Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtention of Engorged Females of R. microplus
2.2. Larval Package Test (LPT)
2.3. Adult Immersion Test (AIT)
2.4. Estimation of Efficacy
- (a)
- Survival period: number of days the ticks were able to survive after each treatment;
- (b)
- Egg hatching (% EH) = (number of larvae)/(total number of unhatched eggs and larvae) × 100;
- (c)
- Inhibition of oviposition (IOv) = (weight of treated females/weight of control females) − (weight of eggs laid in treated group/weight of eggs laid in control group);
- (d)
- Reproductive efficiency (% RE) = (weight of eggs/weight of females) × egg hatching
- (e)
- Efficacy of essential oil/synthetic acaricides = (RE control group − RE treated group/RE control group) × 100.
2.5. Statistical Analysis
2.6. Obtention and Characterization of Essential Oils
2.6.1. Plant Material
2.6.2. Distillation of the Volatile Fraction
2.6.3. Physical Properties of EOs
2.6.4. Qualitative Analysis of the EOs
2.6.5. Quantitative Analysis of the EOs
3. Results
3.1. Effect of EOsAp/Lm on Biological and Reproductive Parameters of R. microplus
3.1.1. Effects on Larvae
3.1.2. Survival Period of Engorged Females
3.1.3. Effects on Reproductive Parameters of Engorged Females of R. microplus
3.2. Chemical Analysis of Essential Oils from A. peruviana and L. mutica
3.2.1. Physical Properties of Essential Oils
3.2.2. Chemical Analysis of the Volatile Fraction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LRI a | LRI b | Compounds | Ambrosia peruviana | Lepechinia mutica | Type | ||
---|---|---|---|---|---|---|---|
% | σ | % | σ | ||||
906 | 906 | Santolina triene | 1.22 | 0.22 | - | - | AMH |
921 | 926 | Tricyclene | - | - | Trace | - | AMH |
924 | 924 | Thujene <α-> | 0.35 | 0.03 | Trace | - | AMH |
931 | 932 | Pinene <α-> | 0.50 | 0.04 | 1.23 | 0.89 | AMH |
946 | 949 | Camphene | - | - | 0.75 | 0.80 | AMH |
948 | 945 | Fenchene <α-> | 1.60 | 0.35 | - | - | AMH |
971 | 969 | Sabinene | - | - | 0.24 | 0.15 | AMH |
974 | 983 | Oct-3-en-1-ol | - | - | Trace | - | OTH |
976 | 974 | Pinene <β-> | - | - | 3.78 | 1.76 | AMH |
988 | 988 | Myrcene | 2.91 | 0.85 | 0.52 | 0.28 | AMH |
1003 | 1003 | Mentha-1(7),8-diene <p-> | - | - | 0.16 | 0.13 | AMH |
1006 | 1002 | Phellandrene <α-> | 1.40 | 0.31 | 3.8 | 1.70 | AMH |
1008 | 1008 | Carene <δ-3-> | 8.69 | 4.24 | AMH | ||
1016 | 1014 | Terpinene <α-> | - | - | 0.11 | 0.07 | AMH |
1019 | 1020 | Cymene <p-> | 0.24 | 0.16 | 0.10 | 0.06 | ARM |
1025 | 1023 | Sylvestrene | - | - | 0.29 | 0.18 | AMH |
1029 | 1024 | Limonene | 0.75 | 0.27 | 3.79 | 2.18 | AMH |
1026 | 1026 | Cineole <1,8-> | 0.31 | 0.18 | - | - | OTH |
1029 | 1030 | Phellandrene <β-> | 0.15 | 0.01 | - | - | AMH |
1045 | 1044 | Ocimene <(E)-β-> | 0.66 | 0.02 | - | AMH | |
1052 | 1054 | Terpinene <γ-> | 0.38 | 0.04 | 0.23 | 0.12 | AMH |
1065 | 1071 | cis-Sabinene hydrate | - | - | Trace | - | MOH |
1080 | 1085 | Mentha-2,4(8)-diene <p-> | - | - | 0.35 | 0.18 | AMH |
1084 | 1086 | Terpinolene | 0.91 | 0.59 | 0.60 | 0.33 | AMH |
1084 | 1086 | trans-Linalool oxide | - | - | Trace | - | MOH |
1095 | 1102 | Linalool | - | - | 0.20 | 0.09 | MOH |
1110 | 1109 | Oct-1-en-3-yl acetate | 1.37 | 0.60 | OTH | ||
1124 | 1124 | Chrysanthenone | 5.57 | 1.88 | - | - | MKE |
1141 | 1145 | Camphor | - | - | Trace | - | MKE |
