Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = silicate glasses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 - 1 Aug 2025
Viewed by 262
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 240
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 199
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

32 pages, 6710 KiB  
Article
XPS Investigation of Sol–Gel Bioactive Glass Synthesized with Geothermal Water
by Helena Cristina Vasconcelos, Maria Meirelles and Reşit Özmenteş
Surfaces 2025, 8(3), 50; https://doi.org/10.3390/surfaces8030050 - 14 Jul 2025
Viewed by 207
Abstract
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and [...] Read more.
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and MgO-modified bioglasses. Using high-resolution X-ray photoelectron spectroscopy (XPS), we examined how the mineral composition of the waters influenced the chemical environment and network connectivity of the glass surface. The presence of trace ions, such as Mg2+, Sr2+, Zn2+, and B3+, altered the silicate structure, as evidenced by binding energy shifts and peak deconvolution in O 1s, Si 2p, P 2p, Ca 2p, and Na 1s spectra. Thermal treatment further promoted polymerization and reduced hydroxylation. Our findings suggest that mineral-rich waters act as functional agents, modulating the reactivity and structure of bioactive glass surfaces in eco-sustainable synthesis routes. Full article
(This article belongs to the Special Issue Bio-Inspired Surfaces)
Show Figures

Figure 1

29 pages, 7061 KiB  
Article
Does Water Cleaning Mitigate Atmospheric Degradation of Unstable Heritage Glass? An Experimental Study on Glass Models
by Thalie Law, Odile Majérus, Marie Godet, Mélanie Moskura, Thibault Charpentier, Antoine Seyeux and Daniel Caurant
Heritage 2025, 8(7), 276; https://doi.org/10.3390/heritage8070276 - 14 Jul 2025
Viewed by 402
Abstract
Glass curators often question how their treatments affect the long-term stability of historical glass. While damp cotton swabs are commonly used to remove surface salts and dust, the use of water remains controversial, particularly for heavily altered glass, due to concerns about worsening [...] Read more.
Glass curators often question how their treatments affect the long-term stability of historical glass. While damp cotton swabs are commonly used to remove surface salts and dust, the use of water remains controversial, particularly for heavily altered glass, due to concerns about worsening hydration. This study investigates the effect of water rinsing on an unstable soda-lime glass altered for six months (monoliths) and fifteen months (powders) at 35 °C and 85% relative humidity. Samples were then rinsed with Milli-Q water at 20 °C or 50 °C, and the monolithic glass was subsequently subjected to an additional 15 months of alteration under the same conditions. The glass surface was characterized by optical and scanning electron microscopy (SEM) as well as Raman spectroscopy to identify the nature of the salts. The evolution of the hydrated layer was assessed using transmission FTIR, Raman and solid-state NMR spectroscopies, ToF-SIMS, and thermogravimetric analysis (TGA). The results show that rinsing effectively removes surface salts—primarily sodium carbonate—and induces structural changes in the hydrated layer, promoting silicate network polymerization. Upon resuming alteration, rinsed monolithic samples exhibit no further degradation after the additional 15 months of alteration. These findings offer promising insights for conservation practices and may help curators refining their treatment strategies for altered glass. Full article
(This article belongs to the Special Issue The Conservation of Glass in Heritage Science)
Show Figures

Graphical abstract

23 pages, 2548 KiB  
Review
Incorporation of Waste Glass Powder in the Sustainable Development of Concrete
by Arvindan Sivasuriyan and Eugeniusz Koda
Materials 2025, 18(14), 3223; https://doi.org/10.3390/ma18143223 - 8 Jul 2025
Viewed by 382
Abstract
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review [...] Read more.
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review thoroughly examines WGP-incorporated concrete in terms of its mechanical and durability properties. It explores compressive, tensile, and flexural strength, as well as its resistance to freeze–thaw cycles, sulfate attack, and chloride ion penetration. The characteristic microstructure densification, strength development, and durability performance can be attributed to the pozzolanic activity of WGP that forms additional calcium silicate hydrate (C-S-H). The review also highlights the optimal replacement levels of WGP to balance mechanical performance and long-term stability while addressing potential challenges, such as alkali–silica reaction (ASR) and reduced workability at high replacement ratios. By consolidating recent research findings, this study highlights the feasibility of WGP as a sustainable supplementary cementitious material (SCM), promoting eco-friendly construction while mitigating environmental concerns associated with glass waste disposal. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

