Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = silicon-on-ferroelectric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4297 KB  
Article
Camera-in-the-Loop Realization of Direct Search with Random Trajectory Method for Binary-Phase Computer-Generated Hologram Optimization
by Evgenii Yu. Zlokazov, Rostislav S. Starikov, Pavel A. Cheremkhin and Timur Z. Minikhanov
J. Imaging 2025, 11(12), 434; https://doi.org/10.3390/jimaging11120434 - 5 Dec 2025
Viewed by 425
Abstract
High-speed realization of computer-generated holograms (CGHs) is a crucial problem in the field of modern 3D visualization and optical image processing system development. Binary CGHs can be realized using high-resolution, high-speed spatial light modulators such as ferroelectric liquid crystals on silicon devices or [...] Read more.
High-speed realization of computer-generated holograms (CGHs) is a crucial problem in the field of modern 3D visualization and optical image processing system development. Binary CGHs can be realized using high-resolution, high-speed spatial light modulators such as ferroelectric liquid crystals on silicon devices or digital micro-mirror devices providing the high throughput of optoelectronic systems. However, the quality of holographic images restored by binary CGHs often suffers from distortions, background noise, and speckle noise caused by the limitations and imperfections of optical system components. The present manuscript introduces a method based on the optimization of CGH models directly in the optical system with a camera-in-the-loop configuration using effective direct search with a random trajectory algorithm. The method was experimentally verified. The results demonstrate a significant enhancement in the quality of the holographic images optically restored by binary-phase CGH models optimized through this method compared to purely digitally generated models. Full article
(This article belongs to the Section Mixed, Augmented and Virtual Reality)
Show Figures

Figure 1

12 pages, 2455 KB  
Article
Reconfigurable All-Optical Synapse Based on Photonic Crystal Nanobeam Cavities with Ferroelectric Carrier Injection Valve
by Duomao Li, Han Xie, Danyang Yao, Erqi Zhang, Jiaren Song, Youbin Wang, Yiwei Zhang, Xu Ran, Dongming Fang, Xiaoli Lu, Xiaohua Ma and Yue Hao
Photonics 2025, 12(9), 871; https://doi.org/10.3390/photonics12090871 - 29 Aug 2025
Viewed by 1104
Abstract
Synaptic activity is fundamental to memory and learning in the nervous system. However, most artificial synaptic devices are limited to mimicking static plasticity, and tunable plasticity has not been achieved at the device level. Here, we introduce a dynamic all-optical synapse based on [...] Read more.
Synaptic activity is fundamental to memory and learning in the nervous system. However, most artificial synaptic devices are limited to mimicking static plasticity, and tunable plasticity has not been achieved at the device level. Here, we introduce a dynamic all-optical synapse based on photonic crystal nanobeam cavities with a ferroelectric carrier injection valve. By leveraging the nonlinear and ferroelectric electrostatic doping effects in silicon, integrated with Hf0.5Zr0.5O2 (HZO) film as the ferroelectric layer and indium tin oxide (ITO) as the top electrode, we enhance linearity and reduce power consumption. Increasing the bias voltage further improves linearity while decreasing power consumption. This innovation offers a promising pathway for developing energy-efficient nanophotonic devices in neuromorphic computing. Full article
(This article belongs to the Special Issue Silicon Photonics: From Fundamentals to Future Directions)
Show Figures

Figure 1

9 pages, 2952 KB  
Communication
Interfacial Polarization Mechanism in Image Sticking of Polyimide-Based Flexible OLEDs
by Zhipeng Li, Haowen Li, Dawei Ma, Baojie Zhao and Yanbo Li
Polymers 2025, 17(17), 2333; https://doi.org/10.3390/polym17172333 - 28 Aug 2025
Viewed by 1003
Abstract
Organic light-emitting diodes (OLEDs) have emerged as a critical battleground in display technology due to their self-emissive and foldable properties. However, the adoption of polyimide (PI) as a flexible substrate material introduces technical challenges, particularly image sticking. This study proposes an interfacial polarization [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as a critical battleground in display technology due to their self-emissive and foldable properties. However, the adoption of polyimide (PI) as a flexible substrate material introduces technical challenges, particularly image sticking. This study proposes an interfacial polarization mechanism to explain this phenomenon, confirmed through dielectric and ferroelectric spectroscopy. The results show that introducing an amorphous silicon (α-Si) interlayer significantly improves interface compatibility, increasing the polarization response frequency from 74 Hz to 116 Hz and reducing residual polarization strength from 2.81 nC/cm2 to 1.00 nC/cm2. Practical tests on OLED devices demonstrate that the optimized structure (PI/α-Si/SiO2) lowers the image sticking score from 3.46 to 1.67, validating the proposed mechanism. This research provides both theoretical insights and practical solutions for mitigating image sticking in flexible OLED displays. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