1165 | 1172 | Borneol | - | - | 0.25 | 0.05 | MOH |
1174 | 1180 | 4-Terpineol | - | - | 0.14 | 0.02 | MOH |
1194 | 1186 | Terpineol <α-> | - | - | 0.11 | 0.02 | MOH |
1283 | 1284 | Bornyl acetate | 1.59 | 0.42 | 2.20 | 1.04 | OTH |
1335 | 1328 | Elemene <δ-> | Trace | - | Trace | - | ASH |
1345 | 1345 | Cubebene <α-> | 0.47 | 0.26 | 0.57 | 0.08 | ASH |
1373 | 1373 | Ylangene <α-> | - | - | 0.15 | 0.05 | ASH |
1374 | 1362 | Isoledene | 0.33 | 0.11 | - | - | ASH |
1374 | 1367 | Copaene <α-> | - | - | 1.46 | 0.23 | ASH |
1381 | 1387 | Bourbonene <β-> | - | - | 0.47 | 0.25 | ASH |
1385 | 1382 | Modheph-2-ene | - | - | - | - | ASH |
1392 | 1387 | Cubebene <β-> | 0.56 | 0.15 | 0.15 | 0.04 | ASH |
1405 | 1410 | Cedrene <α-> | 0.11 | 0.04 | - | - | ASH |
1407 | 1409 | Gurjunene <α-> | - | - | 1.94 | 0.37 | ASH |
1407 | 1418 | Longifolene | - | - | 0.15 | 0.07 | ASH |
1417 | 1411 | Funebrene <2-epi-β-> | - | - | Trace | - | ASH |
1417 | 1412 | (E)-Caryophyllene | 2.01 | 0.11 | 4.55 | 2.16 | ASH |
1419 | 1429 | Thujopsene <cis-> | 0.26 | 0.01 | - | - | ASH |
1424 | 1431 | Copaene <β-> | - | - | 0.50 | 0.08 | ASH |
1431 | 1431 | Gurjunene <β-> | 0.73 | 0.89 | 1.47 | 0.78 | ASH |
1436 | 1440 | Farnesene <(Z)-β-> | 0.54 | 0.13 | - | - | ASH |
1439 | 1449 | Aromadendrene | 0.37 | 0.19 | 0.56 | 0.10 | ASH |
1446 | 1448 | Muurola-3,5-diene <cis-> | - | - | 0.45 | 0.36 | ASH |
1453 | 1452 | Humulene <α-> | 0.48 | 0.12 | 1.20 | 0.47 | ASH |
1461 | 1452 | cis-Cadina-1(6),4-diene | - | - | 0.99 | 1.36 | ASH |
1471 | 1463 | Dauca-5,8-diene | - | - | 0.38 | 0.09 | ASH |
1475 | 1466 | trans-Cadina-1(6),4-diene | - | - | 0.99 | 0.12 | ASH |
1478 | 1479 | Amorpha-4,7(11)-diene | - | - | 0.15 | 0.07 | ASH |
1479 | 1479 | Curcumene <ar-> | 5.06 | 2.01 | - | - | ARS |
1482 | 1478 | Muurolene <γ-> | 0.41 | 0.01 | 0.92 | 0.23 | ASH |
1481 | 1481 | Curcumene <γ-> | 52.02 | 8.62 | - | - | ARS |
1484 | 1484 | Germacrene D | 0.38 | 0.27 | - | - | ASH |
1486 | 1489 | Selinene <β-> | 0.85 | 0.14 | - | - | ASH |
1492 | 1481 | cis-β-Guaiene | - | - | 0.71 | 0.11 | ASH |
1493 | 1486 | Bicyclogermacrene | - | - | 4.62 | 0.58 | ASH |
1493 | 1492 | Selinene <δ-> | - | - | 0.81 | 0.08 | ASH |
1503 | 1505 | Farnesene <(E,E)-α-> | 2.15 | 0.10 | 0.83 | 0.25 | ASH |
1510 | 1500 | Muurolene <α-> | - | - | 0.91 | 0.17 | ASH |
1513 | 1505 | Cadinene <γ-> | 0.35 | 0.09 | 2.86 | 0.37 | ASH |
1514 | 1508 | Cubebol | - | - | 0.36 | 0.21 | SOH |
1521 | 1512 | trans-Calamenene | - | - | 0.15 | 0.04 | ARS |
1522 | 1511 | Cadinene <δ-> | 0.77 | 0.88 | 6.96 | 0.99 | ASH |
1521 | 1521 | Sesquiphellandrene <β-> | 0.16 | 0.07 | - | - | ASH |
1533 | 1523 | trans-Cadina-1,4-diene | - | - | 0.37 | 0.10 | ASH |
1534 | 1537 | Cadinene <α-> | - | - | 0.39 | 0.12 | ASH |
1538 | 1545 | Selina-3,7(11)-diene | - | - | 0.14 | 0.04 | ASH |
1567 | 1559 | Germacrene B | 3.10 | 2.29 | 0.18 | 0.06 | ASH |
1574 | 1567 | Germacrene D-4-ol | - | - | 1.46 | 0.40 | SOH |
1582 | 1569 | Caryophyllene oxide | - | - | 0.29 | 0.24 | OTH |
1577 | 1577 | Spathulenol | 0.62 | 0.23 | - | - | SOH |
1590 | 1584 | Globulol | 0.43 | 0.49 | 5.91 | 2.61 | SOH |
1592 | 1592 | Viridiflorol | 0.25 | 0.15 | 1.29 | 0.45 | SOH |
1594 | 1594 | Carotol | 0.89 | 0.49 | - | - | SOH |
1618 | 1617 | 1,10-di-epi-Cubenol | - | - | 0.27 | 0.11 | SOH |
1618 | 1623 | Junenol | - | - | 1.39 | 0.42 | SOH |
