Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = shunt inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5752 KiB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 265
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

14 pages, 4108 KiB  
Article
Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation
by Adrien Voldoire, Tanguy Phulpin and Mohamad Alaa Eddin Alali
Electronics 2025, 14(10), 1972; https://doi.org/10.3390/electronics14101972 - 12 May 2025
Cited by 1 | Viewed by 421
Abstract
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses [...] Read more.
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses and efficiency of a SAF. The models include conduction and switching losses in the transistors and diodes and are valid for both IGBT and SiC MOSFET transistors. The methodology consists of analysing the current waveform to separate the portion flowing through the transistor or diode. IGBT and SiC MOSFET are compared in two cases: firstly, the classic SAF operation with harmonic and reactive power compensation and, secondly, in the case of power injection by a photovoltaic panel or batteries, in addition to the classic SAF operation. The results are validated with real manufacturer data. A step-by-step comparison shows a good accuracy of the model. Therefore, the developed methodology is useful for a SAF designer to select relevant components for the converter and to estimate the efficiency of the system accurately and quickly. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

25 pages, 10043 KiB  
Article
Low-Cost Active Power Filter Using Four-Switch Three-Phase Inverter Scheme
by Mohamed Azab
Electricity 2025, 6(1), 16; https://doi.org/10.3390/electricity6010016 - 17 Mar 2025
Viewed by 1364
Abstract
Shunt active power filters (SAPFs) have been around for a long time. They improve the quality of a current drawn from the grid when feeding non-linear loads formed by old-fashioned power electronic converters such as uncontrolled and controlled rectifiers. Most SAPFs are implemented [...] Read more.
Shunt active power filters (SAPFs) have been around for a long time. They improve the quality of a current drawn from the grid when feeding non-linear loads formed by old-fashioned power electronic converters such as uncontrolled and controlled rectifiers. Most SAPFs are implemented using the well-known six-switch three-phase inverter (SSTPI) topology. This paper investigates the capability of adopting the four-switch three-phase inverter (FSTPI) scheme to develop low-cost SAPFs, mainly for low-power ranges. The performance of the proposed SAPF using the FSTPI topology is compared with the conventional scheme of an SAPF formed by the six-switch three-phase inverter (SSTPI) topology. Qualitative and quantitative analyses are conducted. The performance of the proposed FSTPI-based SAPF is investigated under different loading conditions. The obtained results indicate the validity and effectiveness of the FSTPI scheme in improving the quality of currents drawn from the AC grid. The SAPF scheme investigated is also feasible and results in cost reduction when the SAPF power circuit is constructed with modern WBG devices, such as SiC-based MOSFETs, which are relatively expensive (approximately three times the price of the equivalent Si IGBTs). Full article
Show Figures

Figure 1

26 pages, 8468 KiB  
Article
DC-Link Capacitance Estimation for Energy Storage with Active Power Filter Based on 2-Level or 3-Level Inverter Topologies
by Maksim Dybko, Sergey Brovanov and Aleksey Udovichenko
Electricity 2025, 6(1), 13; https://doi.org/10.3390/electricity6010013 - 7 Mar 2025
Viewed by 1008
Abstract
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) [...] Read more.
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) connected to the grid using a PWM filter and/or transformer. This similarity allows for the design of an ESS with the ability to operate as a shunt APF. One of the key milestones in ESS or APF development is the DC-link design. The proper choice of the capacitance of the DC-link capacitors and their equivalent resistance ensures the proper operation of the whole power electronic system. In this article, it is proposed to estimate the required minimum DC-link capacitance using a spectral analysis of the DC-link current for different operating modes, battery charge mode and harmonic compensation mode, for a nonlinear load. It was found that the AC component of the DC-link current is shared between the DC-link capacitors and the rest of the DC stage, including the battery. This relation is described analytically. The main advantage of the proposed approach is its universality, as it only requires calculating the harmonic spectrum using the switching functions. This approach is demonstrated for DC-link capacitor estimation in two-level and three-level NPC inverter topologies. Moreover, an analysis of the AC current component distribution between the DC-link capacitors and the other elements of the DC-link stage was carried out. This part of the analysis is especially important for battery energy storage systems. The obtained results were verified using a simulation model. Full article
Show Figures