11 pages, 2264 KB  
Article
Mole Fraction Dependent Passive Voltage Amplification in FE-DE Heterostructure
by Archana Chamarahalli Manjunatha, Pratheeksha Suresh, Akshatha Bhat, Vikash Mishra, Yashwanth Nanjappa, Bhaskar Awadhiya and Sachin Agrawal
Electron. Mater. 2025, 6(3), 11; https://doi.org/10.3390/electronicmat6030011 - 20 Aug 2025
Viewed by 3383
Abstract
This paper explores ferroelectric–dielectric heterostructures comprising a ferroelectric oxide (Lead Zirconium Titanate (PbZr1xTix O3)) with a varying mole fraction and a fixed dielectric oxide (Silicon dioxide [...] Read more.
This paper explores ferroelectric–dielectric heterostructures comprising a ferroelectric oxide (Lead Zirconium Titanate (PbZr1xTix O3)) with a varying mole fraction and a fixed dielectric oxide (Silicon dioxide (SiO2)). The study aims to enhance capacitance, optimize voltage amplification, and achieve stable negative capacitance. An isolated ferroelectric capacitor is examined by varying mole fractions of ferroelectric oxide. The negative capacitance in isolated ferroelectric capacitor is highly unstable in nature. The instability problem is fixed and the overall capacitance of the heterostructure is raised while the negative capacitance is stabilized by connecting a dielectric oxide in series with the ferroelectric capacitor. PbZr1xTix O3 is utilized as the ferroelectric oxide, with mole fractions x=0,0.2,0.4,0.6,0.8,1.0. Among the investigated mole fractions, ferroelectric oxide with x=0.6 offers the maximum voltage amplification and improved capacitance because its capacitance closely matches the dielectric capacitance. Also, dynamic response and temperature analysis of heterostructure are studied further. Full article
Show Figures

Figure 1

19 pages, 7029 KB  
Article
Bipolar Switching Properties and Reaction Decay Effect of BST Ferroelectric Thin Films for Applications in Resistance Random Access Memory Devices
by Yao-Chin Wang, Kai-Huang Chen, Ming-Cheng Kao, Hsin-Chin Chen, Chien-Min Cheng, Hong-Xiang Huang and Kai-Chi Huang
Nanomaterials 2025, 15(8), 602; https://doi.org/10.3390/nano15080602 - 14 Apr 2025
Cited by 2 | Viewed by 887
Abstract
In this manuscript, strontium barium titanate (BST) ferroelectric memory film materials for applications in the feasibility of applying to non-volatile RAM devices were obtained and compared. Solutions were synthesized with a proportional ratio and through the deposition of BST films on titanium nitride/silicon [...] Read more.
In this manuscript, strontium barium titanate (BST) ferroelectric memory film materials for applications in the feasibility of applying to non-volatile RAM devices were obtained and compared. Solutions were synthesized with a proportional ratio and through the deposition of BST films on titanium nitride/silicon substrates using the sol–gel method, using rapid thermal annealing for defect repair and re-crystallization processing. The crystallization structure and surface morphology of annealed and as-deposited BST films were obtained by XPS, XRD, and SEM measurements. Additionally, the ferroelectric and resistive switching properties for the memory window, the maximum capacitance, and the leakage current were examined for Al/BST/TiN and Cu/BST/TiN structure memory devices. In addition, the first-order reaction equation of the decay reaction behavior for the BST film RRAM devices in the reset state revealed that r=0.19[O2]1. Finally, the Cu/BST/TiN and Al/BST/TiN structures of the ferroelectric BST films RRAM devices exhibited good memory window properties, bipolar switching properties, and non-volatile properties for applications in non-volatile memory devices. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 15832 KB  
Article
A Pathway for the Integration of Novel Ferroelectric Thin Films on Non-Planar Photonic Integrated Circuits
by Enes Lievens, Kobe De Geest, Ewout Picavet, Liesbet Van Landschoot, Henk Vrielinck, Gilles Freddy Feutmba, Hannes Rijckaert, Klaartje De Buysser, Dries Van Thourhout, Peter Bienstman and Jeroen Beeckman
Micromachines 2025, 16(3), 334; https://doi.org/10.3390/mi16030334 - 13 Mar 2025
Cited by 1 | Viewed by 1651
Abstract
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method [...] Read more.
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method for ferroelectric thin films such as BaTiO3 and Pb(Zr,Ti)O3. One issue with this self-orienting seed film is that for non-planarized circuits, it fails to act as a template film for the thin films. To circumvent this problem, we propose a method of planarization without the need for wafer-scale chemical mechanical polishing by using hydrogen silsesquioxane as a precursor to forming amorphous silica, in order to create an oxide cladding similar to the thermal oxide often present on silicon-based platforms. Additionally, this oxide cladding is compatible with the high annealing temperatures usually required for the deposition of these novel ferroelectric thin films (600–800 °C). The thickness of this silica film can be controlled through a dry etch process, giving rise to a versatile platform for integrating nanophotonic thin film modulators on a wider variety of substrates. Using this method, we successfully demonstrate a hybrid BaTiO3-Si ring modulator with a high Pockels coefficient of rwg=155.57±10.91 pm V−1 and a half-wave voltage-length product of VπL=2.638±0.084 V cm, confirming the integration of ferroelectric thin films on an initially non-planar substrate. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

