Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,614)

Search Parameters:
Keywords = silane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3283 KB  
Article
Amidine-Linked Closo-Dodecaborate–Silica Hybrids: Synthesis and Characterization
by Alexey V. Nelyubin, Nikolay K. Neumolotov, Vsevolod A. Skribitsky, Maria A. Teplonogova, Nikita A. Selivanov, Alexander Yu. Bykov, Victor P. Tarasov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Inorganics 2026, 14(1), 27; https://doi.org/10.3390/inorganics14010027 - 14 Jan 2026
Viewed by 46
Abstract
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were [...] Read more.
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were synthesized and systematically characterized. Two immobilization strategies were compared: direct nucleophilic addition of surface aminopropyl groups to the nitrilium derivative (Bu4N)[B12H11NCCH3] and sol–gel condensation of a pre-formed boron-containing APTES-derived silane. Covalent attachment via amidine bond formation was confirmed by solution and MAS 11B NMR spectroscopy, IR spectroscopy, elemental analysis/ICP-OES, and SEM. The direct grafting route afforded a boron loading of 4.5 wt% (≈20% of the theoretical capacity), with the efficiency limited by electrostatic repulsion between anionic amidine fragments on the negatively charged silica surface, whereas the APTES route gave lower absolute loading (0.085 mmol/g) due to the low specific surface area of the coarse silica support. Despite the moderate degree of functionalization, the resulting boron cluster–modified silica gels are attractive candidates for specialized chromatographic applications, where the unique hydrophobic and dihydrogen-bonding properties of closo-dodecaborates may enable selective retention of challenging analytes and motivate further optimization of surface morphology and immobilization conditions. Full article
Show Figures

Figure 1

20 pages, 16874 KB  
Article
A Pilot Study for “In Vitro” Testing the Surface Conditioning Effects on CAD/CAM Hybrid Nanoceramic Adhesion
by Georgi Veselinov Iliev, Lucian Toma Ciocan, Vlad Gabriel Vasilescu, Gaudențiu Vărzaru, Florin Miculescu, Ana Maria Cristina Țâncu, Marina Imre and Silviu Mirel Pițuru
Dent. J. 2026, 14(1), 36; https://doi.org/10.3390/dj14010036 - 6 Jan 2026
Viewed by 123
Abstract
Background/Objectives: The clinical application of CAD/CAM restorative materials continues to evolve due to increasing demand for aesthetic, durable, and minimally invasive indirect restorations. Hybrid nanoceramics, such as Grandio disc (VOCO GmbH, Cuxhaven, Germany), are increasingly used in indirect restorative dentistry due to [...] Read more.
Background/Objectives: The clinical application of CAD/CAM restorative materials continues to evolve due to increasing demand for aesthetic, durable, and minimally invasive indirect restorations. Hybrid nanoceramics, such as Grandio disc (VOCO GmbH, Cuxhaven, Germany), are increasingly used in indirect restorative dentistry due to their favourable combination of mechanical strength, polishability, wear resistance, and bonding potential. One challenge associated with adhesive protocols for CAD/CAM materials lies in achieving durable bonds with resin cements. Extensive post-polymerization during fabrication reduces the number of unreacted monomers available for chemical interaction, thereby limiting the effectiveness of traditional adhesive strategies and necessitating specific surface conditioning approaches. This study aimed to evaluate, in a preliminary, non-inferential manner, the influence of several combined conditioning protocols on surface micromorphology, elemental composition, and descriptive SBS trends of a CAD/CAM hybrid nanoceramic. This work was designed as a preliminary pilot feasibility study. Due to the limited number of specimens (two discs per protocol, each providing two independent enamel bonding measurements), all bond strength outcomes were interpreted descriptively, without inferential statistical testing. This in vitro study investigated the effects of various surface conditioning protocols on the adhesive performance of CAD/CAM hybrid nanoceramics (Grandio disc, VOCO GmbH, Cuxhaven, Germany) to dental enamel. Hydrofluoric acid (HF) etching was performed to improve adhesion to indirect resin-based materials using two commercially available gels: 9.5% Porcelain Etchant (Bisco, Inc., Schaumburg, IL, USA) and 4.5% IPS Ceramic Etching Gel (Ivoclar Vivadent, Schaan, Liechtenstein), in combination with airborne-particle abrasion (APA), silanization, and universal adhesive application. HF may selectively dissolve the inorganic phase, while APA increases surface texture and micromechanical retention. However, existing literature reports inconsistent results regarding the optimal conditioning method for hybrid composites and nanoceramics, and the relationship between micromorphology, elemental surface changes, and adhesion remains insufficiently clarified. Methods: A total of ten composite specimens were subjected to five conditioning protocols combining airborne-particle abrasion with varying hydrofluoric acid (HF) concentrations and etching times. Bonding was performed using a dual-cure resin cement (BiFix QM) and evaluated by shear bond strength (SBS) testing. Surface morphology was examined through environmental scanning electron microscopy (ESEM), and elemental composition was analyzed via energy-dispersive X-ray spectroscopy (EDS). Results: indicated that dual treatment with HF and sandblasting showed descriptively higher SBS, with values ranging from 5.01 to 6.14 MPa, compared to 1.85 MPa in the sandblasting-only group. ESEM revealed that higher HF concentrations (10%) created more porous and irregular surfaces, while EDS indicated an increased fluorine presence trend and silicon reduction, indicating deeper chemical activation. However, extending HF exposure beyond 20 s did not further improve bonding, suggesting the importance of protocol optimization. Conclusions: The preliminary observations suggest a synergistic effect of mechanical and chemical conditioning on hybrid ceramic adhesion, but values should be interpreted qualitatively due to the pilot nature of the study. Manufacturer-recommended air abrasion alone may provide limited adhesion under high-stress conditions, although this requires confirmation in studies with larger sample sizes and ageing simulations. Future studies should address long-term durability and extend the comparison to other hybrid CAD/CAM materials and to other etching protocols. Full article
(This article belongs to the Special Issue Dental Materials Design and Application)
Show Figures

