Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NR Compounds (Without Natural Fibre)
2.3. Natural Fibre Surface Modification
2.3.1. Alkali Treatment
2.3.2. Silane Treatment
2.4. Preparation of NR/Natural Fibre Composites
2.5. Sample Characterisation
2.5.1. Characterisations of PALF and HF
2.5.2. Characterisation of Rubber Compound
2.5.3. Characterisations of NR/Natural Fibre Composites
3. Results and Discussion
3.1. Surface Characteristics of PALF and HF
3.2. Curing Time of NR Compounds
3.3. Thermal and Interfacial Properties of NR/Natural Fibre Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nakatsuka, T.; Masunaga, H.; Tsuji, Y.; Numata, K. Strain-induced crystallization behaviors of natural rubber with additional lipids. Polymer 2025, 332, 128575. [Google Scholar] [CrossRef]
- Payungwong, N.; Wu, J.; Sakdapipanich, J. Unlocking the potential of natural rubber: A review of rubber particle sizes and their impact on properties. Polymer 2024, 308, 127419. [Google Scholar] [CrossRef]
- Xu, F.; Zou, Y.; Yao, Y.-F.; Li, S.-Q.; Wang, X.; Yang, Y.; Xu, Y.-X. Bioplastics with High Mechanical Strength, Transparency, Chemical Stability, and Recyclability by Introducing Dynamic Ester Bonds and Rigid Benzene Rings into Natural Rubber. Polymer 2025, 337, 128956. [Google Scholar] [CrossRef]
- Xuan, Y.Y.; Ridzuan, M.J.M.; Majid, M.S.A.; Rahman, M.T.A.; Marsi, N.; Sulaiman, M.H. Effect of elevated temperatures on wear and frictional performance of Pineapple Leaf Fibre-Reinforced natural rubber composites with the addition of multi-walled carbon nanotubes. Polym. Compos. 2025, 46, 12835–12846. [Google Scholar] [CrossRef]
- Liao, T.; Jiang, Z.; Men, Y. Effect of the protein on the strain induced crystallization in natural rubber. Polymer 2025, 336, 128873. [Google Scholar] [CrossRef]
- Xuan, Y.Y.; Ridzuan, M.J.M.; Majid, M.S.A.; Marsi, N.; Rahman, M.T.A.; Yudhanto, F.; Sapuan, S.M. Effect of Thermal Aging on the Tensile and Tribological Properties of Pineapple Leaf Fibre-Reinforced Natural Rubber Composites Incorporating Multiwalled Carbon Nanotubes. Polym. Compos. 2025, 46, 15637–15651. [Google Scholar] [CrossRef]
- Smitthipong, W.; Suethao, S.; Shah, D.; Vollrath, F. Interesting green elastomeric composites: Silk textile reinforced natural rubber. Polym. Test. 2016, 55, 17–24. [Google Scholar] [CrossRef]
- Li, Q.; Meng, H.; Song, Y.; Zheng, Q. Performance enhancement of silica filled natural rubber nanocomposites using organic deep eutectic solvent. Compos. Sci. Technol. 2024, 256, 110744. [Google Scholar] [CrossRef]
- Prasertsri, S.; Vudjung, C.; Inthisaeng, W.; Srichan, S.; Sapprasert, K.; Kongon, J. Comparison of Reinforcing Efficiency between Calcium Carbonate/Carbon Black and Calcium Carbonate/Silica Hybrid Filled Natural Rubber Composites. Defect Diffus. Forum 2018, 382, 94–98. [Google Scholar] [CrossRef]
- Shelly, D.; Singhal, V.; Jaidka, S.; Banea, M.D.; Lee, S.-Y.; Park, S.-J. Mechanical performance of bio-based fiber reinforced polymer composites: A review. Polym. Compos. 2025, 46, S9–S43. [Google Scholar] [CrossRef]
- Vitiello, L.; Salzano de Luna, M.; Ambrogi, V.; Filippone, G. A simple rheological method for the experimental assessment of the fiber percolation threshold in short fiber biocomposites. Compos. Sci. Technol. 2024, 245, 110345. [Google Scholar] [CrossRef]
- Elmasry, A.; Azoti, W.; Ghoniem, E.; Elmarakbi, A. Modelling of hybrid biocomposites for automotive structural applications. Compos. Sci. Technol. 2024, 251, 110562. [Google Scholar] [CrossRef]
- Gupta, N.; Wuzella, G.; Mahendran, A.R.; Kaltenbrunner, M. Real-time cure monitoring of bio-based resin composites reinforced with natural and glass fibers. Polymer 2025, 332, 128563. [Google Scholar] [CrossRef]