13 pages, 1634 KiB  
Article
Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass
by Krzysztof Cendrowski, Elżbieta Horszczaruk and Jarosław Strzałkowski
Appl. Sci. 2025, 15(13), 7495; https://doi.org/10.3390/app15137495 - 3 Jul 2025
Viewed by 232
Abstract
This paper presents the results of testing the insulation performance of geopolymers based on fly ashes with the addition of waste broken glass. The waste glass was dried and ground to a maximum of 1 mm grain size. The proportions of broken glass [...] Read more.
This paper presents the results of testing the insulation performance of geopolymers based on fly ashes with the addition of waste broken glass. The waste glass was dried and ground to a maximum of 1 mm grain size. The proportions of broken glass in the total binder’s mass were 0%, 10%, 20%, and 30%. Sodium hydroxide and sodium silicate were the activators of the alkaline reaction. The obtained geopolymer materials were characterised by determining the basic physico-mechanical properties. The chemical composition, density, and thermal conductivity coefficient were determined. The mechanical performance, including compressive and flexural strength, was investigated after 28 days of curing. The morphological analysis was also carried out using microphotographs obtained from optical and scanning microscopes. A significant effect of the waste glass on the tested geopolymers’ mechanical performance was observed. Proportions of 10% and 20% broken glass in the binder led to more than a four-fold increase in the compressive strength and a two-fold increase in the flexural strength compared to the geopolymer without the waste glass. All tested geopolymers had excellent insulation ability compared to the reference mortar (more than 80% higher than cement mortar). However, the problem is potential alkali–silica reaction, which can occur when the waste glass content is high. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 2438 KiB  
Article
Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects
by Yueyang Xu, Bangzheng Jiang, Kai Zhang, Gang Zhang, Hao Jin, Jun Zhao, Xing Zhou, Li Xie and Hui Zhang
Coatings 2025, 15(7), 782; https://doi.org/10.3390/coatings15070782 - 2 Jul 2025
Viewed by 279
Abstract
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be [...] Read more.
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be greatly improved. Based on our previous work on the modification of Aga soil in Tibet, China, this study added hydrophobic n-dodecyltrimethoxysilane (WD10) to water glass solution (the main components are potassium silicate (K2SiO3) and silicic acid (H2SiO3) gel, referred to as PS) to obtain a composite coating PS-WD10, which was sprayed on the surface of loess blocks to achieve a full consolidation effect. We not only systematically investigated the morphology, chemical composition, and consolidation mechanism of the composite coating but also conducted in-depth and detailed research on its application performance such as friction resistance (structural strength), hydrophobicity, resistance to pure water and salt water immersion, and resistance to freeze–thaw cycles. The results showed that the PS-WD10 composite coating had better consolidation performance for loess blocks than the single coating of PS solution and WD10. For the loess block samples coated with the composite coatings, after 50 friction cycles, the weight loss rate was less than 15 wt%, and the water contact angle was above 120°. The main reason is that the good permeability of the PS solution and the excellent hydrophobicity of WD10 produce a good synergistic effect. The loess blocks coated with this composite coating are expected to replace traditional functional materials for water conservancy projects, such as cement and lime, in silt dam water conservancy projects, and also have better environmental protection and sustainability. Full article
Show Figures