Figure 1

17 pages, 9362 KiB  
Article
Enhanced Three-Phase Shunt Active Power Filter Utilizing an Adaptive Frequency Proportional-Integral–Resonant Controller and a Sensorless Voltage Method
by Haneen Ghanayem, Mohammad Alathamneh, Xingyu Yang, Sangwon Seo and R. M. Nelms
Energies 2025, 18(1), 116; https://doi.org/10.3390/en18010116 - 30 Dec 2024
Cited by 2 | Viewed by 1178
Abstract
This article introduces a frequency-adaptive control strategy for a three-phase shunt active power filter, aimed at improving energy efficiency and ensuring high power quality in consumer-oriented power systems. The proposed control system utilizes real-time frequency estimation to dynamically adjust the gain of a [...] Read more.
This article introduces a frequency-adaptive control strategy for a three-phase shunt active power filter, aimed at improving energy efficiency and ensuring high power quality in consumer-oriented power systems. The proposed control system utilizes real-time frequency estimation to dynamically adjust the gain of a proportional-integral–resonant (PIR) controller, facilitating precise harmonic compensation under challenging unbalanced grid conditions, such as unbalanced three-phase loads, grid impedance variations, and diverse nonlinear loads like three-phase rectifiers and induction motors. These scenarios often increase total harmonic distortion (THD) at the point of common coupling (PCC), degrading the performance of connected loads and reducing the efficiency of induction motors. The PIR controller integrates both proportional-integral (PI) and proportional-resonant (PR) control features, achieving improved stability and reduced overshoot. A novel voltage sensorless control method is proposed, requiring only current measurements to determine reference currents for the inverter, thereby simplifying the implementation. Validation of the frequency adaptive control scheme through MATLAB/Simulink simulations and real-time experiments on a dSPACE (DS1202) platform demonstrates significant improvements in harmonic compensation, energy efficiency, and system stability across varying grid frequencies. This approach offers a robust consumer-oriented solution for managing power quality, positioning the SAPF as a key technology for advancing sustainable energy management in smart applications. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2024)
Show Figures

Figure 1

15 pages, 1219 KiB  
Article
Sliding Mode Control and Immersion & Invariance Observer for Grid-Tied Inverters in Photovoltaic Applications: Continuous Operation for Power Quality Enhancement
by Manuel Flota-Bañuelos, Homero Miranda-Vidales, Braulio Cruz, Jaime Aviles-Viñas, Luis Ricalde and Jorge Medina
Energies 2024, 17(24), 6235; https://doi.org/10.3390/en17246235 - 11 Dec 2024
Viewed by 720
Abstract
This work proposes a model-based control scheme using a sliding mode controller (SMC) and an immersion and invariant (I&I) observer. The objective of the proposed control scheme is to be applied to a three-phase grid-tied inverter, which could operate as a shunt active [...] Read more.
This work proposes a model-based control scheme using a sliding mode controller (SMC) and an immersion and invariant (I&I) observer. The objective of the proposed control scheme is to be applied to a three-phase grid-tied inverter, which could operate as a shunt active power filter when the photovoltaic array is not generating power (night-time operation). The grid-tied inverter always remains operational, ensuring continuous support of the power quality improvement, as well as current harmonic compensation due to nonlinear loads and power factor correction. An external control loop is included to keep the voltage of the DC-link capacitor regulated. As can be explained in detail along with the work, a battery stack is avoided in this proposed research. Thus, a decision stage is added to the control scheme to select the night or day operation. Simulation results are carried out using Altair-PSIM© to demonstrate the effectiveness of the proposed control scheme in several scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

