Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Sodium hydroxide (water solution of sodium hydroxide, NaOH) with molar modulus 10 (Warchem S.A., Warsaw, Poland).
- -
- Sodium metasilicate pentahydrate (Na2SiO3·5H2O) with a molar mass of 212.4 g/mol (Warchem S.A., Warsaw, Poland).
2.2. Preparation of Geopolymer Specimens
2.3. Test Methods
- Ft—breaking load at the beam’s centre [N];
- b—side length of the beam’s section [mm];
- l—distance between the supports [mm].
3. Results and Discussion
3.1. Geopolymers Performance
3.2. Microstructure Analysis
3.3. Thermal Conductivity
3.4. Mechanical Performance of Geopolymers
4. Conclusions
- The addition of waste glass can improve the mechanical performance of the geopolymer. It is possible to achieve maximum compressive strength if the waste glass content is no higher than 20%.
- It is possible to produce geopolymer containing waste glass as a partial replacement for fly ash with compressive strength similar to the cement mortar containing class 32.5 Portland cement.
- The addition of waste glass significantly improves the flexural strength of the geopolymers, which is a consequence of the physical properties of the glass and the non-regular shape of its grains.
- The higher content of the reactive silicon oxide and aluminium oxide produced as a result of adding glass waste intensifies polycondensation, improving the mechanical performance.
- All tested geopolymers have demonstrated good insulating ability compared to the cement mortar. The results of thermal conductivity tests on the geopolymers indicate that adding 10% glass waste leads to a slight increase in λ (from 0.358 to 0.397 W/mK), which can be attributed to the higher thermal conductivity of glass particles compared to the geopolymer matrix. At higher waste glass content (20% and 30%), λ values decrease, probably due to changes in the microstructure of geopolymers associated with the distribution of pores in the composite.
- Utilising the waste glass is economical and environmentally friendly as it leads to diminished energy consumption, lower grinding and sorting costs, and reduced use of natural raw materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Freire, A.l.; José, H.J.; Moreira, R.F.P.M. Potential applications for geopolymers in carbon capture and storage. Int. J. Greenh. Gas Control 2022, 118, 103687. [Google Scholar] [CrossRef]
- Khandelwal, M.; Ranjith, P.G.; Pan, Z.; Sanjayan, J.G. Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition. Arab. J. Geosci. 2013, 6, 2383–2389. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; Deventer, J.S.J.V. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Lee, N.K.; Koh, K.T.; An, G.H.; Ryu, G.S. Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram. Int. 2017, 43, 2471–2480. [Google Scholar] [CrossRef]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construct. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construct. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Rashad, A.M. Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 2013, 10, 57–64. [Google Scholar]
- Aydın, S. A ternary optimisation of mineral additives of alkali activated cement mortars. Construct. Build. Mater. 2013, 43, 131–138. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Fernandez-Jimenez, A.; Krivenko, P.V.; Kavalerova, E.; Palacios, M.; Shi, C. Binder chemistry—High-calcium alkali-activated materials. In Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; Provis, J.L., Deventer, J.S.J.V., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 59–91. [Google Scholar]
- U.S.E.P. Advancing Sustainable Materials Management: 2013 Fact Sheet. 2015. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/2013_advncng_smm_fs.pdf (accessed on 1 May 2025).
- Eurostat Statistics Explained. Recycling—Secondary Material Price Indicator. [Online]. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Recycling_%E2%80%93_secondary_material_price_indicator (accessed on 12 January 2024).
- Qin, B.; Lin, M.; Xu, Z.; Ruan, J. Preparing ultra-thin glass from waste glass containing impurities of household waste by the combined technology of in-situ deposition and vacuum pyrolysis. Resour. Conserv. Recycl. 2022, 185, 106451. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). National Overview: Facts and Figures on Materials. Wastes and Recycling. 2021. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (accessed on 1 May 2025).