14 pages, 4173 KB  
Article
FeFET-Based Computing-in-Memory Unit Circuit and Its Application
by Xiaojing Zha and Hao Ye
Nanomaterials 2025, 15(4), 319; https://doi.org/10.3390/nano15040319 - 19 Feb 2025
Cited by 1 | Viewed by 4350
Abstract
With the increasing challenges facing silicon complementary metal oxide semiconductor (CMOS) technology, emerging non-volatile memory (NVM) has received extensive attention in overcoming the bottleneck. NVM and computing-in-memory (CiM) architecture are promising in reducing energy and time consumption in data-intensive computation. The HfO2-doped ferroelectric [...] Read more.
With the increasing challenges facing silicon complementary metal oxide semiconductor (CMOS) technology, emerging non-volatile memory (NVM) has received extensive attention in overcoming the bottleneck. NVM and computing-in-memory (CiM) architecture are promising in reducing energy and time consumption in data-intensive computation. The HfO2-doped ferroelectric field-effect transistor (FeFET) is one of NVM and has been used in CiM digital circuit design. However, in the implementation of logical functions, different input forms, such as FeFET state and gate voltage, limit the logic cascade and restrict the rapid development of CiM digital circuits. To address this problem, this paper proposes a Vin–Vout CiM unit circuit with the built-in state of FeFET as a bridge. The proposed unit circuit unifies the form of logic inputs and describes the basic structure of FeFET to realize logic functions under the application of gate-source voltage. Based on the proposed unit circuit, basic logic gates are designed and used to realize CiM Full Adder (FA). The simulation results verify the feasibility of FeFET as the core of logic operations and prove the scalability of FeFET-based unit circuit, which is expected to develop more efficient CiM circuits. Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

13 pages, 58268 KB  
Article
A Negative Capacitance Field-Effect Transistor with High Rectification Efficiency for Weak-Energy 2.45 GHz Microwave Wireless Transmission
by Hualian Tang, Ailan Tang, Weifeng Liu, Jingxiang Huang, Jianjun Song and Wenjie Sun
Micromachines 2025, 16(1), 58; https://doi.org/10.3390/mi16010058 - 31 Dec 2024
Cited by 1 | Viewed by 2898
Abstract
This paper proposes and designs a silicon-based negative capacitance field effect transistor (NCFET) to replace conventional MOSFETs as the rectifying device in RF-DC circuits, aiming to enhance the rectification efficiency under low-power density conditions. By combining theoretical analysis with device simulations, the impacts [...] Read more.
This paper proposes and designs a silicon-based negative capacitance field effect transistor (NCFET) to replace conventional MOSFETs as the rectifying device in RF-DC circuits, aiming to enhance the rectification efficiency under low-power density conditions. By combining theoretical analysis with device simulations, the impacts of the ferroelectric material anisotropy, ferroelectric layer thickness, and active region doping concentration on the device performance were systematically optimized. The proposed NCFET structure is tailored for microwave wireless power transmission applications. Based on the optimized NCFET, a half-wave rectifier circuit employing a novel diode connection configuration was constructed and verified through transient simulations. The results show that at a microwave frequency of 2.45 GHz, the designed NCFET rectifier achieves rectification efficiencies of 16.1% and 29.75% at input power densities of −10 dBm and −6 dBm, respectively, which are 7.15 and 2.3 times higher than those of conventional silicon-based MOS devices. Furthermore, it significantly outperforms CMOS rectifiers reported in the literature. This study demonstrates the superior rectification performance of the proposed NCFET under low-power density conditions, offering an efficient device solution for microwave wireless power transmission systems. Full article
Show Figures