1629 | 1622 | Eudesmol <10-epi-γ-> | - | - | 0.54 | 0.15 | SOH |
1636 | 1639 | Acorenol <β-> | - | - | 0.47 | 0.81 | SOH |
1639 | 1632 | Acorenol <α-> | - | - | Trace | - | SOH |
1649 | 1644 | Eudesmol <β-> | 0.24 | 0.05 | 4.47 | 1.93 | SOH |
1688 | 1681 | Shyobunol | - | - | 10.80 | 5.91 | SOH |
Aliphatic monoterpene hydrocarbons (AMH) | 10.83 | 24.50 | |||||
Aromatic monoterpene hydrocarbons(ARM) | 0.24 | 0.10 | |||||
Monoterpene alcohols (MOH) | - | 0.70 | |||||
Monoterpene ketones (MKE) | 5.57 | - | |||||
Aliphatic sesquiterpene hydrocarbons (ASH) | 14.03 | 35.80 | |||||
Aromatic sesquiterpene hydrocarbons(ARS) | 57.08 | 0.15 | |||||
Sesquiterpene alcohols (SOH) | 2.43 | 27.00 | |||||
Other compounds (OTH) | 1.90 | 3.86 | |||||
Total identified | 92.08 | 92.10 |
References
- Grisi, L.; Leite, R.C.; Martins, J.R.D.S.; De Barros, A.T.M.; Andreotti, R.; Cançado, P.H.D.; De León, A.A.P.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vivas, R.I.; Jonsson, N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Rosado-Aguilar, J.; Aguilar-Caballero, A.J.; Rodriguez-Vivas, R.; Borges-Argaez, R.; Garcia-Vazquez, Z.; Mendez-Gonzalez, M. Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2010, 168, 299–303. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Guauque, M.D.P.; Castaño, J.C.; Gómez, M. Detección de metabolitos secundarios en Ambrosia peruviana Willd y determinación de la actividad antibacteriana y antihelmíntica. Infectio 2010, 14, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Malagón, O.; Ramírez, J.; Andrade, J.M.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.D.S.; Borges, L.M.F.; Nicácio, J.; Alves, R.D.; Miguita, C.H.; Violante, I.M.P.; Hamerski, L.; Garcez, W.S.; Garcez, F.R. In vitro activities of plant extracts from the Brazilian Cerrado and Pantanal against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp. Appl. Acarol. 2013, 60, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Vet. Entomol. 2014, 28, 233–243. [Google Scholar] [CrossRef]
- Andreotti, R.; Garcia, M.V.; Cunha, R.C.; Barros, J. Protective action of Tagetes minuta (Asteraceae) essential oil in the control of Rhipicephalus microplus (Canestrini; 1887) (Acari: Ixodidae) in a cattle pen trial. Vet. Parasitol. 2013, 197, 341–345. [Google Scholar] [CrossRef]
- Martins, M.D.R.; Arantes, S.; Candeias, F.; Tinoco, M.T.; Cruz-Morais, J. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils. J. Ethnopharmacol. 2014, 151, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Wanzala, W.; Hassanali, A.; Mukabana, W.R.; Takken, W. Repellent Activities of Essential Oils of Some Plants Used Traditionally to Control the Brown Ear Tick, Rhipicephalus appendiculatus. J. Parasitol. Res. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rey-Valeirón, C.; Pérez, K.; Guzmán, L.; López-Vargas, J.; Valarezo, E. Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 399–411. [Google Scholar] [CrossRef]
- Rey-Valeirón, C.; Guzmán, L.; Saa, L.R.; López-Vargas, J.; Valarezo, E. Acaricidal activity of essential oils of Bursera graveolens (Kunth) Triana & Planch and Schinus molle L. on unengorged larvae of cattle tick Rhipicephalus (Boophilus) microplus (Acari:Ixodidae). J. Essent. Oil Res. 2017, 29, 344–350. [Google Scholar] [CrossRef]
