Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = silicon aluminum alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 267
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

15 pages, 4528 KiB  
Article
Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
by Alexey Dikov, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov and Egor Maksimkin
Materials 2025, 18(14), 3391; https://doi.org/10.3390/ma18143391 - 19 Jul 2025
Viewed by 275
Abstract
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service [...] Read more.
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service life of nuclear reactors is a modern problem, since most operating reactors are early-generation reactors that have exhausted their design lifespan. The possibility of extending the service life is largely determined by the condition of the structural materials of the nuclear facility, i.e., their residual resources must ensure safe operation of the reactor. For the SAV-1 alloy, the structural material of the WWR-K reactor, studies were conducted on witness samples which were in the active zone during its operation for 56 years. It was found that yield strength and tensile strength of the irradiated SAV-1 alloy decreased by 24–48%, and relative elongation decreased by ~2% compared to the unirradiated alloy. Inside the grains and along their boundaries, there were particles of secondary phases enriched with silicon, which is typical for aged aluminum alloys. For irradiated structural steels of power reactors, studied at 350–450 C, hardening and a damping nature of creep were revealed, caused by dispersion hardening and the Hall–Petch effect. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 326
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

21 pages, 7797 KiB  
Article
On the Optimization of T6 Heat Treatment Parameters of a Secondary Al-Si-Cu-Mg Foundry Aluminum Alloy: A Microstructural and Mechanical Characterization
by Mattia Merlin, Lorenzo Antonioli, Federico Bin, Cindy Morales and Chiara Soffritti
Metals 2025, 15(7), 742; https://doi.org/10.3390/met15070742 - 30 Jun 2025
Viewed by 385
Abstract
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, [...] Read more.
Foundry aluminum-silicon (Al-Si) alloys, especially those containing Cu and/or Mg, are widely used in casting processes for fabricating lightweight parts. This study focuses on the optimization of the solution heat treatment parameters within the T6 heat treatment of an innovative AlSi7Cu0.5Mg0.3 secondary alloy, aiming at achieving energy savings and reducing the environmental impact related to the production of foundry components for the automotive industry. Different combinations of solution times and temperatures lower than those typically adopted in industrial practice were evaluated, and their effects on tensile properties were investigated on samples machined from as-cast and T6-treated castings produced by pouring the alloy into a steel permanent mold. Thermal analysis (TA) and differential thermal analysis (DTA) were performed to monitor the solidification sequence of microstructural phases as well as their dissolution on heating according to the proposed solution heat treatments. Microstructural analysis by light microscopy (LM) and scanning electron microscopy (SEM), together with Brinell hardness testing, was also carried out to assess the effects of heat treatment parameters. The results suggested that a shorter solution heat treatment set at a temperature lower than that currently adopted for the heat treatment of the studied alloy can still ensure the required mechanical properties while improving productivity and reducing energy consumption. Full article
Show Figures

Figure 1

17 pages, 5649 KiB  
Article
Heat Treatment Analysis and Mechanical Characterization of a Recycled Gravity Die Cast EN 42000 Alloy
by Cristian Cascioli, Riccardo Arcaleni, Alessandro Morri and Lorella Ceschini
Metals 2025, 15(7), 726; https://doi.org/10.3390/met15070726 - 29 Jun 2025
Viewed by 431
Abstract
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical [...] Read more.
Recycled aluminum–silicon alloys provide significant environmental benefits by reducing the consumption of raw materials and lowering carbon emissions. However, their industrial application is limited by the presence of iron-based intermetallic compounds and the insufficient investigation in the literature regarding their effects on mechanical behavior. This study focuses on a recycled EN 42000 alloy, comprising 95% recycled aluminum, with a focus on the effect of its elevated iron content (0.447 wt%) on aging behavior and mechanical performance. Laboratory-scale specimens were produced through gravity die casting and subjected to T6 heat treatment, consisting of solution, quenching, and artificial aging from 160 °C to 190 °C for up to 8 h. To investigate overaging, analyses were conducted at 160 °C and 170 °C for durations up to 184 h. Tensile tests were conducted on specimens aged under the most promising conditions. Based on innovative quality indices and predictive modeling, aging at 160 °C for 4.5 h was identified as the optimal condition, providing a well-balanced combination of strength and ductility (YS = 258 MPa, UTS = 313 MPa, and e% = 3.9%). Mechanical behavior was also assessed through microstructural and fractographic analyses, highlighting the capability of EN 42000 to achieve properties suitable for high-performance automotive components. Full article
(This article belongs to the Special Issue Sustainability Approaches in the Recycling of Light Alloys)
Show Figures