Graphical abstract

17 pages, 2498 KB  
Article
Evaluation of Modified Ceramic Waste Incorporating Nanosilica Addition for Concrete Utilization
by Nevin Karamahmut Mermer
Minerals 2026, 16(1), 46; https://doi.org/10.3390/min16010046 - 31 Dec 2025
Viewed by 227
Abstract
The construction sector is progressively prioritizing environmental norms owing to its substantial role in carbon emissions from clinker manufacture. Industrial waste materials are increasingly used as alternative constituents in cement-based systems, garnering interest as a sustainable strategy. Ceramic waste powder (CWP), produced in [...] Read more.
The construction sector is progressively prioritizing environmental norms owing to its substantial role in carbon emissions from clinker manufacture. Industrial waste materials are increasingly used as alternative constituents in cement-based systems, garnering interest as a sustainable strategy. Ceramic waste powder (CWP), produced in substantial quantities with enduring properties, offers a viable alternative. Nonetheless, its elevated water absorption presents issues, requiring modification procedures such as hydrophobization and the use of nanosilica to enhance performance. This study assessed CWP in both raw and modified forms (ground and hydrophobized) as a partial aggregate replacement in concrete. A silane-derived chemical was employed for hydrophobization, with varying amounts of nanosilica. Recent mortar testing encompassed setting time, flow, and density. Durability was evaluated using capillary water absorption, and flexural and compressive strengths were quantified at 2, 7, and 28 days. Mineralogical and microstructural investigations were conducted utilizing XRD and FTIR to monitor hydration phases and reaction processes. Results indicated that unmodified CWP containing up to 1% (wt) nanosilica enhanced mechanical strength; however, elevated nanosilica concentrations diminished early strength. Hydrophobized CWP samples demonstrated improved early strength with nanosilica levels up to 0.5% (wt), but strength diminished at elevated concentrations. Microstructural analysis confirmed reduced portlandite levels and increased C–S–H production, thereby validating the progress of hydration. The regulated and altered application of CWP with nanosilica can improve mechanical performance and durability while promoting ecological sustainability in cement-based systems. Full article
(This article belongs to the Special Issue From Clay Minerals to Ceramics: Progress and Challenges)
Show Figures

