Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = shyobunol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1621 KiB  
Article
Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition
by Joselin Paucarchuco-Soto, German Padilla Pacahuala, Walter Javier Cuadrado Campó, Perfecto Chagua-Rodríguez, Julio Cesar Maceda Santivañez, Ádina L. Santana, Maria Angela A. Meireles and Larry Oscar Chañi-Paucar
Processes 2025, 13(7), 2191; https://doi.org/10.3390/pr13072191 - 9 Jul 2025
Viewed by 435
Abstract
According to the literature, Schinus molle (SM) is an important source of bioactive phytochemicals, but the phytochemical content and composition of this species, which grows in high Andean geographic zones such as Tarma (Peru), is not known. In an effort to fill this [...] Read more.
According to the literature, Schinus molle (SM) is an important source of bioactive phytochemicals, but the phytochemical content and composition of this species, which grows in high Andean geographic zones such as Tarma (Peru), is not known. In an effort to fill this gap, our work investigated the supercritical carbon dioxide extraction of SM leaves at three temperature levels (35, 45, and 55 °C) and three pressure levels (150, 250, and 350 bar). The results revealed the highest yield of extract at 150 bar, 45 °C, and 3.28 g CO2/min. Under these conditions, the overall extraction curves (OEC) were modeled using the Spline, logistic, and Esquível models, allowing the generation of mass transfer parameters for SFE at the optimized conditions, resulting in a similar correlation with experimental data. Twenty-six compounds were identified in the SFE extract of SM leaves. The most abundant compound classes were sesquiterpenoids (57.17%), sesquiterpenes (24.50%), and triterpenoids (10.48%); of each class, the most abundant compounds were shyobunol (33.60%), bicyclogermacrene (12.68%), and lupeone (6.58%), respectively. The compounds detected possess bioactive properties that support further studies on the application of SFE extracts of SM as a functional ingredient in commercial products. Full article
Show Figures

Figure 1

42 pages, 27827 KiB  
Article
Phytochemical Profiling and Bioactivity Assessment of Teucrium capitatum L. Essential Oil and Extracts: Experimental and In Silico Insights
by Redouane Tarik, Aziz Drioiche, Jalila El Amri, Mohamed Ed-Dahmouny, Abdelaaty Abdelaziz Shahat, Nadia Hadi, Mouradi Aicha, Handaq Nadia, Fadoua El Makhoukhi, Abdelhakim El Ouali Lalami, Noureddine Elmoualij, Eto Bruno, Hajji Lhoussain and Touriya Zair
Pharmaceuticals 2024, 17(12), 1578; https://doi.org/10.3390/ph17121578 - 24 Nov 2024
Cited by 1 | Viewed by 1493
Abstract
Background: Teucrium capitatum L., a member of the Lamiaceae family, is widely used in traditional medicine for its therapeutic properties. This study aims to analyze the chemical composition of its essential oil and extracts, evaluate their antimicrobial and antioxidant activities, and investigate the [...] Read more.
Background: Teucrium capitatum L., a member of the Lamiaceae family, is widely used in traditional medicine for its therapeutic properties. This study aims to analyze the chemical composition of its essential oil and extracts, evaluate their antimicrobial and antioxidant activities, and investigate the interactions of their bioactive compounds with biological targets using in silico methods to better understand their mechanisms of action. Methods: Essential oil was extracted via hydrodistillation from leaves collected in Morocco, while phenolic compounds were obtained through Soxhlet and decoction extraction methods. Gas chromatography-mass spectrometry (GC-MS) was used for chemical profiling. Antimicrobial and antioxidant activities were assessed using standard methods, including DPPH, FRAP, and TAC assays. Molecular docking was conducted to explore interactions between major constituents and biological targets. Results: GC-MS analysis revealed significant bioactive components in the essential oil, such as β-pinene (24.5%), α-cadinol (17.02%), and shyobunol (12.13%). Extracts (hydro-ethanolic, hydro-methanolic, and aqueous via decoction) were rich in poliumoside (27.74%) and cirsimaritin (28.22%). The essential oil and extracts showed significant antimicrobial activity, particularly against Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger. Antioxidant assays confirmed strong activity. Molecular docking results supported strong interactions of major compounds with key biological targets. Conclusions: The high presence of phenolic and flavonoid compounds in Teucrium capitatum extracts contributes to their strong antimicrobial and antioxidant properties, supporting their potential for development as natural therapeutic agents. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