Graphical abstract

13 pages, 13959 KiB  
Article
Microstructural Evolution and Wear Resistance of Silicon-Containing FeNiCrAl0.7Cu0.3Six High-Entropy Alloys
by Junhong Li, Xuebing Han, Jiaxin Liu, Xu Wang and Yanzhou Li
Coatings 2025, 15(6), 676; https://doi.org/10.3390/coatings15060676 - 3 Jun 2025
Viewed by 500
Abstract
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in [...] Read more.
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in the silicon-free FeNiCrAl0.7Cu0.3 alloy to a transitional structure in the FeNiCrAl0.7Cu0.3Si0.1 alloy that retains dendritic features; then to a chrysanthemum-like morphology in the FeNiCrAl0.7Cu0.3Si0.3 alloy, and finally to island-like grains in the FeNiCrAl0.7Cu0.3Si0.5 alloy. This evolution is accompanied by a phase transition from an Fe and Cr-rich body-centered cubic phase to an Al and Ni-rich body-centered cubic phase, with silicon showing a tendency to segregate alongside aluminum and nickel. The microhardness increases from 498.2 ± 15.0 HV for the FeNiCrAl0.7Cu0.3 alloy, to 502.7 ± 32.7 HV for FeNiCrAl0.7Cu0.3Si0.1, 577.3 ± 24.5 HV for FeNiCrAl0.7Cu0.3Si0.3, and 863.2 ± 23.5 HV for FeNiCrAl0.7Cu0.3Si0.5. The average friction coefficients are 0.571, 0.551, 0.524, and 0.468, respectively. The wear mass decreases from 1.31 mg in the FeNiCrAl0.7Cu0.3 alloy to 1.28 mg, 1.11 mg, and 0.78 mg in the FeNiCrAl0.7Cu0.3Si0.1, FeNiCrAl0.7Cu0.3Si0.3, and FeNiCrAl0.7Cu0.3Si0.5 samples, respectively. These trends are consistent with the increase in microhardness, supporting the inverse relationship between hardness and wear. As the silicon content increases, the dominant wear mechanism changes from abrasive wear to adhesive wear, with the high-silicon alloy exhibiting lamellar debris on the worn surface. These findings confirm that silicon addition enhances microstructural refinement, mechanical strength, and wear resistance of the alloy system. Full article
Show Figures

Figure 1

13 pages, 2488 KiB  
Article
Silicon and Manganese Effect on the Phase Composition of an Al-Fe Alloy and the Use of the ThermoCalc Software Complex for Thermodynamic Analysis
by Bakhtiyar Suleyev, Aristotel Issagulov, Ardak Dostayeva, Dastan Aubakirov and Togzhan Sultanbek
Alloys 2025, 4(2), 10; https://doi.org/10.3390/alloys4020010 - 30 May 2025
Viewed by 679
Abstract
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for [...] Read more.
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for developing conductive aluminum alloys with enhanced performance characteristics. It was found that when silicon and manganese are added in amounts up to 0.6%, the formation of intermetallic phases such as Al8Fe2Si and Al15Mn3Si2 occurs. These phases significantly influence the electrical conductivity and mechanical stability of the alloy. Thermodynamic modeling proved effective in predicting phase formation, guiding the selection of alloy compositions, and optimizing heat treatment parameters. The optimal composition for a conductive aluminum alloy includes up to 0.8% Fe, 0.5% Si, and 0.6% Mn. Heat treatment in the range of 500–550 °C resulted in a favorable combination of strength, electrical conductivity, and thermal resistance. The findings support the use of Al–Fe–Si–Mn alloys in electrical and structural applications and demonstrate the value of combining computational and experimental approaches in alloy design. Full article
Show Figures

Figure 1

12 pages, 756 KiB  
Article
Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
by Yogesh S. Sable, Hanumant M. Dharmadhikari, Sunil A. More and Ioannis E. Sarris
J. Compos. Sci. 2025, 9(6), 259; https://doi.org/10.3390/jcs9060259 - 25 May 2025
Cited by 1 | Viewed by 558
Abstract
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The [...] Read more.
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The experiment used a stir casting aluminum alloy with a 7.5% silicon carbide metal matrix composite (MMC), adjusting parameters like the wire tension (WT), servo voltage (SV), peak current (IP), pulse on time (TON), and pulse off time (TOFF). An ANN model was created to forecast the surface roughness. The study developed an ANN model to forecast surface roughness in Al/SiC composites during WEDM, demonstrating its accuracy in identifying the link between surface finish and input parameters, thereby improving the surface quality. The ANN model accurately predicted the surface roughness based on WEDM parameters, with strong correlations between predictions and actual data, demonstrating its ability to estimate surface quality accurately. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