- Huda, M.; Drzal, L.; Mohanty, A.; Misra, M. Effect of Chemical Modifications of the Pineapple Leaf Fiber Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposites. Compos. Interfaces 2008, 15, 169–191. [Google Scholar] [CrossRef]
- Siddiqui, V.U.; Lahmdi, F.S.H.; Sapuan, S.M.; Azka, M.A.; Khan, A.; Yusuf, J.; Hasan, M.Z.; Habib, A.; Firdaus, A.H.M. Characterization of mechanical, thermal, and morphological properties for long hemp fiber-reinforced green epoxy biocomposites. Polym. Compos. 2025, 46, 10128–10137. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Wong, D.; Fabito, G.; Debnath, S.; Anwar, M.; Davies, I.J. A critical review: Recent developments of natural fiber/rubber reinforced polymer composites. Clean. Mater. 2024, 13, 100261. [Google Scholar] [CrossRef]
- Valášek, P.; Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; D’Amato, R.; Ruggiero, A. Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials 2021, 14, 2636. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. Effect of Alkali and Silane Treatments on Mechanical and Fiber-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres. J. Bionic Eng. 2016, 13, 426–435. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Tzounis, L.; Pongwisuthiruchte, A.; Potiyaraj, P. Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber (NR) Composites. Polymers 2020, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Surajarusarn, B.; Hajjar-Garreau, S.; Schrodj, G.; Mougin, K.; Amornsakchai, T. Comparative study of pineapple leaf microfiber and aramid fiber reinforced natural rubbers using dynamic mechanical analysis. Polym. Test. 2020, 82, 106289. [Google Scholar] [CrossRef]
- Zommere, G.; Vilumsone, A.; Kalnina, D.; Soliženko, R.; Stramkale, V. Comparative Analysis of Fiber Structure and Cellulose Contents in Flax and Hemp Fibres. Mater. Sci. Text. Cloth. Technol. 2013, 8, 96–104. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, S.; Hu, H.; Duan, C.; He, Z.; Ni, Y. Separation of hemicellulose and cellulose from wood pulp using a γ-valerolactone (GVL)/water mixture. Sep. Purif. Technol. 2020, 248, 117071. [Google Scholar] [CrossRef]
- Schmitz, E.; Karlsson, E.N.; Adlercreutz, P. Ultrasound Assisted Alkaline Pre-treatment Efficiently Solubilises Hemicellulose from Oat Hulls. Waste Biomass Valorization 2021, 12, 5371–5381. [Google Scholar] [CrossRef]
- Brumana, R.; Condoleo, P.; Grimoldi, A.; Landi, A.G. Shape and construction of brick vaults. criteria, methods and tools for a possible catalogue. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-5/W1, 137–143. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Han, W.; Yang, A.; Zeng, S.; Chen, P.; Xu, Y.; Nie, W.; Zhou, Y. Enhanced interfacial and mechanical properties of glass fabric/epoxy composites via grafting silanized carbon nanotubes onto the fibers. Polym. Compos. 2023, 44, 6027–6038. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, Y.; Li, S.; Song, Y.; Gong, H.; Zhang, Y. Silane treatment for sisal fibers to improve the degradation resistance and interface with cement matrix. Constr. Build. Mater. 2024, 429, 136435. [Google Scholar] [CrossRef]
- Ekbatani, S.; Wang, Y.; Huo, S.; Papageorgiou, D.; Zhang, H. Nano-engineered hierarchical natural fiber composites with localised cellulose nanocrystals and tailored interphase for improved mechanical properties. Compos. Sci. Technol. 2024, 255, 110719. [Google Scholar] [CrossRef]
- Heng, J.Y.Y.; Pearse, D.F.; Thielmann, F.; Lampke, T.; Bismarck, A. Methods to Determine Surface Energies of Natural Fibres: A Review. Compos. Interfaces 2007, 14, 581–604. [Google Scholar] [CrossRef]
- Fratnik, Z.P.; Plohl, O.; Kokol, V.; Zemljič, L.F. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus. J. Funct. Biomater. 2023, 14, 232. [Google Scholar] [CrossRef] [PubMed]
- ISO 6502-1:2025; Rubber—Measurement of Vulcanization Characteristics Using Curemeters. International Organization for Standardization: Geneva, Switzerland, 2025.