Graphical abstract

37 pages, 4820 KB  
Review
Functionalization Techniques Empowering Optical Fiber Biosensors in Label-Free Cancer Biomarker Detection
by Aigerim Omirzakova, Lyazzat Mukhangaliyeva, Zhanerke Katrenova, Aida Aituganova, Aliya Bekmurzayeva, Daniele Tosi and Zhannat Ashikbayeva
Biosensors 2026, 16(1), 25; https://doi.org/10.3390/bios16010025 - 31 Dec 2025
Viewed by 520
Abstract
Optical fibers are gaining increasing attention in biomedical applications due to their unique advantages, including flexibility, biocompatibility, immunity to electromagnetic interference, potential for miniaturization, and the ability to perform remote, real-time, and in situ sensing. Label-free optical fiber biosensors represent a promising alternative [...] Read more.
Optical fibers are gaining increasing attention in biomedical applications due to their unique advantages, including flexibility, biocompatibility, immunity to electromagnetic interference, potential for miniaturization, and the ability to perform remote, real-time, and in situ sensing. Label-free optical fiber biosensors represent a promising alternative to conventional cancer diagnostics, offering comparable sensitivity and specificity while enabling real-time detection at ultra-low concentrations without the need for complex labeling procedures. However, the sensing performance of biosensors is fundamentally governed by surface modification. The choice of optimal functionalization strategy is dictated by the sensor type, target biomarker, and detection environment. This review paper presents a comprehensive and expanded overview of various surface functionalization methods specifically designed for cancer biomarker detection using optical fiber biosensors, including silanization, self-assembled monolayers, polymer-based coatings, and different dimensional nanomaterials (0D, 1D, and 2D). Furthermore, the emerging integration of computational methods and machine learning in optimizing functionalized optical sensing has been discussed. To the best of our knowledge, this is the first work that consolidates existing surface modification approaches into a single, cohesive resource, providing valuable insights for researchers developing next-generation fiber optic biosensors for cancer diagnostics. Moreover, the paper points out the current technical challenges and outlines the future perspectives of optical fiber-based biosensors. Full article
Show Figures

Figure 1

23 pages, 2535 KB  
Article
Corundum Particles as Trypsin Carrier for Efficient Protein Digestion
by Sarah Döring, Birte S. Wulfes, Aleksandra Atanasova, Carsten Jaeger, Leopold Walzel, Georg Tscheuschner, Sabine Flemig, Kornelia Gawlitza, Ines Feldmann, Zoltán Konthur and Michael G. Weller
BioTech 2026, 15(1), 2; https://doi.org/10.3390/biotech15010002 - 30 Dec 2025
Viewed by 211
Abstract
Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was [...] Read more.
Reusable enzyme carriers are valuable for proteomic workflows, yet many supports are expensive or lack robustness. This study describes the covalent immobilization of recombinant trypsin on micrometer-sized corundum particles and assesses their performance in protein digestion and antibody analysis. The corundum surface was cleaned with potassium hydroxide, silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde. Recombinant trypsin was then attached, and the resulting imines were reduced with sodium cyanoborohydride. Aromatic amino acid analysis (AAAA) estimated an enzyme loading of approximately 1 µg/mg. Non-specific adsorption of human plasma proteins was suppressed by blocking residual aldehydes with a Tris-glycine-lysine buffer. Compared with free trypsin, immobilization shifted the temperature optimum from 50 to 60 °C and greatly improved stability in 1 M guanidinium hydrochloride. Activity remained above 80% across several reuse cycles, and storage at 4 °C preserved functionality for weeks. When applied to digesting the NISTmAb, immobilized trypsin provided peptide yields and sequence coverage comparable to soluble enzyme and outperformed it at elevated temperatures. MALDI-TOF MS analysis of Herceptin digests yielded fingerprint spectra that correctly identified the antibody and achieved >60% sequence coverage. The combination of low cost, robustness and analytical performance makes corundum-immobilized trypsin an attractive option for research and routine proteomic workflows. Full article
Show Figures