Figure 1

14 pages, 2483 KB  
Article
Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization
by Andrei Tumarkin, Eugene Sapego, Alexey Bogdan, Artem Karamov, Igor Serenkov and Vladimir Sakharov
Appl. Sci. 2024, 14(21), 9672; https://doi.org/10.3390/app14219672 - 23 Oct 2024
Cited by 1 | Viewed by 3893
Abstract
Thin films of strontium titanate, which reveal high structure quality and tunable properties prospective for microwave applications at room temperature, were grown on a semi-insulating silicon carbide substrate using magnetron sputtering for the first time. The films’ growth mechanisms were studied using medium-energy [...] Read more.
Thin films of strontium titanate, which reveal high structure quality and tunable properties prospective for microwave applications at room temperature, were grown on a semi-insulating silicon carbide substrate using magnetron sputtering for the first time. The films’ growth mechanisms were studied using medium-energy ion scattering, and the films’ structures were investigated using X-ray diffraction. The electrical characteristics of planar capacitors based on strontium titanate films were measured at a frequency of 2 GHz using a high-precision resonance technique. It is shown that the tendency to improve the crystalline structure of strontium titanate film with an increase in the substrate temperature is most pronounced for films deposited at elevated working gas pressure under low supersaturation conditions. Planar capacitors formed on the basis of oriented SrTiO3 films on silicon carbide showed tunability n = 36%, with a loss tangent of 0.008–0.009 at a level of slow relaxation of capacitance, which is significantly lower than the data published currently regarding planar tunable ferroelectric elements. This is the first successful attempt to realize a planar SrTiO3 capacitor on a silicon carbide substrate, which exhibits a commutation quality factor more than 2500 at microwaves. Full article
Show Figures

Figure 1

10 pages, 2496 KB  
Article
Effects of Substrate and Annealing Conditions on the Ferroelectric Properties of Non-Doped HfO2 Deposited by RF Plasma Sputter
by Seokwon Lim, Yeonghwan Ahn, Beomho Won, Suwan Lee, Hayoung Park, Mohit Kumar and Hyungtak Seo
Nanomaterials 2024, 14(17), 1386; https://doi.org/10.3390/nano14171386 - 25 Aug 2024
Cited by 1 | Viewed by 2880
Abstract
In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. [...] Read more.
In this study, the effect of annealing and substrate conditions on the ferroelectricity of undoped hafnium oxide (HfO2) was analyzed. Hafnium oxide was deposited on various substrates such as platinum, titanium nitride, and silicon (Pt, TiN, Si) through RF magnetron sputtering. Annealing was performed in a nitrogen atmosphere at temperatures ranging from 400 to 600 °C, and the process lasted anywhere from 1 to 30 min. As a result, it was confirmed that the orthorhombic phase, the main cause of ferroelectricity, was dominant after a post-anneal at 600 °C for 30 min. Additionally, it was observed that interface mixing between hafnium oxide and the substrate may degrade ferroelectricity. Accordingly, the highest remanent polarization, measured at 14.24 μC/cm2, was observed with the Pt electrode. This finding was further corroborated by piezo force microscopy and endurance tests, with the results being significant compared to previously reported values. This analysis demonstrates that optimizing substrate and annealing conditions, rather than doping, can enhance the ferroelectricity of hafnium oxide, laying the foundation for the future development of ferroelectric-based transistors. Full article
Show Figures