- Oh, J.; Bowling, J.J.; Carroll, J.F.; Demirci, B.; Baser, K.H.C.; Leininger, T.D.; Bernier, U.R.; Hamann, M.T. Natural product studies of U.S. endangered plants: Volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks. Phytochemistry 2012, 80, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Velazquez, M.; Rosario-Cruz, R.; Castillo-Herrera, G.; Flores-Fernandez, J.M.; Alvarez, A.H.; Lugo-Cervantes, E. Acaricidal Effect of Essential Oils From Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) Against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Entomol. 2011, 48, 822–827. [Google Scholar] [CrossRef]
- Borges, L.M.F.; De Sousa, L.A.D.; Barbosa, C.D.S. Perspectives for the use of plant extracts to control the cattle tick Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2011, 20, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Norris, E.J.; Gross, A.D.; Bartholomay, L.C.; Coats, J.R. Plant essential oils synergize various pyrethroid insecticides and antagonize malathion in Aedes aegypti. Med. Vet. Entomol. 2019, 33, 453–466. [Google Scholar] [CrossRef] [Green Version]
- PhytoChemical Interactions Data Base (PCIDB). Available online: https://www.genome.jp/db/pcidb/kna_species/17816#natural (accessed on 9 November 2021).
- Drew, B.T.; Sytsma, K.J. The South American radiation ofLepechinia (Lamiaceae): Phylogenetics, divergence times and evolution of dioecy. Bot. J. Linn. Soc. 2013, 171, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Moscoso, A.; Montúfar, R.; Tye, A.; Lepechinia, M. Libro Rojo de Plantas Endémicas del Ecuador; León-Yánez, S., Valencia, R., Pitmam, N., Endara, L., Ulloa, C., Ulloa, Y., Navarrete, H., Eds.; Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2017; Available online: https://bioweb.bio/floraweb/librorojo/FichaEspecie/Lepechinia%20mutica (accessed on 9 November 2021).
- Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical Composition, Enantiomeric Analysis, AEDA Sensorial Evaluation and Antifungal Activity of the Essential Oil from the Ecuadorian PlantLepechinia muticaBenth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef]
- Ramírez, J.; Gilardoni, G.; Ramón, E.; Tosi, S.; Picco, A.M.; Bicchi, C.; Vidari, G. Phytochemical Study of the Ecuadorian Species Lepechinia mutica (Benth.) Epling and High Antifungal Activity of Carnosol against Pyricularia oryzae. Pharmaceuticals 2018, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Nava, S.; Mangold, A.J.; Simonato, G.E.; Puntin, E.; Sproat, M.C. Guía Para La Identificación De Las Principales Especies De Garrapatas Que Parasitan A Los Bovinos En La Provincia de Entre Ríos, Argentina, 1st ed.; Ediciones INTA: Buenos Aires, Argentina, 2019. [Google Scholar]
- Stone, B.F.; Haydock, K.P. A method for measuring the acaricide-susceptibility of the cattle tick Boophilus microplus (Can.). Bull. Entomol. Res. 1962, 53, 563–578. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Drummond, R.O.; Ernst, S.E.; Trevino, J.L.; Gladney, W.J.; Graham, O.H. Boophilus annulatus and B. microplus: Laboratory Tests of Insecticides13. J. Econ. Entomol. 1973, 66, 130–133. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Resistance Management and Integrated Parasites Control in Ruminants. Guidelines, Module 1: Ticks Acaricide Resistance; Diagnosis; Management and Prevention. Available online: http://www.fao.org/3/ag014e/ag014e.pdf (accessed on 9 July 2021).