26 pages, 4444 KiB  
Article
Influence of Season and Habitat on the Essential Oils Composition, Allelopathy, and Antioxidant Activities of Artemisia monosperma Delile
by Ahmed M. Abd-ElGawad, Abdulaziz M. Assaeed, Saud L. Al-Rowaily, Mohamed S. Alshahri, Giuliano Bonanomi and Abdelsamed I. Elshamy
Separations 2023, 10(4), 263; https://doi.org/10.3390/separations10040263 - 17 Apr 2023
Cited by 8 | Viewed by 2393
Abstract
Plants belonging to the Artemisia genus (Asteraceae) are widely distributed worldwide and have many ethnopharmacological, traditional, therapeutic, and phytochemical aspects. Artemisia monosperma is an important aromatic plant due to its traditional and therapeutic uses and phytochemical diversity, including essential oils (EOs). The EO chemical [...] Read more.
Plants belonging to the Artemisia genus (Asteraceae) are widely distributed worldwide and have many ethnopharmacological, traditional, therapeutic, and phytochemical aspects. Artemisia monosperma is an important aromatic plant due to its traditional and therapeutic uses and phytochemical diversity, including essential oils (EOs). The EO chemical profile of aromatic plants has been reported to be affected by exogenous and endogenous factors. Geographic and seasonal variations are crucial factors shaping the chemical composition of the EO. Herein, the variations of the yields, chemical profiles, and allelopathic and antioxidant activities of A. monosperma EOs collected from three regions in four seasons were assessed. A slight variation in the oil yields was observed among regions and seasons, while the chemical profile, characterized via GC-MS, exhibited significant quantitative and qualitative variation among either regions or seasons. Sesquiterpenes were the main components of all EOs, with significant variation in concentration. In most EO samples, the summer-plant samples had the highest concentration of sesquiterpenes, followed by spring, winter, and autumn. The 7-epi-trans-sesquisabinene hydrate, 6-epi-shyobunol, dehydro-cyclolongifolene oxide, isoshyobunone, diepicedrene-1-oxide, dehydro-aromadendrene, and junipene were the main compounds of all the EO samples. The extracted EOs of the A. monosperma samples showed considerable allelopathic activity against the weed Dactyloctenium aegyptium and the crop Lactuca sativa. A significant variation in allelopathic activity was observed among samples collected during different seasons, while the samples of the autumn and summer seasons had more potential. Also, L. sativa was more affected by the EO compared to D. aegyptium, reflecting that weeds are more resistant to allelochemicals. In this context, the EOs of A. monosperma samples exhibited substantial antioxidant activity with the same pattern of allelopathic activity, whereas the samples of the autumn and summer seasons showed higher antioxidant activity. These biological activities of the EOs could be ascribed to the higher content of oxygenated compounds. The present study revealed that seasons have a substantial effect on EO production as well as composition. In consequence, the biological activities varied with the variation of the chemical profile of the EO. These results show the importance of season/timing for sampling aromatic plants. Full article
Show Figures