Figure 1

14 pages, 3450 KB  
Article
Influence of a Silane Coupling Agent and MWCNTs on the Structural and Durability Performance of CFRP Rebars
by Woo Sung Yum, Do Young Kwon and Yong Sik Chu
Materials 2026, 19(1), 106; https://doi.org/10.3390/ma19010106 - 28 Dec 2025
Viewed by 296
Abstract
This study investigates the influence of silane coupling agents and multi-walled carbon nanotubes (MWCNTs) on the mechanical, durability, and thermal performance of CFRP rebars manufactured using a pilot-scale pultrusion process. The incorporation of additives extended epoxy working time without causing adverse viscosity effects [...] Read more.
This study investigates the influence of silane coupling agents and multi-walled carbon nanotubes (MWCNTs) on the mechanical, durability, and thermal performance of CFRP rebars manufactured using a pilot-scale pultrusion process. The incorporation of additives extended epoxy working time without causing adverse viscosity effects during processing. Silane-modified CFRP rebars exhibited the highest mechanical performance, achieving a tensile strength of approximately 2649 MPa, an elastic modulus of 156 GPa, and improved bond strength with concrete, which is attributed to enhanced fiber–matrix interfacial adhesion. MWCNT-modified rebars showed slightly lower tensile strength but demonstrated superior thermal resistance, retaining the highest proportion of mechanical properties after exposure to 250 °C due to matrix reinforcement and crack-bridging effects. No significant degradation was observed under simulated marine exposure, while gradual reductions (up to ~7%) occurred in alkaline environments, with silane-modified rebars showing the greatest durability. These findings provide mechanistic insights and practical guidelines for optimizing epoxy formulations to enhance the structural and long-term performance of CFRP rebars. Full article
Show Figures

Figure 1

22 pages, 7715 KB  
Article
Green Fiber-Reinforced Laminates: Styrene-Free UPe with VTES-Functionalized ZrO2 and Flax Fabrics
by Slavko Mijatov, Milica Rančić, Tihomir Kovačević, Jelena Vujančević, Vladimir B. Pavlović and Jelena D. Gržetić
Polymers 2026, 18(1), 70; https://doi.org/10.3390/polym18010070 - 26 Dec 2025
Viewed by 280
Abstract
Natural fiber-based composites are gaining attention as sustainable alternatives to synthetic fiber-reinforced materials. Herein, styrene-free unsaturated polyester (UPe) nanocomposites and flax-fabric laminates reinforced with vinyl-triethoxy-silane (VTES) functionalized zirconia nanoparticles (ZrO2-VS) were studied. Nanoparticles were dispersed by high-shear mixing, and ZrO2 [...] Read more.
Natural fiber-based composites are gaining attention as sustainable alternatives to synthetic fiber-reinforced materials. Herein, styrene-free unsaturated polyester (UPe) nanocomposites and flax-fabric laminates reinforced with vinyl-triethoxy-silane (VTES) functionalized zirconia nanoparticles (ZrO2-VS) were studied. Nanoparticles were dispersed by high-shear mixing, and ZrO2-VS was benchmarked against unmodified ZrO2 and neat UPe. Fourier-transform infrared spectroscopy (FTIR) tracked cure conversion; scanning electron microscopy (SEM/EDS), tensile testing, and dynamic mechanical analysis (DMA) evaluated structure-property relationships. ZrO2-VS improved dispersion and interfacial adhesion, yielding higher tensile strength and storage modulus compared with unmodified ZrO2. In flax-fabric laminates, ZrO2-VS/UPe achieved a tensile strength of 72.2 ± 3.6 MPa, exceeding both unmodified ZrO2/UPe and neat UPe controls. DMA showed pronounced increases in storage modulus across temperature with small, non-significant changes in Tg. These results highlight a low-styrene-hazard UPe matrix and natural fiber reinforcement pathway to improved mechanical performance via silane-mediated nanoparticle-matrix-fiber bridging. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 5492 KB  
Article
Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics
by Siriwan Jansinak, Kwanchai Buaksuntear, Arnaud Spangenberg, Antoine Le Duigou, Darshil U. Shah, Karine Mougin and Wirasak Smitthipong
Polymers 2026, 18(1), 47; https://doi.org/10.3390/polym18010047 - 24 Dec 2025
Viewed by 406
Abstract
This study developed a natural rubber (NR) composite reinforced with surface-modified pineapple leaf fibres (PALFs) and hemp fibres (HFs) using a layer-by-layer (sandwich-like) fabrication method. The objectives were to increase the utilisation of the natural fibres as reinforcing agents and to investigate the [...] Read more.
This study developed a natural rubber (NR) composite reinforced with surface-modified pineapple leaf fibres (PALFs) and hemp fibres (HFs) using a layer-by-layer (sandwich-like) fabrication method. The objectives were to increase the utilisation of the natural fibres as reinforcing agents and to investigate the impact of silane fibre surface modification on the properties of the sandwich composites. Fibre surface characterisation was performed using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) to confirm the presence of functional groups from silane and cellulose. The wettability and adhesion properties of the modified fibres were also evaluated. The mechanical properties were investigated via single-fibre tensile tests. Composites with 50 phr silane-treated PALF showed the best compromise in terms of interface adhesion (48.3 mJ/m2) and tensile strength (6 MPa). This result was also supported by scanning electron microscopy (SEM), which revealed the absence of voids between the fibres and the NR matrix. Furthermore, dynamic mechanical analysis showed that the PALF composite treated with silane at 50 phr exhibited the best viscoelastic behaviour. NR composites with 50 phr silane-treated PALF have mechanical properties suitable for potential applications in engineering products. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