Figure 1

18 pages, 5009 KiB  
Article
Preparation of Glass Fiber Reinforced Polypropylene Bending Plate and Its Long-Term Performance Exposed in Alkaline Solution Environment
by Zhan Peng, Anji Wang, Chen Wang and Chenggao Li
Polymers 2025, 17(13), 1844; https://doi.org/10.3390/polym17131844 - 30 Jun 2025
Viewed by 309
Abstract
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different [...] Read more.
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different angles in corrosive environment of concrete, including bending bars from 0~90°, and stirrups of 90°, which may lead to long-term performance degradation. Therefore, it is important to evaluate the long-term performance of glass fiber reinforced polypropylene composite bending plates in an alkali environment. In the current paper, a new bending device is developed to prepare glass fiber reinforced polypropylene bending plates with the bending angles of 60° and 90°. It should be pointed out that the above two bending angles are simulated typical bending bars and stirrups, respectively. The plate is immersed in the alkali solution environment for up to 90 days for long-term exposure. Mechanical properties (tensile properties and shear properties), thermal properties (dynamic mechanical properties and thermogravimetric analysis) and micro-morphology analysis (surface morphology analysis) were systematically designed to evaluate the influence mechanism of bending angle and alkali solution immersion on the long-term mechanical properties. The results show the bending effect leads to the continuous failure of fibers, and the outer fibers break under tension, and the inner fibers buckle under compression, resulting in debonding of the fiber–matrix interface. Alkali solution (OH ions) corrode the surface of glass fiber to form soluble silicate, which is proved by the mass fraction of glass fiber decreased obviously from 79.9% to 73.65% from thermogravimetric analysis. This contributes to the highest degradation ratio of tensile strength was 71.6% (60° bending) and 65.6% (90° bending), respectively, compared to the plate with bending angles of 0°. A high curvature bending angle (such as 90°) leads to local buckling of fibers and plastic deformation of the matrix, forming microcracks and fiber–resin interface bonding at the bending area, which accelerates the chemical erosion and debonding process in the interface area, bringing about an additional maximum 10.56% degradation rate of the shear strength. In addition, the alkali immersion leads to the obvious degradation of storage modulus and thermal decomposition temperature of composite plate. Compared with the other works on the long-term mechanical properties of glass fiber reinforced polypropylene, it can be found that the long-term performance of glass fiber reinforced polypropylene composites is controlled by the corrosive media type, bending angle and immersion time. The research results will provide durability data for glass fiber reinforced polypropylene composites used in concrete as stirrups. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 2792 KiB  
Article
Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal
by Tran Ngo Quan, Le Phan Hoang Chieu and Pham Trung Kien
Coatings 2025, 15(6), 733; https://doi.org/10.3390/coatings15060733 - 19 Jun 2025
Viewed by 605
Abstract
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, [...] Read more.
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, 1.2), and hydrothermally treated at 180 °C for 96 h to yield C-S-H with tunable morphology and crystallinity. Comprehensive characterization using XRD, FT-IR, SEM-EDX, and UV-Vis spectroscopy revealed that a Ca/Si ratio of 1.0 produced a well-ordered tobermorite/xonotlite structure with a high surface area and fibrous network, which is optimal for adsorption. Batch adsorption experiments showed that this material achieved rapid and efficient Cr(III) removal, exceeding 90% uptake within 9 h through a combination of surface complexation, ion exchange (Ca2+/Na+ ↔ Cr3+), and precipitation of CaCrO4 phases. Morphological and structural evolution during adsorption was confirmed by SEM, FT-IR, and XRD, while EDX mapping established the progressive incorporation of Cr into the C-S-H matrix. These findings highlight the viability of upcycling industrial waste into advanced C-S-H sorbents for heavy metal remediation. Further work is recommended to address sorbent regeneration, long-term stability, and application to other contaminants, providing a foundation for circular approaches in advanced wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 3552 KiB  
Article
Transforming Waste into Sustainable Construction Materials: Resistant Geopolymers from Recycled Sources
by Rosalia Maria Cigala, Georgia Papanikolaou, Paola Lanzafame, Giuseppe Sabatino, Alessandro Tripodo, Giuseppina La Ganga, Francesco Crea, Ileana Ielo and Giovanna De Luca
Recycling 2025, 10(3), 118; https://doi.org/10.3390/recycling10030118 - 14 Jun 2025
Viewed by 3820
Abstract
The construction industry faces a growing challenge in managing waste materials, making the development of sustainable alternatives critical. This study investigates the preparation of geopolymers using construction and demolition waste materials, such as cement, brick, and glass waste. Specifically, crushed glass was used [...] Read more.
The construction industry faces a growing challenge in managing waste materials, making the development of sustainable alternatives critical. This study investigates the preparation of geopolymers using construction and demolition waste materials, such as cement, brick, and glass waste. Specifically, crushed glass was used to produce sodium silicate, a key source of silicate ions and alkali necessary in geopolymerization processes. The performance of this in-house activator was compared to that of the commercial counterpart. Seven geopolymer formulations were prepared and characterized using SEM-EDX, ATR-FTIR, and XRD techniques. Chemical resistance against harsh environments was assessed through a 7-day immersion in water, hydrochloric acid (pH ~ 1), and sodium hydroxide (pH ~ 13) solutions. The samples were then dried and weighed to determine mass loss, revealing the promising resistance of specific formulations. Similarly, Portland cement specimens of the same dimensions as the geopolymer ones were prepared, tested, and compared to the geopolymers. Our study emphasizes the potential of transforming waste materials into high-performance, resistant geopolymers for construction materials. By optimizing waste-derived geopolymers, we may achieve significant environmental benefits through waste recycling and contribute to advancing sustainable construction technology. Full article
Show Figures