- Larsen, A.W.; Merrild, H.; Christensen, T.H. Recycling of glass: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 754–762. [Google Scholar] [CrossRef]
- Yao, Z.; Qin, B.; Huang, Z.; Ruan, J.; Xu, Z. Green combined resource recycling system for the recycling of waste glass. ACS Sustain. Chem. Eng. 2021, 9, 7361–7368. [Google Scholar] [CrossRef]
- Sooš, L.; Matúš, M.; Pokusovă, M.; Čăcko, V.; Băbics, J. The recycling of waste laminated glass through decomposition technologies. Recycling 2021, 6, 26. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. In Resources, Conservation and Recycling; Elsevier B.V.: Amsterdam, The Netherlands, 2021; Volume 173. [Google Scholar] [CrossRef]
- Delbari, S.A.; Hof, L.A. Glass waste circular economy—Advancing to high-value glass sheets recovery using industry 4.0 and 5.0 technologies. J. Clean. Prod. 2024, 462, 142629. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Liu, Y.; Lu, J.-X.; Bian, Z.; Yio, M.; Cheeseman, C.; Wang, F.; Sun Poon, C. Recycling of waste glass and incinerated sewage sludge ash in glass- ceramics. Waste Manag. 2024, 174, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Ogundairo, T.O.; Adegoke, D.D.; Akinwumi, I.I.; Olofinnade, O.M. Sustainable use of recycled waste glass as an alternative material for building construction—A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012073. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Song, Q.; Xu, Z. Integrated assessment of economic benefits and environmental impact in waste glass closed-loop recycling for promoting glass circularity. J. Clean. Prod. 2024, 444, 141155. [Google Scholar] [CrossRef]
- Svenson, M.N.; Thirion, L.M.; Youngman, R.E.; Mauro, J.C.; Rzoska, S.J.; Bockowski, M.; Smedskjaer, M.M. Pressure-induced changes in interdiffusivity and compressive stress in chemically strengthened glass. ACS Appl. Mater. 2014, 6, 10436–10444. [Google Scholar] [CrossRef]
- Berneschi, S.; Righini, G.C.; Pelli, S. Towards a glass new world: The role of ion- exchange in modern technology. Appl. Sci. 2021, 11, 4610. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, Z.; Pan, X. Synergetic effects of recycled crumb rubber and glass cullet on the engineering properties of geopolymer mortar. Cement Concr. Comp. 2023, 137, 104907. [Google Scholar] [CrossRef]
- Saccani, A.; Manzi, S.; Lancellotti, I.; Barbieri, L. Manufacturing and durability of alkali activated mortars containing different types of glass waste as aggregates valorisation. Construct. Build. Mater. 2020, 237, 117733. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Abd Ellatief, M.; Heneigel, A.M.; Abd Elrahman, M. Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceram. Int. 2022, 48, 19662–19674. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Sarker, P.K. Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar. Construct. Build. Mater. 2020, 263, 120177. [Google Scholar] [CrossRef]
- Hou, S.; Duan, Z.; Singh, Z.; Ma, A. Improvement on the properties of waste glass mortar with nanomaterials. Construct. Build. Mater. 2020, 254, 118973. [Google Scholar] [CrossRef]
- Lu, J.X.; Poon, C.S. Use of waste glass in alkali activated cement mortar. Construct. Build. Mater. 2018, 160, 399–407. [Google Scholar] [CrossRef]
- Taher, S.M.S.; Saadullah, S.T.; Haido, J.H.; Tayeh, B.A. Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Stud. Constr. Mater. 2021, 15, e00744. [Google Scholar] [CrossRef]
- Xiao, R.; Polaczyk, P.; Zhang, M.; Jiang, X.; Zhang, Y.; Huang, B.; Hu, W. Evaluation of glass powder-based geopolymer stabilized road bases containing recycled waste glass aggregate. Transport. Res. Rec. 2020, 2674, 22–32. [Google Scholar] [CrossRef]
- Mejía de Gutiérrez, M.; Villaquirán-Caicedo, M.A.; Guzmán-Aponte, L.A. Alkali- activated metakaolin mortars using glass waste as fine aggregate: Mechanical and photocatalytic properties. Construct. Build. Mater. 2020, 235, 117510. [Google Scholar] [CrossRef]
- Lu, J.X.; Shen, P.; Zheng, H.; Zhan, B.; Ali, H.A.; He, P.; Poon, S.C. Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance. Cement Concr. Compos. 2020, 113, 103632. [Google Scholar] [CrossRef]