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2009. [Google Scholar]
- Martínez-Velázquez, M.; Castillo-Herrera, G.A.; Rosario-Cruz, R.; Flores-Fernandez, J.M.; Lopez-Ramirez, J.; Hernandez-Gutierrez, R.; Lugo-Cervantes, E.D.C.; Rosario-Cruz, R. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2010, 108, 481–487. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Demarchi, I.G.; Lonardoni, M.V.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Ferreira, G.A.; de Lima, E.L.; de Cosmo, F.A.; Cortez, D.A.G. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp. Parasitol. 2011, 129, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Chagas, A.C.D.S.; Passos, W.M.; Prates, H.T.; Leite, R.C.; Furlong, J.; Fortes, I.C.P. Efeito acaricida de óleos essenciais e concentrados emulsionáveis de Eucalyptus spp em Boophilus microplus. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 247–253. [Google Scholar] [CrossRef]
- Vinturelle, R.; Mattos, C.; Meloni, J.; Lamberti, H.D.; Nogueira, J.; Júnior, I.D.S.V.; Rocha, L.; Lione, V.; Folly, E. Evaluation of essential oils as an ecological alternative in the search for control Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100523. [Google Scholar] [CrossRef]
- Vinturelle, R.; Mattos, C.; Meloni, J.; Nogueira, J.; Nunes, M.J.; Vaz, I.S.; Rocha, L.; Lione, V.; Castro, H.C.; Das Chagas, E.F. In Vitro Evaluation of Essential Oils Derived from Piper nigrum (Piperaceae) and Citrus limonum (Rutaceae) against the Tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Biochem. Res. Int. 2017, 2017, 5342947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, V.L.S.; Dos Santos, J.C.; Bordignon, S.A.; Apel, M.A.; Henriques, A.T.; Von Poser, G.L. Acaricidal properties of the essential oil from Hesperozygis ringens (Lamiaceae) on the cattle tick Riphicephalus (Boophilus) microplus. Bioresour. Technol. 2010, 101, 2506–2509. [Google Scholar] [CrossRef]
- Vendramini, M.C.R.; Mathias, M.I.C.; De Faria, A.U.; Furquim, K.C.S.; De Souza, L.P.; Bechara, G.H.; Roma, G.C. Action of andiroba oil (Carapa guianensis) onRhipicephalus sanguineus(Latreille, 1806) (Acari: Ixodidae) semi-engorged females: Morphophysiological evaluation of reproductive system. Microsc. Res. Tech. 2012, 75, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Üçüncü, O.; Kahriman, N.; Terzioğrlu, S.; Karaoğrlu, Ş.A.; Yaylı, N. Composition and Antimicrobial Activity of the Essential Oils from Flowers of Senecio othonnae, S. racemosus, and S. nemorensis. Nat. Prod. Commun. 2010, 5, 831–834. [Google Scholar] [CrossRef] [Green Version]
- Antonious, G.F.; Snyder, J.C. Natural Products: Repellency and Toxicity of Wild Tomato Leaf Extracts to the Two-Spotted Spider Mite, Tetranychus urticae Koch. J. Environ. Sci. Health Part B 2006, 41, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, S.; Alanazi, A.D.; Gabr, H.S.M.; Allam, A.M.; Abou-Zeina, H.A.A.; Masoud, R.A.; Soliman, D.E.; Alshahrani, M.Y. Efficacy and safety of ethanolic Curcuma longa extract as a treatment for sand tampan ticks in a rabbit model. Vet. World 2020, 13, 812–820. [Google Scholar] [CrossRef]