34 pages, 16736 KiB  
Article
Optimized Energy Management Strategy for an Autonomous DC Microgrid Integrating PV/Wind/Battery/Diesel-Based Hybrid PSO-GA-LADRC Through SAPF
by AL-Wesabi Ibrahim, Jiazhu Xu, Abdullrahman A. Al-Shamma’a, Hassan M. Hussein Farh, Imad Aboudrar, Youssef Oubail, Fahad Alaql and Walied Alfraidi
Technologies 2024, 12(11), 226; https://doi.org/10.3390/technologies12110226 - 11 Nov 2024
Cited by 3 | Viewed by 2837
Abstract
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, [...] Read more.
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, and BES. Hybrid particle swarm optimizer (PSO) and a genetic algorithm (GA) combined with active disturbance rejection control (ADRC) (PSO-GA-ADRC) are developed to regulate both the frequency and amplitude of the AC bus voltage via a load-side converter (LSC) under various operating conditions. This approach further enables efficient management of accessible generation and general consumption through a bidirectional battery-side converter (BSC). Additionally, the proposed method also enhances power quality across the AC link via mentoring the photovoltaic (PV) inverter to function as shunt active power filter (SAPF), providing the desired harmonic-current element to nonlinear local loads as well. Equipped with an extended state observer (ESO), the hybrid PSO-GA-ADRC provides efficient estimation of and compensation for disturbances such as modeling errors and parameter fluctuations, providing a stable control solution for interior voltage and current control loops. The positive results from hardware-in-the-loop (HIL) experimental results confirm the effectiveness and robustness of this control strategy in maintaining stable voltage and current in real-world scenarios. Full article
Show Figures

Figure 1

15 pages, 5687 KiB  
Article
Synergistic Control of Active Filter and Grid Forming Inverter for Power Quality Improvement
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Taha Selim Ustun, Dai Orihara and Hiroshi Kikusato
Sustainability 2024, 16(20), 9068; https://doi.org/10.3390/su16209068 - 19 Oct 2024
Cited by 2 | Viewed by 1655
Abstract
This paper addresses the challenges and opportunities associated with integrating grid-forming inverters (GFMs) into modern power systems, particularly in the presence of nonlinear loads. Nonlinear loads introduce significant harmonic distortions in the source voltage and current, leading to reduced power factor, increased losses, [...] Read more.
This paper addresses the challenges and opportunities associated with integrating grid-forming inverters (GFMs) into modern power systems, particularly in the presence of nonlinear loads. Nonlinear loads introduce significant harmonic distortions in the source voltage and current, leading to reduced power factor, increased losses, and an overall reduction in system performance. To mitigate these adverse effects, active filters are employed. The objective of this study is to investigate a synergistic approach to modeling and control in integrated power systems with GFMs, focusing on enhancing power quality and grid stability by reducing harmonic distortions through the use of voltage-source active filters. This research contributes to sustainability by supporting the reliable and efficient integration of renewable energy sources, thereby reducing dependency on fossil fuels and minimizing greenhouse gas emissions. Additionally, improving power quality and system efficiency helps reduce energy waste, which is crucial for achieving sustainable energy goals. Simulations are conducted on a 1000 kW GFM connected to a grid with a nonlinear variable load, demonstrating the system’s effectiveness in adapting to dynamic conditions, reducing harmonics, and promoting a stable, resilient, and sustainable power grid. Full article
Show Figures