25 pages, 4627 KiB  
Article
Laser-Based Characterization and Classification of Functional Alloy Materials (AlCuPbSiSnZn) Using Calibration-Free Laser-Induced Breakdown Spectroscopy and a Laser Ablation Time-of-Flight Mass Spectrometer for Electrotechnical Applications
by Amir Fayyaz, Muhammad Waqas, Kiran Fatima, Kashif Naseem, Haroon Asghar, Rizwan Ahmed, Zeshan Adeel Umar and Muhammad Aslam Baig
Materials 2025, 18(9), 2092; https://doi.org/10.3390/ma18092092 - 2 May 2025
Viewed by 783
Abstract
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of [...] Read more.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn—elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods. Full article
Show Figures

Figure 1

24 pages, 7632 KiB  
Article
Quantitative Microstructure of Multiphase Al-Zn-Si-(Mg) Coatings and Their Effects on Sacrificial Protection for Steel
by Guilherme Adinolfi Colpaert Sartori, Blandine Remy, Tiago Machado Amorim and Polina Volovitch
Metals 2025, 15(5), 476; https://doi.org/10.3390/met15050476 - 23 Apr 2025
Cited by 1 | Viewed by 511
Abstract
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The [...] Read more.
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The quantitative microstructure allowed us to describe their corrosion behaviors in a chloride environment and understand their ranking for sacrificial protection of steel in accelerated corrosion tests. For the analyses, interdendritic Zn-rich or Mg-rich phases were expected to be more sacrificial to steel than Al-rich dendrites. Without Mg (AZ coating), Al-rich dendrites created a percolating network, but interdendritic phases did not, suggesting their sacrificial protection to steel to be very limited. Additionally, significant Zn gradients inside dendrites led to a premature coating consumption on the surface, creating new zones of naked steel. In the coatings with Mg (AZM), sacrificial interdendritic phases created a percolating network, which is expected to improve long-time sacrificial protection and contribute to a more uniform formation of Zn corrosion products. For Al content between 30 wt.% and 45 wt.%, a lowering of the Al/Zn ratio (L-AZM) increased the connectivity of the sacrificial interdendritic phases, which is expected to improve the long-term sacrificial effect. Accelerated corrosion tests of scratches in the steel coatings validated the hypotheses. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

15 pages, 4285 KiB  
Article
Investigation of the Possibility of Obtaining Nickel-Containing Ferroalloys from Lateritic Nickel Ores by a Metallothermic Method
by Assylbek Abdirashit, Dauren Yessengaliyev, Bauyrzhan Kelamanov, Otegen Sariyev, Gulnur Abikenova, Nurzhan Nurgali, Maral Almagambetov, Talgat Zhuniskaliyev, Yerbol Kuatbay and Zhanmurat Abylay
Metals 2025, 15(4), 428; https://doi.org/10.3390/met15040428 - 10 Apr 2025
Viewed by 522
Abstract
This study presents the results of laboratory experiments on the processing of lateritic nickel ores mixed with coal and CaO, followed by the use of the obtained product for the smelting of nickel-containing ferroalloy by the metallothermic method. The study analyzed the thermodynamic [...] Read more.
This study presents the results of laboratory experiments on the processing of lateritic nickel ores mixed with coal and CaO, followed by the use of the obtained product for the smelting of nickel-containing ferroalloy by the metallothermic method. The study analyzed the thermodynamic effects of complex reductant concentration (silicon- and aluminum-containing alloy) on the reduction degree of nickel and iron. An experimental process resulted in a product containing Nitotal (2.60%) and Fetotal (60.52%), obtained through reduction roasting of lateritic nickel ore mixed with coal and an addition of 20 g of CaO at a temperature of 1150 °C. Under laboratory conditions, a nickel-containing ferroalloy was successfully obtained using the product after reduction roasting and a complex alloy as the reducing agent. The following optimal process parameters were determined: reductant consumption of 20 g per 100 g of the reduction roasting product, smelting temperature of 1600 °C, and slag basicity (CaO/SiO2) of 0.5. In this case, a nickel-containing ferroalloy with 72% iron, 15% nickel, and up to 5% chromium was successfully obtained through silicon and aluminum reduction using a complex alloy. A microstructural analysis of the nickel-containing alloy was conducted using an electron probe microanalyzer (JXA-8230) in combination with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that silicon and iron were the dominant elements in all particles. Nickel was detected at concentrations of up to 15.02 wt. %, while chromium reached 3.47 wt. %. Depending on the silicon concentration, the nickel-containing ferroalloy is recommended for corrosion-resistant steel production (Si < 5%) and as a reducing agent for ferronickel production (Si > 5%). Full article
Show Figures

