5 nm from the interface,
and the electrons are distributed in a wide range inside the top silicon. Hence, the slope of
Vtrap − Vg is greater than that in Figure 8a: 0.6138. The simulations demonstrate that the
slope of Vtrap with respect to Vg is strongly related to the distribution of electrons inside the
top silicon and that the non-ideal electron distribution caused by quantum processes and
diffuse scattering significantly increases the slope. Therefore, according to Equation (8),
non-ideal electron distribution can also lead to a significant increase in the calculated
trap depth.
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As shown in Figure 6b, the calculated trap depth increases with temperature. Addi-
tionally, as discussed before, the non-ideal distribution of electrons increases the calculated
trap depth as well. Thus, it can be deduced that temperature has a significant influence
on the electron distribution inside the top silicon. To investigate this relationship, the
quantum mechanical processes and diffuse scattering are first considered. Previous studies
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have already proven that the inversion layer thickness—the average distance from the
oxide-silicon interface to electrons—is primarily a result of quantum mechanics and diffuse
scattering and decreases with the reduction in temperature [13,29,32,33], which means
that the electrons in the inversion layer are closer to the oxide-silicon interface at lower
temperatures. In other words, the electron distribution is closer to ideal as the temperatures
decreases. This may explain the reduction in the calculated trap depth and in the Vtrap − Vg
slope in Figure 6b.

To explain this issue quantitatively, an improved approach to analyzing the trap depth
calculated from the RTN time constants is to be derived. To simplify the calculation, the
potential at the inversion layer thickness is assumed to be pinned with respect to Vg. In
addition, the electrical field intensity inside the inversion layer is also assumed to be
uniform. These assumptions indicate that the electrons inside the inversion layer are
gathered at the inversion layer thickness, i.e., the electron distribution has been ignored.
Figure 9 illustrates an improved schematic showing the geometric relationship between
VTrap and XT in the inversion region.
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From Figure 9, it can be derived:

EOX =
εSi

εOX
Einv (9)

Vtrap = Vinv + Einv tinv + EOX XT (10)

where, εSi, εOX , Einv, and tinv are the relative permittivity of silicon, the relative permittivity
of the gate oxide, the effective electrical field intensity inside the inversion layer, and the
inversion layer thickness, repectively. Combining Equations (9) and (10):

Vtrap = Vinv + Einv

(
tinv +

εSi
εOX

XT

)
(11)

here, tinv is a result of both quantum mechanics and diffuse scattering.
As discussed in [28], the inversion layer thickness due to quantum mechanics at room

temperature can be given by:

tinv,QM =
β

α + Einv
0.7 (12)
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where, α = 1 (MV/cm)0.7 and β = 1.9 × 10−7 cm (MV/cm)0.7 [13]. demonstrates that the
inversion layer thickness decreases linearly with the reduction in temperature. Thus, in this
deduction, it is also assumed that the inversion layer thickness from quantum mechanics
decreases linearly with temperature:

tinv,QM =
β

α + Einv
0.7

T
T0

(13)

where, T0 is the room temperature.
According to [32], the inversion layer thickness from the diffuse scattering is:

tinv,DS =
3kT

2qEinv
(14)

So, the total inversion layer thickness becomes:

tinv = tinv,QM + tinv,DS =

(
β

α + Einv
0.7 +

3kT0

2qEinv

)
T
T0

(15)

Einv is given by:

Einv =
Vgtx + α( Vth − VFB − ϕs)

2tOX
(16)

Vgtx = ηvt ln
[

1 + exp
(

Vg − Vth

ηvt

)]
(17)

where, Vgtx is the auxiliary function of Vg, α is a fitting parameter, Vth is the threshold
voltage, VFB is the flat band voltage, ϕs is the surface potential, η is the sub-threshold swing
parameter, and vt is the thermal voltage.

Based on the above discussion, with the increase in temperature, the electrons spread
further into the top silicon, which was not considered in the former deduction. Thus, the
correction of the electron distribution applied to Equation (11) is:

Vtrap = Vinv + Einv

(
tinv +

εSi
εOX

XT

)
+ χ Vg (18)

where, χ is the correction coefficient of the electron distribution and represents the influence
of the electron distribution on the Vtrap − Vg slope.

To fit the measured ln τc
τe

, both sides of Equation (6) is integrated with respect to Vg as:

ln
τc

τe
= − q

kT
(
VTrap − Vinv

)
+ Con. (19)

where, Con. is the constant of integration. Combining Equations (15), (18) and (19) the
fitting to the measured ln τc

τe
can be implemented.

Figure 10 shows the fitted plots of ln τc
τe

by Vg applying the fitting parameters in Table 3
and using the above deductions. They show good consistency with the measured plots for
temperatures from 10 K to 100 K. The absolute errors between measured and fitted ln τc

τe
curves are shown in Table 4. The total maximum error is 0.62478 and the total average
error is 0.10574, which are respectively lower by 2.1% and 20% than the conventional linear
fitting. Among the fitting parameters, the fitted XT is 0.13 nm and χ decreases from 0.34 to
0 with the reduction in temperature. The trend shown by χ indicates that the electrons are
further spread into the top silicon with the rise in temperature, which is consistent with the
former assumption.
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Table 3. The parameters for fitting the ln τc
τe

plots.

Temperature T0 α β η tOX XT Vth α( Vth−VFB−ϕs) χ Con.

100 K

300
K

1
(MV/cm)0.7

1.9 × 10−7

cm(MV/cm)0.7 1.3 2 nm 0.13 nm

0.46 V 0.05 V 0.34 24.1
77 K 0.49 V 0.05 V 0.23 23.3
50 K 0.49 V 0.08 V 0.08 15.2
25 K 0.57 V 0.12 V 0.036 14.3
10 K 0.55 V 0.15 V 0 7.85

Table 4. The absolute errors between the measured and fitted ln τc
τe

curves.

Temperature Max Error Average Error

100 K 0.27068 0.06977
77 K 0.62478 0.17199
50 K 0.3329 0.12734
25 K 0.17920 0.07727
10 K 0.16343 0.08233
Total 0.62478 0.10574

5. Conclusions

This paper proposes an improved approach to analyze the RTN properties of 22-nm
FDSOI-based MOSFETs at cryogenic temperatures. The cryogenic measurements of RTN
on a 22-nm FDSOI-based DUT have been performed and analyzed using the improved
approach, where the quantum mechanical effects and diffuse scattering of electrons inside
the top silicon are considered. The basic assumption here is that the Vtrap by Vg slope
decreases proportionally with temperature due to the variation of the electron distribution,
according to the TCAD simulation results. Applying the improved approach, the calculated
and fitted plots of ln τc

τe
by Vg is found to be consistent with the measured results earlier.

The fitted XT was 0.13 nm, and the decrease of χ proportional with temperature indicates
consistency with the aforementioned assumption. This work provides a new method for
analyzing RTN in FDSOI MOSFETs at cryogenic temperatures, which plays a significant
role in the reliability of cryogenic integration circuits such as the integrated quantum
processor. It can also be used to analyze reliability problems caused by RTN in emerging
SOI MOSFETs at the cryogenic temperatures.
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