Graphical abstract

15 pages, 3887 KiB  
Article
Cold Consolidation of Waste Glass by Alkali Activation and Curing by Traditional and Microwave Heating
by Francesco Carollo, Emanuele De Rienzo, Antonio D’Angelo, Paolo Sgarbossa, Luisa Barbieri, Cristina Leonelli, Isabella Lancellotti, Michelina Catauro and Enrico Bernardo
Materials 2025, 18(11), 2628; https://doi.org/10.3390/ma18112628 - 4 Jun 2025
Viewed by 602
Abstract
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can [...] Read more.
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can be eligible to produce sustainable alkali-activated materials (AAMs) reducing at the same time consumption of raw materials and CO2 emissions. The ‘weak’ alkaline attack (NaOH < 3 M) determines the gelation of glass suspensions. Condensation reactions occur in hydrated surface layers, leading to strong bonds (Si-O-Si, Al-O-Si, etc.) between individual glass particles. Alkali are mostly expelled from the gel due to the formation of water-soluble hydrated carbonates. Microwave treatment has been implemented on samples after precuring at 40 °C, saving time and energy and achieving better mechanical properties. To improve the stability and reduce the release of glass components into solution, the consolidated monoliths were subjected to boiling/drying cycles. The chemical stability, cytotoxicity and antibacterial behavior of the final products have been investigated with the purpose of obtaining new competitive and sustainable materials. For further stabilization and for finding new applications, the activated and boiled samples can be fired at low temperature (700 °C) to obtain, respectively, a homogeneous foam or a compact material with glass-like density and microstructure. Full article
Show Figures

Figure 1

29 pages, 4180 KiB  
Article
Development of Ultra High-Performance Concrete with Artificial Aggregates from Sesame Ash and Waste Glass: A Study on Mechanical Strength and Durability
by Aïssa Rezzoug, Ali H. AlAteah, Muwaffaq Alqurashi and Sahar A. Mostafa
Buildings 2025, 15(11), 1942; https://doi.org/10.3390/buildings15111942 - 4 Jun 2025
Viewed by 534
Abstract
This study demonstrates the conversion of agricultural and industrial waste into construction materials by developing ultra-high-performance concrete using cold-bonded sesame ash and waste glass aggregates. The primary focus of this study was sustainability and waste valorization in self-curing concrete systems. This study focuses [...] Read more.
This study demonstrates the conversion of agricultural and industrial waste into construction materials by developing ultra-high-performance concrete using cold-bonded sesame ash and waste glass aggregates. The primary focus of this study was sustainability and waste valorization in self-curing concrete systems. This study focuses on many aspects of producing cementless concrete with superior short- and long-term properties, incorporating an innovative artificial aggregate premanufactured using sesame ash and waste glass. Prepacking technology of casting was used. A self-curing additive is used to reduce the energy required for curing. In cold-bonded aggregates (CBAs), the aggregate content ranged from 10 to 50% of the total sand volume. Polyethylene glycol was used as an internal curing agent to evaluate the mechanical properties of the concrete, including the compressive strength and tensile strength at different ages. The durability characteristics of the concrete were also analyzed in terms of its resistance to sulfates, chloride ion penetration, and performance at elevated temperatures of 300 and 600 °C. Microscopic analyses were conducted by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results showed a significant improvement in the mechanical and durability performance, especially at 30%, which resulted in the highest compressive strength of 147.2 MPa at 90 days. This is an 11.93% increase compared with that of the reference mix. The tensile strength was also improved by 14.5% at the same replacement ratio. The mix containing 30% manufactured aggregate demonstrated the best thermal resistance, retaining the highest percentage of residual strength at both 300 °C and 600 °C, as well as superior sulfate impact resistance, with a strength reduction factor of 39.5%. When the replacement ratio was increased to 50%, the chloride penetration resistance improved significantly by 41% compared with that of the reference mix. FTIR, TGA, and DSC analyses also demonstrated enhanced silicate polymerization and increased carbonate formation, contributing to the improved chemical stability and density of the concrete matrix. Full article
Show Figures