- Schonhorn, H. Temperature dependence of surface tension for polytetrafluorethylene (supercooled liquid) estimated from contact angles. Polymer 1968, 9, 71–74. [Google Scholar] [CrossRef]
- ISO 37:2024; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2024.
- Yantaboot, K.; Amornsakchai, T. Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polym. Test. 2017, 57, 31–37. [Google Scholar] [CrossRef]
- Chollakup, R.; Smitthipong, W.; Kongtud, W.; Tantatherdtam, R. Polyethylene green composites reinforced with cellulose fibres (coir and palm fibres): Effect of fibre surface treatment and fibre content. J. Adhes. Sci. Technol. 2012, 27, 1290–1300. [Google Scholar] [CrossRef]
- Suethao, S.; Ponloa, W.; Phongphanphanee, S.; Wong-ekkabut, J.; Smitthipong, W. Current challenges in thermodynamic aspects of rubber foam. Sci. Rep. 2021, 11, 6097. [Google Scholar] [CrossRef]
- Baye, B.; Tesfaye, T. Characterization of a New Fiber from Cyperus Dichrostachus A.Rich Plant. Adv. Mater. Sci. Eng. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Thaiwattananon, S.; Thanawan, S.; Amornsakchai, T. Effects of fiber surface modification on mechanical properties of short pineapple leaf fiber-carbon black reinforced natural rubber hybrid composites. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1280, 012017. [Google Scholar] [CrossRef]
- Moonart, U.; Utara, S. Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 2019, 26, 7271–7295. [Google Scholar] [CrossRef]
- Widodo, E.; Pratikto; Sugiarto; Widodo, T.D. Comprehensive investigation of raw and NaOH alkalized sansevieria fiber for enhancing composite reinforcement. Case Stud. Chem. Environ. Eng. 2024, 9, 100546. [Google Scholar] [CrossRef]
- Güner, C.; Manzak, A. Investigating the influence of alkali treated hemp fiber on the mechanical properties of diverse rubber composites. J. Rubber Res. 2025, 28, 159–177. [Google Scholar] [CrossRef]
- Reowdecha, M.; Dittanet, P.; Sae-oui, P.; Loykulnant, S.; Prapainainar, P. Film and latex forms of silica-reinforced natural rubber composite vulcanized using electron beam irradiation. Heliyon 2021, 7, e07176. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, M.I.; Sultan, M.T.H.; Andou, Y.; Shah, A.U.M.; Eksiler, K.; Jawaid, M.; Ariffin, A.H. Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. J. Mater. Res. Technol. 2020, 9, 3128–3139. [Google Scholar] [CrossRef]
- Alao, P.; Marrot, L.; Burnard, M.; Lavrič, G.; Saarna, M.; Kers, J. Impact of Alkali and Silane Treatment on Hemp/PLA Composites’ Performance: From Micro to Macro Scale. Polymers 2021, 13, 851. [Google Scholar] [CrossRef] [PubMed]
- Adibi, A.; Jubinville, D.; Chen, G.; Mekonnen, T.H. In-situ surface grafting of lignin onto an epoxidized natural rubber matrix: A masterbatch filler for reinforcing rubber composites. React. Funct. Polym. 2024, 197, 105856. [Google Scholar] [CrossRef]