Figure 1

13 pages, 605 KiB  
Article
Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus
by Lucía Guzmán, Jorge Luis Malla, Jorge Ramírez, Gianluca Gilardoni, James Calva, Daniel Hidalgo, Eduardo Valarezo and Catalina Rey-Valeirón
Vet. Sci. 2022, 9(1), 23; https://doi.org/10.3390/vetsci9010023 - 11 Jan 2022
Cited by 6 | Viewed by 3778
Abstract
Control measures against common cattle tick Rhipicephalus microplus are of the upmost importance because of considerable, deleterious impact on a farm’s economy. Due to resistance phenomena to synthetic acaricides being a constraint in affected farms, the search for plant derivatives as acaricides has [...] Read more.
Control measures against common cattle tick Rhipicephalus microplus are of the upmost importance because of considerable, deleterious impact on a farm’s economy. Due to resistance phenomena to synthetic acaricides being a constraint in affected farms, the search for plant derivatives as acaricides has increased dramatically in recent years. In this work, essential oils obtained from two Ecuadorian plants, Ambrosia peruviana and Lepechinia mutica (EOAp, EOLm), traditionally used as insecticides in indigenous communities, were studied on larvae and engorged females at the parasitic stages of R. microplus. Larvae and females were treated with five (0.0625, 0.125, 0.25, 0.50 and 1%) and six concentrations (0.125, 0.25, 0.50, 1, 2 and 4%), respectively, of each EOsAp/Lm. A 98–99% larval mortality was achieved with 0.5% of both EOsAp/Lm. EOAp inhibited oviposition and egg hatching up to 82% and 80%, respectively, and had an overall efficacy of 93.12%. Efficacy of EOLm was 72.84%, due to the low influence of EOLm on reproductive parameters. By steam distillation and GC-MS analysis, γ-Curcumene was identified as the main constituent (52.02%) in the EOAp and Shyobunol (10.80%) in EOLm. The results suggest that major components of both essential oils should be further studied as promissory acaricides against R. microplus. Full article
Show Figures

Figure 1

14 pages, 1519 KiB  
Article
Comparative Chemical Profiles and Phytotoxic Activity of Essential Oils of Two Ecospecies of Pulicaria undulata (L.) C.A.Mey
by Ahmed M. Abd-ELGawad, Saud L. Al-Rowaily, Abdulaziz M. Assaeed, Yasser A. EI-Amier, Abd El-Nasser G. El Gendy, Elsayed Omer, Dakhil H. Al-Dosari, Giuliano Bonanomi, Hazem S. Kassem and Abdelsamed I. Elshamy
Plants 2021, 10(11), 2366; https://doi.org/10.3390/plants10112366 - 3 Nov 2021
Cited by 14 | Viewed by 3433
Abstract
The Asteraceae (Compositae) family is one of the largest angiosperm families that has a large number of aromatic species. Pulicaria undulata is a well-known medicinal plant that is used in the treatment of various diseases due to its essential oil (EO). The EO [...] Read more.
The Asteraceae (Compositae) family is one of the largest angiosperm families that has a large number of aromatic species. Pulicaria undulata is a well-known medicinal plant that is used in the treatment of various diseases due to its essential oil (EO). The EO of both Saudi and Egyptian ecospecies were extracted via hydrodistillation, and the chemical compounds were identified by GC–MS analysis. The composition of the EOs of Saudi and Egyptian ecospecies, as well as other reported ecospecies, were chemometrically analyzed. Additionally, the phytotoxic activity of the extracted EOs was tested against the weeds Dactyloctenium aegyptium and Bidens pilosa. In total, 80 compounds were identified from both ecospecies, of which 61 were Saudi ecospecies, with a preponderance of β-pinene, isoshyobunone, 6-epi-shyobunol, α-pinene, and α-terpinolene. However, the Egyptian ecospecies attained a lower number (34 compounds), with spathulenol, hexahydrofarnesyl acetone, α-bisabolol, and τ--cadinol as the main compounds. The chemometric analysis revealed that the studied ecospecies and other reported species were different in their composition. This variation could be attributed to the difference in the environmental and climatic conditions. The EO of the Egyptian ecospecies showed more phytotoxic activity against D. aegyptium and B. pilosa than the Saudi ecospecies. This variation might be ascribed to the difference in their major constituents. Therefore, further study is recommended for the characterization of authentic materials of these compounds as allelochemicals against various weeds, either singular or in combination. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity)
Show Figures

Figure 1

15 pages, 2486 KiB  
Article
Chemical Composition, Allelopathic, Antioxidant, and Anti-Inflammatory Activities of Sesquiterpenes Rich Essential Oil of Cleome amblyocarpa Barratte & Murb.
by Ahmed M. Abd-ElGawad, Abdelbaset M. Elgamal, Yasser A. EI-Amier, Tarik A. Mohamed, Abd El-Nasser G. El Gendy and Abdelsamed I. Elshamy
Plants 2021, 10(7), 1294; https://doi.org/10.3390/plants10071294 - 25 Jun 2021
Cited by 31 | Viewed by 4582
Abstract
The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed [...] Read more.
The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity)
Show Figures