Figure 1

19 pages, 17724 KiB  
Article
Analysis of Typical Inclusion Evolution and Formation Mechanism in the Smelting Process of W350 Non-Oriented Silicon Steel
by Jiagui Shi, Libin Yang, Bowen Peng, Guoqiang Wei and Yibo Yuan
Materials 2025, 18(6), 1188; https://doi.org/10.3390/ma18061188 - 7 Mar 2025
Viewed by 849
Abstract
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. [...] Read more.
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. By systematically sampling, at key nodes of the converter–RH refining–tundish smelting process, the change in cleanliness of molten steel in the whole smelting process, the evolution of typical inclusions, and the transformation rules for the precipitated phase were analyzed by means of SEM-EDS, ASPEX, and Thermal-Calc. The results indicate that the total oxygen mass fraction in the steel decreases by more than 95% after deoxidation alloying, and the average oxygen mass fraction in the RH outbound steel is 0.0012%. While the nitrogen mass fraction shows a rising trend as a whole, the average nitrogen mass fraction in the tundish steel reaches approximately 0.0014%. Before RH refining, large Al2O3–CaO–SiO2 and Al2O3–CaO–SiO2–MgO composite inclusions are the main inclusions. MnO and Al2O3–SiO2–MnO inclusions are the main inclusions after RH inlet and RH decarburization. After RH deoxidation with aluminum, the inclusions were almost entirely transformed into Al2O3 inclusions. After RH alloying, with the content of Si and Mn increased, the inclusions transformed into Al2O3–SiO2–MnO inclusions. The number of inclusions from RH desulfurization to the RH outbound stage declined significantly, and composite inclusions containing CaS and precipitates such as AlN and MnS began to appear. The inclusions’ main types were Al2O3–MgO–CaS, AlN–MnS, AlN, and Al2O3–MgO. The inclusions inside the tundish were the same, but the numbers were slightly increased due to the secondary oxidation of molten steel. More than 80% of the oxide inclusions in the whole process were between 1 μm and 5 μm in size. The average size and the number of inclusions per unit area reached 5.45 μm and 63.1 per mm2, respectively, after RH deoxidation, and respectively decreased to 3.71 μm and 1.9 per mm2 during the RH outbound stage, but both increased slightly in the tundish. Thermodynamic calculation shows that Al2O3–MgO inclusions are formed when w([Mg]) > 0.0033% in molten steel at 1873 K. Under the actual temperature of 1828K and w([Al]s) = 0.6515%, the range of w([Mg]) corresponding to the stable existence of Al2O3–MgO is between 0.0053% and 0.1676%. The liquidus temperature of W350 non-oriented silicon steel is 1489 °C. MnS and AlN inclusions are precipitated successively with the solidification of molten steel, and the precipitation temperatures are 1460.7 °C and 1422.2 °C, respectively. As the temperature decreases, the sequence of inclusion precipitation calculated in liquid was as follows: Al2O3–CaO → 2Al2O3–CaO + MnS → 6Al2O3–CaO → Al2O3 + AlN + MnS + CaS. Full article
Show Figures

Figure 1

16 pages, 3936 KiB  
Article
Investigation of the Influence of Alloying Elements Ni, Cr, Co and Mo on the Crystallization Process, Phase Composition and Corrosion Resistance of AlSi25Cu4Cr and AlSi25Cu5Cr Alloys
by Boyan Dochev, Desislava Dimova, Karel Trojan, Jiří Čapek, Kalina Kamarska and Bozhana Chuchulska
Materials 2025, 18(4), 907; https://doi.org/10.3390/ma18040907 - 19 Feb 2025
Viewed by 596
Abstract
To increase the mechanical and improve the operational properties of the AlSi25Cu4Cr and AlSi25Cu5Cr alloys, combinations of the alloying elements Ni, Co and Mo were used. The AlSi25Cu4Cr alloy was additionally alloyed with both Ni and Mo and Ni, Co and Mo, and [...] Read more.
To increase the mechanical and improve the operational properties of the AlSi25Cu4Cr and AlSi25Cu5Cr alloys, combinations of the alloying elements Ni, Co and Mo were used. The AlSi25Cu4Cr alloy was additionally alloyed with both Ni and Mo and Ni, Co and Mo, and the AlSi25Cu5Cr alloy was alloyed with Co and Mo in different concentrations. The dental alloys “wiron light” and “wironit” were used to introduce the elements Ni, Co, Mo, as well as additional amounts of Cr into the composition of the base compositions. The thermal analysis recorded a decrease in the liquidus and solidus temperatures of the base alloys, as well as a narrowing of their crystallization temperature range as a result of the added alloying elements. The influence of the used chemical elements on the phase composition of the alloys was established by X-ray diffraction. The elements Cr and Mo do not form secondary strengthening phases but dissolve in the α-solid solution. The results of the corrosion tests conducted in 1 M HCl solution and 1 M H2SO4 solution for 336 h and 504 h show that the elements Ni, Co and Mo improve the corrosion resistance of the alloys. Full article
Show Figures