- Lorwanishpaisarn, N.; Sae-Oui, P.; Amnuaypanich, S.; Siriwong, C. Fabrication of untreated and silane-treated carboxylated cellulose nanocrystals and their reinforcement in natural rubber biocomposites. Sci. Rep. 2023, 13, 2517. [Google Scholar] [CrossRef]
- Lv, M.-Z.; Wang, L.-F.; Fang, L.; Li, P.-W.; Li, S.-D. Preparation and properties of natural rubber/chitosan microsphere blends. Micro Nano Lett. 2017, 12, 386–390. [Google Scholar] [CrossRef]
- Konar, S.; Gautam, V. Design And Analysis Of An Open Differential. Int. J. Adv. Prod. Ind. Eng. 2019, 4, 6–12. [Google Scholar] [CrossRef]
- Dobrovska, J.; Skalková, P.; Drozdová, Ľ.; Labaj, I.; Zlá, S.; Dubec, A.; KawulokovÁ, M. Pyrolysis of natural rubber–cellulose composites: Isoconversional kinetic analysis based on thermogravimetric data. J. Therm. Anal. Calorim. 2024, 149, 3111–3124. [Google Scholar] [CrossRef]
- Szafarska, M.; Olszok, V.; Holländer, U.; Gustus, R.; Weber, A.P.; Maus-Friedrichs, W. Gas Phase Reaction of Silane with Water at Different Temperatures and Supported by Plasma. ACS Omega 2023, 8, 8388–8396. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A Review on Pineapple Leaves Fiber and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef]
- Yi Xuan, Y.; Mohd Jamir, M.R.; Abdul Majid, M.S.; Ismail, M.S.; Yudhanto, F.; Mamat, N.; Mat, F. Cure Behaviour and Tensile Properties of Pineapple Leaf Fibre Reinforced Natural Rubber Composites. J. Adv. Res. Appl. Mech. 2024, 115, 88–97. [Google Scholar] [CrossRef]
- Cuebas, L.; Neto, J.A.B.; de Barros, R.T.P.; Cordeiro, A.O.T.; Rosa, D.d.S.; Martins, C.R. The incorporation of untreated and alkali-treated banana fibre in SEBS composites. Polímeros 2020, 30, e2020040. [Google Scholar] [CrossRef]
- Miedzianowska, J.; Masłowski, M.; Strzelec, K. Improving performance of natural rubber composites by the application of functional biofiller: Horsetail modified with silane coupling agents. Cellulose 2023, 30, 10175–10198. [Google Scholar] [CrossRef]
- Raghavendra, S.; Sannegowda, R.R.; Rudrappa, A.K.; Basavarajaiah, S.K.K. Enhancement of tensile strength and fracture toughness characteristics of banana fibre reinforced epoxy composites with nano MgO fillers. Next Mater. 2024, 5, 100258. [Google Scholar] [CrossRef]
- Hang, L.T.; Do, Q.-V.; Hoang, L.; Nguyen, L.T.; Linh, N.P.D.; Doan, V.A. Mechanical Properties of Ternary Composite from Waste Leather Fibers and Waste Polyamide Fibers with Acrylonitrile-Butadiene Rubber. Polymers 2023, 15, 2453. [Google Scholar] [CrossRef]
- Fukahori, Y.; Seki, W. Molecular behaviour of elastomeric materials under large deformation: 1. Re-evaluation of the Mooney-Rivlin plot. Polymer 1992, 33, 502–508. [Google Scholar] [CrossRef]
- Yangthong, H.; Pichaiyut, S.; Jumrat, S.; Wisunthorn, S. Mechanical, thermal, morphological, and curing properties of geopolymer filled natural rubber composites. J. Appl. Polym. Sci. 2018, 136, 47346. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, M.; Zhang, J.; Zhu, X.; Bian, H.; Wang, C. Effect of Silane Coupling Agent on Modification of Areca Fiber/Natural Latex. Materials 2020, 13, 4896. [Google Scholar] [CrossRef]