Figure 1

22 pages, 48320 KiB  
Article
The Synergistic Utilization of Glass Aggregates and Glass Powder on the Thermal and Mechanical Properties of Concrete
by Bo Wen, Huaizheng Wang, Guanyi Gao, Lu Zhang, Zhengyao Yu and Zhihao Wang
Materials 2025, 18(10), 2405; https://doi.org/10.3390/ma18102405 - 21 May 2025
Viewed by 551
Abstract
Enhancing the utilization rate of waste glass in concrete is crucial for achieving solid waste reduction and low carbon emissions in the construction industry. This study employs the method of simultaneously replacing fine aggregate and cementitious materials in concrete with glass sand and [...] Read more.
Enhancing the utilization rate of waste glass in concrete is crucial for achieving solid waste reduction and low carbon emissions in the construction industry. This study employs the method of simultaneously replacing fine aggregate and cementitious materials in concrete with glass sand and glass powder to prepare composite waste glass concrete (CGC). The compressive strength, alkali–silicate expansion, and thermal properties of CGC were investigated experimentally. The experimental results show that the pozzolanic activity of fine glass powder in CGC can effectively mitigate the ASR reaction, enhance glass utilization, and allow the glass content to reach up to 17.79% of the total concrete mass. The thermal conductivity of the compounded waste glass concrete decreased linearly with increasing temperature, and the specific heat capacity showed three distinct peaks in the range of 180–800 °C, which were caused by chemical dehydration, quartz phase transition, and CaCO3 decarbonization, respectively. Furthermore, to examine the impact of replacement mode on the high-temperature resistance of waste glass concrete, the residual strength, physical properties, and microstructure of the concrete were evaluated. It was found that the residual strength ratio of CGC (0.73) exhibited a distinct advantage at 600 °C. At this time, the melting effect of glass can reduce the pore size of concrete and transform large pores into capillary pores. However, as the temperature rises to 800 °C, the melting effect of glass no longer alleviates the high-temperature damage to concrete, and the degree of decomposition of hydration products determines the concrete strength. Full article
Show Figures

Graphical abstract

12 pages, 1487 KiB  
Article
Enhancing the Physical Properties of Calcium Silicate Cement Modified with Elastin-like Polypeptides and Bioactive Glass
by Jiyoung Kwon and Hyun-Jung Kim
J. Funct. Biomater. 2025, 16(5), 188; https://doi.org/10.3390/jfb16050188 - 19 May 2025
Viewed by 980
Abstract
Conventional calcium silicate cement (CSC) formulations often exhibit insufficient mechanical strength and low initial stability. This study aimed to develop an organic–inorganic hybrid biomaterial by incorporating an elastin-like polypeptide (ELP) (V125E8) and bioactive glass (BG) (63S) into CSC to improve its mechanical properties [...] Read more.
Conventional calcium silicate cement (CSC) formulations often exhibit insufficient mechanical strength and low initial stability. This study aimed to develop an organic–inorganic hybrid biomaterial by incorporating an elastin-like polypeptide (ELP) (V125E8) and bioactive glass (BG) (63S) into CSC to improve its mechanical properties and wash-out resistance during the initial setting. Experimental groups included ProRoot MTA (Dentsply Sirona, USA) as a control (0BG), inorganic hybrids containing BG (2% or 5%; 2BG, 5BG), and organic–inorganic hybrids combining BG (2% or 5%; 2BG-L, 5BG-L) with a 10 wt% ELP solution. The compressive strength, microhardness, and wash-out resistance of the specimens were evaluated. The organic–inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments. The organic–inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

Back to TopTop