- Varma, D.N.; Singh, S.P. A Review on Waste Glass-based Geopolymer Composites as a Sustainable Binder. Silicon 2023, 15, 7685–7703. [Google Scholar] [CrossRef]
- Gao, X.; Yao, X.; Xie, R.; Li, X.; Cheng, J.; Yang, T. Performance of fly ash-based geopolymer mortars with waste cathode ray tubes glass fine aggregate: A comparative study with cement mortars. Construct. Build. Mater. 2022, 344, 128243. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. GlassWaste versus Sand as Aggregates: The Characteristics of the Evolving Geopolymer Binders. J. Clean. Prod. 2018, 193, 593–603. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Heniegal, A.M.; Abdellatief, M.; Tayeh, B.A.; Elrahman, M.A. Properties of Ultra-High Performance Geopolymer Concrete Incorporating Recycled Waste Glass. Case Stud. Constr. Mater. 2022, 17, e01393. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Lao-un, J.; Zaetang, Y.; Wongkvanklom, A.; Phoo-ngernkham, T.; Wongsa, A.; Sata, V. Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto GlassWaste as Fine Aggregate. J. Build. Eng. 2022, 60, 105178. [Google Scholar] [CrossRef]
- Kuri, J.C.; Hosan, A.; Uddin, F.; Shaikh, A.; Biswas, W.K. The Effect of Recycled Waste Glass as a Coarse Aggregate on the Properties of Portland Cement Concrete and Geopolymer Concrete. Buildings 2023, 13, 586. [Google Scholar] [CrossRef]
- Srivastava, V.; Gautam, S.P.; Agarwal, V.C.; Mehta, P.K. GlassWastes as Coarse Aggregate in Concrete. J. Environ. Nanotechnol. 2014, 3, 2319–5541. [Google Scholar]
- BS EN 197-1:2011. Cement—Part 1: Composition, Specifications and Conformity. Available online: https://www.en-standard.eu/bs-en-197-1-2011-cement-composition-specifications-and-conformity-criteria-for-common-cements/ (accessed on 8 May 2025).
- BS EN 196-1:2016; Methods of Testing Cement. Determination of Strength. British Standards Institution (BSI): London, UK. [CrossRef]
- Gołek, Ł.; Szudek, W.; Łój, G. Utilization of ground waste glass cullet in the industrial production of precast concrete elements. Cem. Lime Concr. 2021, 26, 118–133. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Hebda, M. Influence of Waste Glass Particle Size on the Physico-Mechanical Properties and Porosity of Foamed Geopolymer Composites Based on Coal Fly Ash. Materials 2023, 16, 2044. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xiao, R.; Ma, Y.; Zhang, M.; Bai, Y.; Huang, B. Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construct. Build. Mater. 2020, 262, 120579. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Vongvoradit, P.; Jenjirapanya, S. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials. Int. J. Miner. Metal. Mater. 2012, 19, 872–878. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
Content of the Component [Mass %] | |||||||||
---|---|---|---|---|---|---|---|---|---|
LOI | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | NH3 |
3.1 | 52.5 | 26.71 | 6.95 | 3.1 | 2.2 | 0.98 | 2.98 | 0.43 | 0.02 |
ρ [kg/dm3] | SD [kg/dm3] | λ [W/mK] | SD [W/mK] | cv [MJ/(m3K)] | SD [MJ/(m3K)] | a [10−6 m2/s] | SD [10−6 m2/s] |
---|---|---|---|---|---|---|---|
2.07 | 0.04 | 1.77 | 0.02 | 1.75 | 0.04 | 1.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cendrowski, K.; Horszczaruk, E.; Strzałkowski, J. Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass. Appl. Sci. 2025, 15, 7495. https://doi.org/10.3390/app15137495
Cendrowski K, Horszczaruk E, Strzałkowski J. Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass. Applied Sciences. 2025; 15(13):7495. https://doi.org/10.3390/app15137495
Chicago/Turabian StyleCendrowski, Krzysztof, Elżbieta Horszczaruk, and Jarosław Strzałkowski. 2025. "Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass" Applied Sciences 15, no. 13: 7495. https://doi.org/10.3390/app15137495
APA StyleCendrowski, K., Horszczaruk, E., & Strzałkowski, J. (2025). Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass. Applied Sciences, 15(13), 7495. https://doi.org/10.3390/app15137495