18 pages, 3291 KB  
Article
Preparation, Adsorption Performance and Mechanism of Low-Cost Desert Sand-Based Pb (II) Ion-Imprinted Composites
by Yixin Sui, Jiaxiang Qi, Shuaibing Gao, Linlin Chai, Yahong Xie, Changyan Guo and Shawket Abliz
Polymers 2026, 18(1), 42; https://doi.org/10.3390/polym18010042 - 23 Dec 2025
Viewed by 383
Abstract
Pb (II) contamination in wastewater represents a grave threat to the environment and ecosystems. Consequently, there is an urgent need to prepare low-cost and highly efficient Pb (II) adsorbents. To address this need, abundant and low-cost natural silica-based desert sand (DS) was innovatively [...] Read more.
Pb (II) contamination in wastewater represents a grave threat to the environment and ecosystems. Consequently, there is an urgent need to prepare low-cost and highly efficient Pb (II) adsorbents. To address this need, abundant and low-cost natural silica-based desert sand (DS) was innovatively utilized as a carrier to develop efficient and selective Pb (II) adsorbents. Modified desert sand (MDS) was first prepared via 1 M HCl pretreatment for 2 h and subsequent KH550 silane modification. Pb (II)-imprinted composites (Pb (II)-IIP@MDS) were then fabricated via ion-imprinted polymerization, using Pb (II) as the template ion and N-hydroxymethacrylamide (NHMA)/hydroxyethyl methacrylate (HEMA) as dual functional monomers with a molar ratio of 1:1. The synthesized Pb (II)-IIP@MDS was comprehensively characterized by X-ray photoelectron spectrometer (XPS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). The adsorption capacity, selectivity, and reusability of this material for lead ions were evaluated through three experiments conducted within the optimized pH range of 6–7, with error bars indicated. In adsorption isotherm experiments, the initial Pb (II) concentration ranged from 50 to 500 mg·L−1, conforming to the Langmuir model (R2 = 0.992), with a theoretical maximum adsorption capacity reaching 107.44 mg·g−1; this indicates that the adsorbate forms a monolayer adsorption on the homogeneous imprinted sites. Kinetics data indicate that the process best fits a quasi-first-order kinetic model (R2 ≥ 0.988), while the favorable quasi-second-order kinetic fit (R2 ≥ 0.982) reflects the synergistic effect of physical diffusion and ion-imprinting chemistry, reaching equilibrium within 120 min. Thermodynamic parameters (ΔH0 = 12.51 kJ·mol−1, ΔS0 = 101.19 J·mol−1·K−1, ΔG0 < 0) confirmed endothermic, entropy-increasing, spontaneous adsorption. In multicomponent systems, Pb (II)-IIP@MDS showed distinct Pb (II) selectivity. It retained 80.3% adsorption efficiency after eight cycles. This work provides a promising strategy for fabricating low-cost, high-performance Pb (II) adsorbents, and Pb (II)-IIP@MDS stands as a practical candidate for the remediation of Pb (II)-contaminated wastewater. Full article
(This article belongs to the Special Issue Polymers for Environmental Applications)
Show Figures