Figure 1

21 pages, 3946 KB  
Review
Towards High-Performance Pockels Effect-Based Modulators: Review and Projections
by Yu Li, Muhan Sun, Ting Miao and Jianping Chen
Micromachines 2024, 15(7), 865; https://doi.org/10.3390/mi15070865 - 30 Jun 2024
Cited by 7 | Viewed by 6004
Abstract
The ever-increasing demand for high-speed data transmission in telecommunications and data centers has driven the development of advanced on-chip integrated electro-optic modulators. Silicon modulators, constrained by the relatively weak carrier dispersion effect, face challenges in meeting the stringent requirements of next-generation photonic integrated [...] Read more.
The ever-increasing demand for high-speed data transmission in telecommunications and data centers has driven the development of advanced on-chip integrated electro-optic modulators. Silicon modulators, constrained by the relatively weak carrier dispersion effect, face challenges in meeting the stringent requirements of next-generation photonic integrated circuits. Consequently, there has been a growing interest in Pockels effect-based electro-optic modulators, leveraging ferroelectric materials like LiNbO3, BaTiO3, PZT, and LaTiO3. Attributed to the large first-order electro-optic coefficient, researchers have delved into developing modulators with expansive bandwidth, low power consumption, compact size, and linear response. This paper reviews the working principles, fabrication techniques, integration schemes, and recent highlights in Pockels effect-based modulators. Full article
(This article belongs to the Special Issue Silicon Photonic Devices and Integration)
Show Figures

Figure 1

20 pages, 5344 KB  
Review
Perspectives of Ferroelectric Wurtzite AlScN: Material Characteristics, Preparation, and Applications in Advanced Memory Devices
by Haiming Qin, Nan He, Cong Han, Miaocheng Zhang, Yu Wang, Rui Hu, Jiawen Wu, Weijing Shao, Mohamed Saadi, Hao Zhang, Youde Hu, Yi Liu, Xinpeng Wang and Yi Tong
Nanomaterials 2024, 14(11), 986; https://doi.org/10.3390/nano14110986 - 6 Jun 2024
Cited by 19 | Viewed by 6584
Abstract
Ferroelectric, phase-change, and magnetic materials are considered promising candidates for advanced memory devices. Under the development dilemma of traditional silicon-based memory devices, ferroelectric materials stand out due to their unique polarization properties and diverse manufacturing techniques. On the occasion of the 100th anniversary [...] Read more.
Ferroelectric, phase-change, and magnetic materials are considered promising candidates for advanced memory devices. Under the development dilemma of traditional silicon-based memory devices, ferroelectric materials stand out due to their unique polarization properties and diverse manufacturing techniques. On the occasion of the 100th anniversary of the birth of ferroelectricity, scandium-doped aluminum nitride, which is a different wurtzite structure, was reported to be ferroelectric with a larger coercive, remanent polarization, curie temperature, and a more stable ferroelectric phase. The inherent advantages have attracted widespread attention, promising better performance when used as data storage materials and better meeting the needs of the development of the information age. In this paper, we start from the characteristics and development history of ferroelectric materials, mainly focusing on the characteristics, preparation, and applications in memory devices of ferroelectric wurtzite AlScN. It compares and analyzes the unique advantages of AlScN-based memory devices, aiming to lay a theoretical foundation for the development of advanced memory devices in the future. Full article
Show Figures

Figure 1

18 pages, 9164 KB  
Article
Enhancing Photovoltaic Performance with BaTiO3/MWCNTs Composite Photoelectrodes in Dye-Sensitized Solar Cells
by Carlos Armando Polo Bravo, Brayan Yeraldyn Caceres Osnayo, Jesús Alfredo Chacaltana García, Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Hugo Alfredo Torres Muro, Alberto Bacilio Quispe Cohaila, Ramalinga Viswanathan Mangalaraja and Elisban Juani Sacari Sacari
Crystals 2024, 14(6), 489; https://doi.org/10.3390/cryst14060489 - 23 May 2024
Cited by 3 | Viewed by 3115
Abstract
Dye-sensitized solar cells (DSSCs) have attracted renewed research interest as a potential low-cost substitute for conventional silicon photovoltaics. This work aims to improve the photovoltaic performance of the DSSCs by incorporating multi-walled carbon nanotubes (MWCNTs) into the BaTiO3 photoelectrode. The pure BaTiO [...] Read more.
Dye-sensitized solar cells (DSSCs) have attracted renewed research interest as a potential low-cost substitute for conventional silicon photovoltaics. This work aims to improve the photovoltaic performance of the DSSCs by incorporating multi-walled carbon nanotubes (MWCNTs) into the BaTiO3 photoelectrode. The pure BaTiO3 and BaTiO3/MWCNT nanocomposites were sensitized with N719 dye and fabricated into solar cell devices for testing. The structural characterization confirmed the successful formation of the nanocomposite with an optimal dispersion at 6% of MWCNT incorporation, beyond which agglomeration effects manifested. The optical analysis verified the modulation of defect states and bandgap engineering induced by the MWCNT network. The morphological studies revealed irregular nanoparticle clusters with embedded nanotubes. Solar cell testing under AM1.5G-simulated sunlight demonstrated a peak power conversion efficiency of 4.044% for 6% of MWCNT doping, constituting a 6-fold increment versus pure BaTiO3 (0.693%). It originated from the simultaneous enhancements in the open-circuit voltage and short-circuit current enabled by the favorable band structure alterations and percolation-assisted charge transport. However, further increasing MWCNT content deteriorated the device metrics, owing to emerging limitations like trapping. The rational integration of multi-walled carbon nanotubes with lead-free ferroelectric metal oxides can contribute to the development of emerging organic-inorganic hybrid solar platforms. Full article
Show Figures

