Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of C-S-H Materials
2.3. Evaluation of Cr(III) Removal Using Obtained CSH
2.4. Characterization of Materials
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Xu, B.; Tan, J.; Yang, M.; Yi, Y. Using freshwater sludge and carbide sludge to produce expansive agents for civil engineering applications: A feasibility study. J. Water Process. Eng. 2024, 67, 106131. [Google Scholar] [CrossRef]
- Dutta, N.; Giduthuri, A.T.; Khan, M.U.; Garrison, R.; Ahring, B.K. Improved valorization of sewage sludge in the circular economy by anaerobic digestion: Impact of an innovative pretreatment technology. Waste Manag. 2022, 154, 105–112. [Google Scholar] [CrossRef]
- Georgaki, M.-N.; Charalambous, M. Toxic chromium in water and the effects on the human body: A systematic review. J. Water Health 2022, 21, 205–223. [Google Scholar] [CrossRef]
- Boukadida, K.; Cachot, J.; Morin, B.; Clerandeau, C.; Banni, M. Moderate temperature elevation increases susceptibility of early-life stage of the Mediterranean mussel, Mytilus galloprovincialis, to metal-induced genotoxicity. Sci. Total Environ. 2019, 663, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, Q.; Jin, X.-T.; Zou, Y.-C.; Li, D.-N.; Feng, P.; Luo, Y.-H. Removal of total chromium in wastewater via simultaneous photocatalysis and adsorption using calcium silicate hydrate-based composites. J. Mater. Chem. A 2023, 11, 24038–24046. [Google Scholar] [CrossRef]
- Casar, Z.; Mohamed, A.K.; Bowen, P.; Scrivener, K. Atomic-Level and Surface Structure of Calcium Silicate Hydrate Nanofoils. J. Phys. Chem. C 2023, 127, 18652–18661. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, H.; Liu, S.; Wang, W.; Liang, Y.; Fu, J.; Zhou, Q.; Wang, L. Recycling heavy metal ions by ultrathin nanosheet-assembled calcium silicate hydrate for the degradation of organic pollutants in wastewater via Fenton-like reactions. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 682, 132871. [Google Scholar] [CrossRef]
- Li, G.; Li, M.; Zhang, X.; Cao, P.; Jiang, H.; Luo, J.; Jiang, T. Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal. Int. J. Min. Sci. Technol. 2022, 32, 563–573. [Google Scholar] [CrossRef]
- Qing, Z.; Guijian, L.; Shuchuan, P.; Chuncai, Z.; Arif, M. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. Chemosphere 2022, 305, 135438. [Google Scholar] [CrossRef]
- Coleman, N.; Trice, C.; Nicholson, J. 11 Å tobermorite from cement bypass dust and waste container glass: A feasibility study. Int. J. Miner. Process. 2009, 93, 73–78. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, Q.B.; Nguyen, V.P.; Pham, T.K. SYNTHESES AND CHARACTERISTICS OF CALCIUM-BASED GEOPOLYMER FROM SOLAR-CELL PANEL-GLASS WASTE BY HYDROTHERMAL METHOD. Mater. Tehnol. 2024, 58, 467–475. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, C.; Jiao, Y.; Zhang, D.; Kang, D.; Wang, K. Study on Crystal Growth of Tobermorite Synthesized by Calcium Silicate Slag and Silica Fume. Materials 2023, 16, 1288. [Google Scholar] [CrossRef]
- Rodríguez, K.T.; Vázquez, A.I.S.; Valdés, J.J.R.; Rodríguez, J.I.; Figueroa, M.G.P.; García, S.P.; Castelló, J.B.C.; Méndez, A.Á. Photovoltaic Glass Waste Recycling in the Development of Glass Substrates for Photovoltaic Applications. Materials 2023, 16, 2848. [Google Scholar] [CrossRef]
- Borek, K.; Czapik, P. Utilization of Waste Glass in Autoclaved Silica–Lime Materials. Materials 2022, 15, 549. [Google Scholar] [CrossRef]
- Hartmann, A.; Khakhutov, M.; Buhl, J.-C. Hydrothermal synthesis of CSH-phases (tobermorite) under influence of Ca-formate. Mater. Res. Bull. 2014, 51, 389–396. [Google Scholar] [CrossRef]