Figure 1

12 pages, 2333 KB  
Article
Gas-Phase Modification as Key Process in Design of New Generation of Gd2O3-Based Contrast Agents for Computed Tomography
by Anton V. Kupriyanov, Igor Y. Kaplin, Evgeniya V. Suslova, Denis A. Shashurin, Alexei V. Shumyantsev, Dmitry N. Stolbov, Serguei V. Savilov and Georgy A. Chelkov
Surfaces 2026, 9(1), 1; https://doi.org/10.3390/surfaces9010001 - 22 Dec 2025
Viewed by 166
Abstract
In the present study, thin-layered core–shell Gd2O3@SiO1.5R (R is C3H6NH2) structures were synthesized by gas-phase surface modification of a Gd2O3 core with a 3-aminopropyltriethoxysilane (APTES) shell for the [...] Read more.
In the present study, thin-layered core–shell Gd2O3@SiO1.5R (R is C3H6NH2) structures were synthesized by gas-phase surface modification of a Gd2O3 core with a 3-aminopropyltriethoxysilane (APTES) shell for the first time. The proposed method consists of two consecutive steps carried out in a fixed-bed reactor. The first step involves APTES adsorption on the Gd2O3 surface, followed by APTES hydrolysis by water vapor. The organosyloxane shell formation was confirmed by transmission and scanning electron microscopy, IR spectroscopy, and thermogravimetric data. X-ray attenuation coefficients of Gd2O3 and Gd2O3@SiO1.5R samples were determined by photon-counting computed tomography in a phantom study. The SiO1.5R shells in the synthesized Gd2O3@SiO1.5R samples had minimal thickness and did not affect the attenuation coefficients of Gd2O3. Full article
Show Figures

Graphical abstract

22 pages, 4690 KB  
Article
Poly(vinyl chloride) Plastisol Composites with Surface-Modified Wood Flour as Potential Coating and Insulating Materials for Modern Energy-Efficient Constructions
by Przemysław Siekierka, Edwin Makarewicz, Sławomir Wilczewski, Katarzyna Skórczewska, Krzysztof Lewandowski, Jacek Mirowski and Magdalena Osial
Materials 2026, 19(1), 41; https://doi.org/10.3390/ma19010041 - 22 Dec 2025
Viewed by 393
Abstract
This study investigates the development of sustainable PVC-based composites filled with surface-modified wood flour for potential use in modern, energy-efficient building systems. The aim was to enhance the mechanical performance, thermal stability, and interfacial compatibility of PVC plastisols by incorporating fine- and coarse-grained [...] Read more.
This study investigates the development of sustainable PVC-based composites filled with surface-modified wood flour for potential use in modern, energy-efficient building systems. The aim was to enhance the mechanical performance, thermal stability, and interfacial compatibility of PVC plastisols by incorporating fine- and coarse-grained coniferous wood flour modified with silane and surfactants. Composites were formulated using emulsion PVC (Vinnolit E-2059), bis(2-ethylhexyl) adipate as a plasticizer, and MARK-17 MOK as a thermal stabilizer, and were gelled under pressure at 150 °C. Their physical, mechanical, structural, and thermal characteristics were evaluated using density and hardness measurements, SEM, thermomechanical analysis, DMA, and TGA. The results demonstrated that composites containing fine-grained, silane-treated wood flour (Lignocel C-120) exhibited the most advantageous balance of stiffness, elasticity, and thermal resistance, attributable to improved polymer–wood interfacial adhesion. The findings confirm the potential of modified wood flour as an effective bio-based filler enabling the design of durable, thermally stable coating and insulating materials with reduced environmental impact. The proposed composites may serve as protective, bonding, or insulating layers in sustainable construction, supporting the development of innovative, wood-based materials for low-carbon building applications. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