- Abir, K.; Majdi, H.; Manef, A.; Sameh, A. Schinus molle: Chemical analysis, phenolic compounds and evaluation of its antioxidant activity. J. Chem. Pharma Res. 2016, 8, 93–101. [Google Scholar]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 2012, 43, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Agwunobi, D.O.; Pei, T.; Wang, K.; Yu, Z.; Liu, J. Effects of the essential oil from Cymbopogon citratus on mortality and morphology of the tick Haemaphysalis longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 2020, 81, 37–50. [Google Scholar] [CrossRef]
- Nwanade, C.; Wang, M.; Wang, T.; Yu, Z.; Liu, J. Botanical acaricides and repellents in tick control: Current status and future directions. Exp. Appl. Acarol. 2020, 81, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Souto, A.; Sylvestre, M.; Tölke, E.; Tavares, J.; Barbosa-Filho, J.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef] [PubMed]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
Concentration of EO (%) | Survival Period (Days) of Engorged Females | |
---|---|---|
Ambrosia peruviana | Lepechinia mutica | |
(sd) | (sd) | |
4 | 4 (1.69) | 9 (4.59) |
2 | 6 (4.38) | 12 (4.64) |
1 | 8 (4.71) | 13 (5.33) |
0.5 | 7 (7.75) | 14 (4.03) |
0.25 | 9 (4.06) | 16 (1.85) |
0.125 | 10 (5.25) | 16 (2.50) |
Control | 17 (2.53) | |
Amitraz 1:1000 | 13 (8.07) | |
Cypermethrin 1:1000 | 17 (3.78) |
EO (%) | IOv (%) | EH (%) | RE (%) | Efficacy | ||||
---|---|---|---|---|---|---|---|---|
Apab | Lmab | Apabc | Lm | Apc | Lmc | Apab | Lmab | |
0.125 | 26.71 (18.19) | 10.34 (24.25) | 88.52 (6.64) | 91.22 (19.49) | 37.26 (7.43) | 51.16 (18.38) | 26.38 | 1.04 |
0.25 | 52.27 (39.32) | 7.59 (7.70) | 56.04 (38.30) | 97.59 (3.87) | 22.76 ab (20.95) | 48.62 ab (6.93) | 66.42 | 3.76 |
0.5 | 63.19 (16.53) | 32.93 (36.75) | 39.35 (34.01) | 71.20 (44.30) | 11.30 ab (11.69) | 31.74 ab (21.29) | 80.90 | 40.11 |
1 | 52.75 (36.44) | 26.28 (29.28) | 54.79 (46.85) | 68.84 (44.23) | 23.17 (21.83) | 30.83 (19.78) | 67.39 | 38.52 |
2 | 65.16 (38.88) | 17.57 (21.85) | 34.96 (48.03) | 86.18 (34.86) | 14.79 ab (21.05) | 39.24 ab (18.07) | 70.67 | 23.73 |
4 | 82.27 (18.22) | 37.62 (23.94) | 19.90 (30.92) | 60.18 c (42.45) | 3.47 ab (5.17) | 18.97 ab (23.74) | 93.12 | 72.84 |
Control EO | n/a | 94.85 (7.90) | 50.44 (9.92) | n/a | ||||
Cypermethrin | 43.33 (21.00) | 54.99 (43.36) | 22.66 (23.08) | 38.20 | ||||
Amitraz | 79.58 (23.36) | 25.60 (35.62) | 8.99 (15.95) | 82.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzmán, L.; Malla, J.L.; Ramírez, J.; Gilardoni, G.; Calva, J.; Hidalgo, D.; Valarezo, E.; Rey-Valeirón, C. Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus. Vet. Sci. 2022, 9, 23. https://doi.org/10.3390/vetsci9010023
Guzmán L, Malla JL, Ramírez J, Gilardoni G, Calva J, Hidalgo D, Valarezo E, Rey-Valeirón C. Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus. Veterinary Sciences. 2022; 9(1):23. https://doi.org/10.3390/vetsci9010023
Chicago/Turabian StyleGuzmán, Lucía, Jorge Luis Malla, Jorge Ramírez, Gianluca Gilardoni, James Calva, Daniel Hidalgo, Eduardo Valarezo, and Catalina Rey-Valeirón. 2022. "Acaricidal Efficacy of Plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against Larvae and Engorged Adult Females of the Common Cattle Tick, Rhipicephalus microplus" Veterinary Sciences 9, no. 1: 23. https://doi.org/10.3390/vetsci9010023