Figure 1

14 pages, 6733 KB  
Article
Analyzing Various Structural and Temperature Characteristics of Floating Gate Field Effect Transistors Applicable to Fine-Grain Logic-in-Memory Devices
by Sangki Cho, Sueyeon Kim, Myounggon Kang, Seungjae Baik and Jongwook Jeon
Micromachines 2024, 15(4), 450; https://doi.org/10.3390/mi15040450 - 27 Mar 2024
Cited by 2 | Viewed by 2050
Abstract
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze [...] Read more.
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze the temperature-dependent device and circuit characteristics of the floating gate field effect transistor (FGFET) source drain barrier (SDB) and FGFET central shallow barrier (CSB) identified in previous papers, and their applicability to LiM applications is specifically confirmed. These FGFETs have the advantage of being much more compatible with existing silicon-based complementary metal oxide semiconductor (CMOS) processes compared to devices using new materials such as ferroelectrics for LiM computing. Utilizing the 32 nm technology node, the leading-edge node where the planar metal oxide semiconductor field effect transistor structure is applied, FGFET devices were analyzed in TCAD, and an environment for analyzing circuits in HSPICE was established. To seamlessly connect FGFET-based devices and circuit analyses, compact models of FGFET-SDB and -CSBs were developed and applied to the design of ternary content-addressable memory (TCAM) and full adder (FA) circuits for LiM. In addition, depression and potential for application of FGFET devices to neural networks were analyzed. The temperature-dependent characteristics of the TCAM and FA circuits with FGFETs were analyzed as an indicator of energy and delay time, and the appropriate number of CSBs should be applied. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

11 pages, 3288 KB  
Article
An Optimized Device Structure with a Highly Stable Process Using Ferroelectric Memory in 3D NAND Flash Memory Applications
by Seonjun Choi, Myounggon Kang, Hong-sik Jung, Yuri Kim and Yun-heub Song
Electronics 2024, 13(5), 889; https://doi.org/10.3390/electronics13050889 - 26 Feb 2024
Cited by 1 | Viewed by 3942
Abstract
In this paper, we propose an optimized device structure with a highly stable process that addresses threshold voltage shift issues in the String-Select-Line (SSL) and Ground-Select-Line (GSL) gates using ferroelectric memory in 3D NAND flash memory applications. The proposed device utilizes nickel (Ni) [...] Read more.
In this paper, we propose an optimized device structure with a highly stable process that addresses threshold voltage shift issues in the String-Select-Line (SSL) and Ground-Select-Line (GSL) gates using ferroelectric memory in 3D NAND flash memory applications. The proposed device utilizes nickel (Ni) instead of tungsten (W) for the GSL and SSL gates, enabling optimized polarization properties during the annealing process and leveraging the disparity in thermal expansion coefficients. Notably, the difference in thermal expansion coefficient from tungsten (W), employed in other Word Line (WL) gates, allows effective control over polarization properties. To validate the proposed structure, we fabricated and measured a Metal–Ferroelectric–Insulator–Silicon (MFIS) capacitor utilizing Hafnium–Zirconium Oxide (HZO) material. The measurement results indicate that a change in the upper metal layer results in a more than fivefold increase in the variance of polarization characteristics between the WL gates (responsible for the memory function) and the SSL and GSL gates dedicated to channel control. In addition, process simulation was conducted using the same device structure, confirming the application of tensile stress to the HZO thin film in the case of a W electrode and compressive stress in the case of a Ni electrode. Furthermore, applying this controlled polarization characteristic parameter to the 3D NAND flash memory structure revealed a reduction in the threshold voltage shift of the control gate from a previous change of 2.6 V or more to 0.05 V, facilitating stable control. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

Back to TopTop