Graphical abstract

15 pages, 784 KiB  
Article
Phytotoxic and Antimicrobial Activities of Teucrium polium and Thymus decussatus Essential Oils Extracted Using Hydrodistillation and Microwave-Assisted Techniques
by Ibrahim Saleh, Ahmed Abd-ElGawad, Abd El-Nasser El Gendy, Abeer Abd El Aty, Tarik Mohamed, Hazem Kassem, Fahd Aldosri, Abdelsamed Elshamy and Mohamed-Elamir F. Hegazy
Plants 2020, 9(6), 716; https://doi.org/10.3390/plants9060716 - 4 Jun 2020
Cited by 42 | Viewed by 4560
Abstract
Essential oils (EOs) have been described as promising eco-friendly secondary products of aromatic plants with several biological activities. The present study aimed to characterize the chemical composition and explore phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus EOs extracted using hydrodistillation [...] Read more.
Essential oils (EOs) have been described as promising eco-friendly secondary products of aromatic plants with several biological activities. The present study aimed to characterize the chemical composition and explore phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus EOs extracted using hydrodistillation (HD) and microwave-assisted extraction (MAE) methods. Twenty-seven and twenty-eight compounds were identified from HD and MAE extracted EOs of T. polium, respectively. The oxygenated sesquiterpenes (57.68%) were characterized as the main components of the hydrodistilled EO with a prominence of 6-epi-shyobunol (33.00%), while sesquiterpene hydrocarbons (54.48%) were the main components of the MAE method, with a prominence of delta-cadinene (25.13%). Eighteen and nineteen compounds, were characterized in T. decussatus EOs extracted using HD and MAE methods, respectively, and oxygenated monoterpenes represented the main components of both EOs with carvacrol (94.40% and 75.91%, respectively) as the main compound. The EOs extracted using the MAE method were slightly more phytotoxic than those extracted using the HD method. The T. decussatus EO extracted using the MAE method showed a higher inhibitory effect than T. polium by 16-, 32-, and 24-fold, regarding seed germination, shoot, and root growth of lettuce, respectively. Moreover, EOs extracted by HD method showed a similar pattern with 16-, 28-, and 14-fold effects. Both T. decussatus EOs exhibited potent inhibitory effect against all tested bacteria with an inhibition zone of 34–39 mm and the lowest minimum inhibitory concentration (MIC) of 0.49, 0.98, and 1.95 μg/mL against Aspergillus niger, Escherichia coli, and Staphylococcus aureus, respectively. However, the EOs of T. polium showed weak antibacterial activity and no antifungal effect. Further studies are needed for the characterization of bioactive major compounds, either singular or synergistic, at field scale and to determine their modes of action and safety. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

14 pages, 1815 KiB  
Article
Sesquiterpenes-Rich Essential Oil from Above Ground Parts of Pulicaria somalensis Exhibited Antioxidant Activity and Allelopathic Effect on Weeds
by Abdulaziz Assaeed, Abdelsamed Elshamy, Abd El-Nasser El Gendy, Basharat Dar, Saud Al-Rowaily and Ahmed Abd-ElGawad
Agronomy 2020, 10(3), 399; https://doi.org/10.3390/agronomy10030399 - 14 Mar 2020
Cited by 59 | Viewed by 4502
Abstract
Pulicaria genus (fleabane) is characterized by its fragrant odor due to the presence of essential oil (EO). According to the literature reviews, the EO of Pulicaria somalensis O.Hoffm. (Shie) is still unexplored. For the first time, 71 compounds were characterized in EO derived [...] Read more.
Pulicaria genus (fleabane) is characterized by its fragrant odor due to the presence of essential oil (EO). According to the literature reviews, the EO of Pulicaria somalensis O.Hoffm. (Shie) is still unexplored. For the first time, 71 compounds were characterized in EO derived from above-ground parts of P. somalensis collected from Saudi Arabia. Sesquiterpenes represented the main components (91.8%), along with minor amounts of mono-, diterpenes, and hydrocarbons. Juniper camphor (24.7%), α-sinensal (7.7%), 6-epi-shyobunol (6.6%), α-zingiberene (5.8%), α-bisabolol (5.3%), and T-muurolol (4.7%) were characterized as main constituents. The correlation analysis between different Pulicaria species showed that P. somalensis has a specific chemical pattern of the EO, thereby no correlation was observed with other reported Pulicaria species. The EO showed significant allelopathic activity against the weeds of Dactyloctenium aegyptium (L.) Willd. (crowfoot grass) and Bidens pilosa L. (hairy beggarticks). The IC50 value on the germination of D. aegyptium was double that of B. pilosa. The IC50 values on the root growth of B. pilosa and D. aegyptium were 0.6 mg mL−1 each, while the shoot growths were 1.0 and 0.7 mg mL−1, respectively. This variation in the activity could be attributed to the genetic characteristics of the weeds. Moreover, the EO exhibited significant antioxidant effects compared to ascorbic acid. Further studies are necessary to verify if these biological activities of the EO could be attributable to its major compounds. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