Figure 1

19 pages, 5741 KiB  
Article
Analysis of Heat Treatment of AlSi7Cu0.5Mg Alloy
by Miloš Mičian, Elena Kantoríková, Joanna Borowiecka-Jamrozek and Justyna Kasińska
Materials 2025, 18(4), 733; https://doi.org/10.3390/ma18040733 - 7 Feb 2025
Viewed by 591
Abstract
This article describes how different heat treatment methods affect the mechanical properties of AlSi7Cu0.5Mg. This article offers a new perspective on the topic of heat treatment analysis. AlSi7Cu0.5Mg alloy has a specific chemical composition due to its lower titanium and silicon content. It [...] Read more.
This article describes how different heat treatment methods affect the mechanical properties of AlSi7Cu0.5Mg. This article offers a new perspective on the topic of heat treatment analysis. AlSi7Cu0.5Mg alloy has a specific chemical composition due to its lower titanium and silicon content. It is still an experimentally tested alloy, intended for the production of high-strength castings in automotive applications. Although we are generally familiar with heat treatment methods for aluminum alloys, in the present case, we did not know the exact effect of artificial aging on the mechanical properties of AlSi7Cu0.5Mg. Five heat treatment regimes at temperatures of 160; 180; 200; 220 and 240 °C were monitored by removing the samples from the furnace at specified time intervals ranging from 30 min to 8 h. The solution treatment was the same for all samples (540 °C, 4 h and 80 °C water). The aim was to find out at what the highest hardness, strength, ductility, yield strength and metallographic yield strength were which could be obtained. The best properties were presented by the alloy which was artificially aged at 180 °C for 60 min. The topic and research on aluminum alloys in general are still relevant because in industrial practice and automotive applications, Al alloys are irreplaceable. Full article
Show Figures

Figure 1

22 pages, 20382 KiB  
Article
Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy
by Zhuofang Huang, Anmin Li, Wendi Zhou, Jinjin Li and Jinkai Zhang
Materials 2025, 18(3), 664; https://doi.org/10.3390/ma18030664 - 2 Feb 2025
Viewed by 1364
Abstract
The effects of red mud on the microstructures and high-temperature tensile properties of the ZL109 aluminum alloy have been investigated. Red mud/ZL109-based composite materials with added red mud (a major byproduct of the aluminum industry), which has been coated with nickel by chemical [...] Read more.
The effects of red mud on the microstructures and high-temperature tensile properties of the ZL109 aluminum alloy have been investigated. Red mud/ZL109-based composite materials with added red mud (a major byproduct of the aluminum industry), which has been coated with nickel by chemical deposition, have been prepared through gravity casting. The results show that the addition of red mud promotes the alloy’s microstructure and helps to uniformly distribute the eutectic silicon. It also increases the content of heat-resistant phases, such as the Q-Al5Cu2Mg8Si6 and γ-Al7Cu4Ni phases. These changes significantly enhance the alloy’s high-temperature tensile properties. The alloy with 1% (wt.%) red mud exhibits the best tensile strength at both room temperature and 350 °C, reaching 295.4 MPa and 143.3 MPa, respectively. The alloy with 1.5% (wt.%) red mud demonstrates excellent performance at 400 °C, achieving a tensile strength of 86.2 MPa through the cut-through method and Orowan mechanism. As a reinforcing material, red mud not only improves the high-temperature resistance of the aluminum alloy but also provides a way to recycle industrial waste. This study offers a new way to address the red mud waste problem and helps develop high-performance, heat-resistant aluminum alloys. It shows the potential of these alloys in high-temperature applications. Full article
Show Figures

Figure 1

Back to TopTop