- Mao, F.; Ai, H. A Study on the Hydrothermal Synthesis of Calcium Silicate Products by Calcination of Full-Component Waste Concrete. Sustainability 2023, 15, 16341. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Lu, L.; Struble, L.J.; Hu, S. Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate. J. Wuhan Univ. Technol. Sci. Ed. 2011, 26, 770–773. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Diez-Garcia, M.; Gaitero, J.J.; Santos, J.I.; Dolado, J.S.; Aymonier, C. Supercritical hydrothermal flow synthesis of xonotlite nanofibers. J. Flow Chem 2018, 8, 89–95. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Azeez, H.S.; Mohammad, M.R. Study the Structure, Morphology and Vibration Modes for K2CrO4 and K2Cr2O7. J. Al-Nahrain Univ. 2017, 20, 71–76. [Google Scholar] [CrossRef]
- Madi, C.; Tabbal, M.; Christidis, T.; Isber, S.; Nsouli, B.; Zahraman, K. Microstructural characterization of chromium oxide thin films grown by remote plasma assisted pulsed laser deposition. J. Phys. Conderence Ser. 2007, 59, 600–604. [Google Scholar] [CrossRef]
- Al-Saadi, T.M.; Hameed N., A. Synthesis and structural characterization of Cr2O3 nanoparticles prepared by using Cr(NO3) 3. 9H2O and triethanolamine under microwave irradiation. Adv. Phys. Theor. Appl. 2015, 44, 139–148. [Google Scholar]
- Omotoso, O.; Ivey, D.; Mikula, R. Containment mechanism of trivalent chromium in tricalcium silicate. J. Hazard. Mater. 1998, 60, 1–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Wei, J.; Li, F.; Qu, X.; Shi, L.; Zhang, H.; Yu, Q. Synthesis, Characterization and Hexavalent Chromium Adsorption Characteristics of Aluminum- and Sucrose-Incorporated Tobermorite. Materials 2017, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Castro-Castro, J.D.; Sanabria-González, N.R.; Giraldo-Gómez, G.I. Experimental data of adsorption of Cr(III) from aqueous solution using a bentonite: Optimization by response surface methodology. Data Brief 2020, 28, 105022. [Google Scholar] [CrossRef]
- Xing, L.; Luo, J.; Jiang, H.; Zhang, X.; Rao, M.; Li, G. Using solid waste to treat wastewater: Preparation of flowerlike calcium silicate hydrate from coal fly ash for cadmium removal. Sep. Purif. Technol. 2024, 348, 127690. [Google Scholar] [CrossRef]
- Dai, T.; Fang, C.; Liu, T.; Zheng, S.; Lei, G.; Jiang, G. Waste glass powder as a high temperature stabilizer in blended oil well cement pastes: Hydration, microstructure and mechanical properties. Constr. Build. Mater. 2024, 439, 137359. [Google Scholar] [CrossRef]
- Das, P.; Upadhyay, S.; Dubey, S.; Singh, K.K. Waste to wealth: Recovery of value-added products from steel slag. J. Environ. Chem. Eng. 2021, 9, 105640. [Google Scholar] [CrossRef]
- Lesaoana, M.; Pakade, V.E.; Chimuka, L. Crosslinker-less surface-imprinted Macadamia derived activated carbons for trace Cr(III) removal from aqueous solution. Environ. Technol. Innov. 2019, 14, 100336. [Google Scholar] [CrossRef]
Material | Percentage by Weight (wt.%) | ||
---|---|---|---|
SiO2 | CaO | Na2O | |
Wasted PV Glass (WPVG) | 73.14 | 10.98 | 9.78 |
Wasted Carbide sludge (WCS) | 5.33 | 70.48 | 0.05 |
Parameters | Immersion Time (Hours) | |||
---|---|---|---|---|
0 | 3 | 6 | 9 | |
Cr(III) concentration (g/L) | 8.00 | 5.21 | 2.12 | 0.65 |
Cr(III) removal efficiency (%) | 0.00 | 34.59 | 73.31 | 91.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, T.N.; Chieu, L.P.H.; Trung Kien, P. Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal. Coatings 2025, 15, 733. https://doi.org/10.3390/coatings15060733
Quan TN, Chieu LPH, Trung Kien P. Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal. Coatings. 2025; 15(6):733. https://doi.org/10.3390/coatings15060733
Chicago/Turabian StyleQuan, Tran Ngo, Le Phan Hoang Chieu, and Pham Trung Kien. 2025. "Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal" Coatings 15, no. 6: 733. https://doi.org/10.3390/coatings15060733
APA StyleQuan, T. N., Chieu, L. P. H., & Trung Kien, P. (2025). Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal. Coatings, 15(6), 733. https://doi.org/10.3390/coatings15060733