- Hariwongsanupab, N.; Thanawan, S.; Amornsakchai, T.; Vallat, M.-F.; Mougin, K. Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polym. Test. 2017, 57, 94–100. [Google Scholar] [CrossRef]
- Datta, J.; Włoch, M. Preparation, morphology and properties of natural rubber composites filled with untreated short jute fibres. Polym. Bull. 2017, 74, 763–782. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Wanchan, W.; Abbas, M.; Maiket, Y.; Yogesh, G.K.; Karoonsit, B.; Haberstroh, E. Fiber Surface Treatments for Lightweight PA6 Composites. Appl. Sci. Eng. Prog. 2024, 18, 7543. [Google Scholar] [CrossRef]
- Saber, D.; Abdelnaby, A.H. Recent Developments in Natural Fiber as Reinforcement in Polymeric Composites: A Review. Asian J. Appl. Sci. Technol. 2022, 6, 56–75. [Google Scholar] [CrossRef]










| Properties | PALF | HF |
|---|---|---|
| Density (g/cm3) | 1.07 | 0.86 |
| Diameter (µm) | 200–250 | 500–600 |
| Length (mm) | 10–40 | 10–60 |
| Tensile strength (MPa) | 280–320 | 190–290 |
| Young’s modulus (GPa) | 20–35 | 14–23 |
| Elongation at break (%) | 1–2.5 | 1–1.5 |
| Ingredient | Content (phr 1) |
|---|---|
| NR STR20 | 100 |
| Steric acid | 1 |
| Zinc oxide | 3 |
| Carbon Black N330 | 40 |
| CBS | 1 |
| Sulphur | 2 |
| Sample | Green Compound | Untreated PALF | Treated PALF | Untreated HF | Treated HF |
|---|---|---|---|---|---|
| Contact angle with water (°) | 96 ± 1 b | 87 ± 1 a | 101 ± 1 d | 87 ± 1 a | 108 ± 1 c |
| Contact angle with TCP (°) | 47 ± 1 a | 69 ± 1 d | 68 ± 1 e | 51 ± 1 b | 61 ± 1 c |
| γd (mJ/m2) | 27.65 e | 16.44 b | 18.63 d | 15.52 a | 17.34 c |
| γp (mJ/m2) | 1.42 a | 4.84 c | 5.01 b | 4.75 b | 4.89 d |
| γ (mJ/m2) | 29.08 e | 21.28 b | 23.64 d | 20.28 a | 22.23 c |
| Work of Adhesion | Untreated PALF | Treated PALF | Untreated HF | Treated HF |
|---|---|---|---|---|
| W (mJ/m2) ± 5% | 49.7 | 51.5 | 47.7 | 50.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jansinak, S.; Buaksuntear, K.; Spangenberg, A.; Le Duigou, A.; Shah, D.U.; Mougin, K.; Smitthipong, W. Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics. Polymers 2026, 18, 47. https://doi.org/10.3390/polym18010047
Jansinak S, Buaksuntear K, Spangenberg A, Le Duigou A, Shah DU, Mougin K, Smitthipong W. Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics. Polymers. 2026; 18(1):47. https://doi.org/10.3390/polym18010047
Chicago/Turabian StyleJansinak, Siriwan, Kwanchai Buaksuntear, Arnaud Spangenberg, Antoine Le Duigou, Darshil U. Shah, Karine Mougin, and Wirasak Smitthipong. 2026. "Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics" Polymers 18, no. 1: 47. https://doi.org/10.3390/polym18010047
APA StyleJansinak, S., Buaksuntear, K., Spangenberg, A., Le Duigou, A., Shah, D. U., Mougin, K., & Smitthipong, W. (2026). Effect of Silane-Treated Pineapple Leaf Fibre and Hemp Fibre on Green Natural Rubber Composites: Interface and Mechanics. Polymers, 18(1), 47. https://doi.org/10.3390/polym18010047