15 pages, 835 KB  
Article
Silane-Containing Self-Adhesive Resin Cement vs. Conventional Strategies in Fiber Post Application: A Push-Out Bond Strength and Failure Mode Study
by Zeynep Hale Keles, Vasfiye Isik, Rana Turunc and Soner Sismanoglu
Appl. Sci. 2026, 16(1), 57; https://doi.org/10.3390/app16010057 - 20 Dec 2025
Viewed by 204
Abstract
This study evaluated the push-out bond strength (PBS) and failure modes of fiber posts cemented with silane-containing self-adhesive resin cement (SARC) compared with conventional SARC and universal adhesive strategies, considering the effects of root section and aging. Ninety single-rooted human premolars were equally [...] Read more.
This study evaluated the push-out bond strength (PBS) and failure modes of fiber posts cemented with silane-containing self-adhesive resin cement (SARC) compared with conventional SARC and universal adhesive strategies, considering the effects of root section and aging. Ninety single-rooted human premolars were equally assigned to three cementation protocols: silane-containing SARC (PANAVIA SA Cement Universal), conventional SARC (RelyX Universal), and universal adhesive plus SARC (Scotchbond Universal Plus + RelyX Universal). Each group was divided into two aging subgroups: 24 h water storage and thermal cycling (10,000 cycles between 5 °C and 55 °C, 30 s dwell time; n = 15). After root canal treatment and post space preparation, glass fiber posts were cemented, and each root was sectioned to obtain six slices. PBS was measured using a push-out test, and failure modes were examined under stereomicroscopy. Data were analyzed using three-way ANOVA, post hoc tests, Spearman’s correlation, and logistic regression (α = 0.05). Cement type, root section, and aging significantly influenced PBS (p < 0.001). PBS decreased from coronal to apical sections, and thermal cycling reduced PBS in all groups. The universal adhesive plus SARC achieved the highest PBS, while conventional SARC had the lowest PBS. Cementdentin adhesive failures (FM2) predominated overall, with proportions varying between 43% and 90%, and higher PBS values were associated with fewer FM2 failures. The combination of a universal adhesive with SARC provided superior bonding compared to simplified protocols. Although silane-containing SARC improved bonding relative to conventional SARC, durable adhesion to radicular dentin remains challenging, particularly in apical regions. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

17 pages, 2105 KB  
Article
Enhancing Polydimethylsiloxane with Silver Nanoparticles for Biomedical Coatings
by Axel Bachoux, Cédric Desroches, Laurence Bois, Catherine Journet, Aurore Berthier, Frédérique Bessueille-Barbier, Bérangère Toury and Nina Attik
Biomimetics 2025, 10(12), 846; https://doi.org/10.3390/biomimetics10120846 - 17 Dec 2025
Viewed by 462
Abstract
Silver nanoparticles (AgNPs) are widely used as antibacterial agents either as colloidal solutions or deposited on surfaces. However, the high concentration of AgNPs can lead to cytotoxicity, posing a hazard to healthy cells and tissues. Achieving a balance between antibacterial efficacy and cytocompatibility [...] Read more.
Silver nanoparticles (AgNPs) are widely used as antibacterial agents either as colloidal solutions or deposited on surfaces. However, the high concentration of AgNPs can lead to cytotoxicity, posing a hazard to healthy cells and tissues. Achieving a balance between antibacterial efficacy and cytocompatibility is crucial for biomedical applications. Polymeric coatings, especially those made from polydimethylsiloxane (PDMS) like Sylgard 184, are popular in biomedical applications due to their user-friendliness. We have developed a cost-effective method to reduce silver ions using the Si-H silane functions of PDMS in situ. Tetrahydrofuran (THF) acts as a solvent, inducing a swelling effect in PDMS, allowing silver ions from silver tetrafluoroborate (AgBF4) dissolved in THF to diffuse into the polymer and undergo reduction. This process results in PDMS functionalized with well-distributed 10 nm silver AgNPs. The resulting metal–polymer nanocomposites (MPNs) exhibit yellow shades and, based on qualitative Live/Dead staining observations, show no apparent cytotoxicity on human gingival fibroblasts. In addition, SEM analyses indicate a qualitative reduction in E. coli adhesion, suggesting an antibacterial anti-adhesive potential against this bacterial strain. Further studies should investigate the release profile of AgNPs in these composites, which could guide the development of new biocompatible coatings for phototherapy devices and enhance their long-term clinical performance. Full article
Show Figures