14 pages, 317 KiB  
Article
Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils
by Nasser A. Awadh Ali, Bhuwan K. Chhetri, Noura S. Dosoky, Khola Shari, Ahmed J. A. Al-Fahad, Ludger Wessjohann and William N. Setzer
Medicines 2017, 4(2), 17; https://doi.org/10.3390/medicines4020017 - 1 Apr 2017
Cited by 42 | Viewed by 7441
Abstract
Background: Ocimum forskolei and Teucrium yemense (Lamiaceae) are used in traditional medicine in Yemen. Methods: The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Ocimum forskolei Benth. (EOOF) and two different populations of Teucrium yemense [...] Read more.
Background: Ocimum forskolei and Teucrium yemense (Lamiaceae) are used in traditional medicine in Yemen. Methods: The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Ocimum forskolei Benth. (EOOF) and two different populations of Teucrium yemense Deflers., one collected from Dhamar province (EOTY-d), and another collected from Taiz (EOTY-t) were investigated. The antimicrobial activities of the oils were evaluated against several microorganisms with the disc diffusion test or the broth microdilution test. The essential oils were screened for in-vitro cytotoxic activity against human tumor cells. EOOF and EOTY-d were screened for free-radical-inhibitory activity using the DPPH radical scavenging assay. Results: Sixty-four compounds were identified in (EOOF) representing 100% of the oil content with endo-fenchol (31.1%), fenchone (12.2%), τ-cadinol (12.2%), and methyl (E)-cinnamate (5.1%) as the major compounds. In EOTY-d, 67 compounds were identified, which made up 91% of the total oil. The most abundant constituents were (E)-caryophyllene (11.2%), α-humulene (4.0.%), γ-selinene (5.5%), 7-epi-α-selinene (20.1%), and caryophyllene oxide (20.1%), while the major compounds in EOTY-t were α-pinene (6.6%), (E)-caryophyllene (19.1%) α-humulene (6.4%), δ-cadinene (6.5%), caryophyllene oxide (4.3%), α-cadinol (9.5%), and shyobunol (4.6%). The most sensitive microorganisms for EOOF were B. subtilis, S. aureus, and C. albicans with inhibition zones of 34, 16, and 24 mm and MIC values of, 4.3 mg/mL, 4.3 mg/mL, and 8.6 mg/mL, respectively. EOTY-t showed antimicrobial activity against S. aureus, B. cereus, A. niger, and B. cinerea with MIC values of 0.156, 0.156, 0.313 and 0.313 mg/mL, respectively. Neither essential oil showed remarkable radical inhibition (IC50 = 31.55 and 31.41 μL/mL). EOTY-d was active against HT-29 human colorectal adenocarcinoma cell lines with IC50 = 43.7 μg/mL. Consistent with this, EOTY-t was active against both MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Conclusions: The antimicrobial activity of Ocimum forskolei essential oil against B. subtilis and C. albicans is consistent with its traditional use in Yemeni traditional medicine to treat skin infections. Both O. forskolei and T. yemense show wide variations in their respective essential oil compositions; there remains a need to investigate both species botanically, genetically, and phytochemically more comprehensively. Full article
Show Figures

Graphical abstract

Back to TopTop