Figure 1

19 pages, 2914 KB  
Article
Eco-Friendly Activation of Silicone Surfaces and Antimicrobial Coating with Chitosan Biopolymer
by Daniel Amani, Guðný E. Baldvinsdóttir, Vivien Nagy, Freygardur Thorsteinsson and Már Másson
Int. J. Mol. Sci. 2025, 26(24), 12084; https://doi.org/10.3390/ijms262412084 - 16 Dec 2025
Viewed by 276
Abstract
Silicone is widely used in medical devices due to its mechanical properties and biocompatibility; however, microbial contamination of silicone surfaces, which can lead to nosocomial infections, remains a significant concern. This can be countered by surface modification using techniques commonly involving oxidative plasma [...] Read more.
Silicone is widely used in medical devices due to its mechanical properties and biocompatibility; however, microbial contamination of silicone surfaces, which can lead to nosocomial infections, remains a significant concern. This can be countered by surface modification using techniques commonly involving oxidative plasma activation or ozone treatments, followed by treatment with silanization agents. Here, we report an alternative surface modification procedure involving treatment with non-toxic organic hydroxyl amines or diamine dissolved in eco-friendly solvents, thus avoiding using reactive and potentially harmful compounds and not requiring specialized equipment. Our findings demonstrate that ethanolamine in isopropanol effectively activates silicone without compromising its tensile strength, making it ideal for further modification. The activated surfaces showed stable amino group areal concentrations over a 10-day period, confirmed by fluorescence imaging and ninhydrin assays. Subsequent treatments with glutaraldehyde and chitosan enhanced the antibacterial properties of the silicone. Chitosan-coated silicone significantly reduced Gram-positive and Gram-negative bacteria colony-forming units (CFUs), with Enterococcus faecalis CFUs decreasing from 7.1 to 3.7 Log10 CFU/mL. This study introduces a sustainable activation technique for silicone surfaces, resulting in medical devices with improved resistance to microbial colonization while maintaining their mechanical integrity. Full article
(This article belongs to the Special Issue Research and Recent Advances of Antimicrobials)
Show Figures

Figure 1

15 pages, 2119 KB  
Article
Lightweight Modification of Polypropylene Cable Insulation Materials Doped with Hollow Glass Microspheres
by Xindong Zhao, Dongxu Luo, Kai Wang, Jiaming Yang, Ling Weng, Xiongjun Liu, Xiao Han and Xin Yao
Polymers 2025, 17(24), 3321; https://doi.org/10.3390/polym17243321 - 16 Dec 2025
Viewed by 424
Abstract
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its [...] Read more.
Overhead transmission lines have long relied on cross-linked polyethylene (XLPE) insulation. The production of XLPE insulation requires silane cross-linking, which generates by-products, consumes high energy, and results in poor recyclability-retired XLPE insulation can only be disposed of through incineration or landfilling. Additionally, its high density leads to increased cable weight and sag, reducing the service life of the cables. Therefore, there is an urgent need to develop recyclable and lightweight insulation materials. In this study, recyclable polypropylene (PP) was used as a substitute for XLPE. Hollow glass microspheres (HGM) were incorporated to reduce weight, and hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS) was added for toughening, thereby constructing a PP/HGM/SEBS ternary composite system. The results show that the introduction of HGM into the PP matrix effectively reduces the material density, decreasing from 0.890 g/cm3 (pure PP) to 0.757 g/cm3—a reduction of 15%. With the addition of SEBS, the mechanical properties of the composite are significantly improved: the tensile strength increases from 14.94 MPa (PP/HGM) to 32.40 MPa, and the elongation at break jumps sharply from 72.02% to 671.22%, achieving the synergistic optimization of “weight reduction” and “strengthening-toughening”. Electrical performance tests indicate that the PP/HGM/SEBS composite exhibits a volume resistivity of 1.66 × 1012 Ω·m, a characteristic breakdown strength of 108.6 kV/mm, a low dielectric loss tangent of 2.76 × 10−4, and a dielectric constant of 2.24. It achieves density reduction while maintaining low dielectric loss and high insulation strength, verifying its feasibility for application in lightweight insulation scenarios of overhead transmission lines. Full article
Show Figures

Figure 1

Back to TopTop