Figure 1

18 pages, 12529 KiB  
Article
A Novel Shunt Zigzag Double-Tap Low-Harmonic Multi-Pulse Rectifier Based on a Three-Stage Power Electronic Phase-Shifting Transformer
by Xiuqing Mu, Xiaoqiang Chen, Qianxiao Liu, Ying Wang, Tun Bai, Leijiao Ge and Xiping Ma
Sensors 2024, 24(17), 5564; https://doi.org/10.3390/s24175564 - 28 Aug 2024
Viewed by 1025
Abstract
To solve the problem of the large size of traditional industrial frequency phase-shift transformers and the harmonic distortion of multi-pulse wave rectifier systems, this paper proposes a three-stage shunt zigzag power electronic phase-shift transformer based on a double-tap multi-pulse wave rectifier, which combines [...] Read more.
To solve the problem of the large size of traditional industrial frequency phase-shift transformers and the harmonic distortion of multi-pulse wave rectifier systems, this paper proposes a three-stage shunt zigzag power electronic phase-shift transformer based on a double-tap multi-pulse wave rectifier, which combines the power factor correction (PFC) converter with the voltage-type SPWM inverter circuit to form a power electronic converter to realize the frequency boost and power factor correction. Through AC–DC–AC conversion, the frequency of the three-phase AC input voltage is increased, the number of core and coil turns in the transformer is reduced to reduce the size of the phase-shifter transformer, a zigzag structure of the phase-shifter transformer is used to solve the unbalanced distribution of current between the diode bridges, and a passive harmonic suppression method on the DC side is used to generate a loop current by using a group of single-phase rectifier bridges to regulate the input line current of the phase-shifter transformer. The phase-shifted voltage is input into two three-phase diode rectifier bridges to rectify and supply power to the load. Simulation and semi-physical test results show that the proposed method reduces the total harmonic distortion (THD) value of the input current of the phase-shifted transformer to 7.17%, and the THD value of the grid-side input current is further reduced to 2.49%, which meets the harmonic standard and realizes the purpose of power factor correction as well as being more suitable for high-power applications. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

22 pages, 7927 KiB  
Article
The Design and Dynamic Control of a Unified Power Flow Controller with a Novel Algorithm for Obtaining the Least Harmonic Distortion
by Armel Asongu Nkembi, Nicola Delmonte, Paolo Cova and Minh Long Hoang
Electronics 2024, 13(5), 877; https://doi.org/10.3390/electronics13050877 - 24 Feb 2024
Cited by 2 | Viewed by 1957
Abstract
This study investigates the control and dynamic operation of the Unified Power Flow Controller made of shunt and series converters, a Static Synchronous Compensator, and a Static Synchronous Series Compensator, respectively, connected back-to-back through a common DC-link capacitor. The model of a 48-pulse [...] Read more.
This study investigates the control and dynamic operation of the Unified Power Flow Controller made of shunt and series converters, a Static Synchronous Compensator, and a Static Synchronous Series Compensator, respectively, connected back-to-back through a common DC-link capacitor. The model of a 48-pulse Voltage Source Converter is constructed from a three-level Neutral Point Clamped converter, which allows the total harmonic distortion to be reduced. An optimal conduction angle tracking system of the three-level inverter is designed to minimize distortion by detecting proper harmonic component elimination. Starting from the six-step modulation strategy, the dq decoupled control schemes of both compensators in open and closed loops are presented. Finally, the MATLAB-Simulink model of the power flow controller is implemented and analyzed. The results show that the controller can track the power changes and apply a suitable voltage to the power system so that the power flow can be controlled. This way, the power flow controller dynamically improves the voltage and power quality across the power network while simultaneously improving the transient stability of the system. It can eliminate all system disturbances resulting from oscillations and harmonics in voltage and current within a very short time. The procedural approach used to model and simulate the Unified Power Flow Controller, as well as the new algorithm used to obtain the harmonic number that minimizes the total harmonic distortion, can be applied to any AC power system. Full article
Show Figures

Figure 1

28 pages, 22320 KiB  
Article
Analysis of the Influence of the 6-Pulse Thyristor-Bridge Input Reactor Size on the Shunt Active Power Filter Work Efficiency: A Case Study
by Chamberlin Stéphane Azebaze Mboving and Zbigniew Hanzelka
Energies 2024, 17(1), 80; https://doi.org/10.3390/en17010080 - 22 Dec 2023
Cited by 2 | Viewed by 1497
Abstract
This paper presents a case study in which the influence of the 6-pulse thyristor-bridge input reactor size on the shunt active power filter (SAPF)’s work performance is investigated. The purpose of using an SAPF in the power system is in most cases for [...] Read more.
This paper presents a case study in which the influence of the 6-pulse thyristor-bridge input reactor size on the shunt active power filter (SAPF)’s work performance is investigated. The purpose of using an SAPF in the power system is in most cases for fundamental harmonic reactive power compensation, harmonics and asymmetry mitigation. The work efficiency of such a filter depends not only on the designed control system, interface filter and dc-link capacitor parameters, but also on the parameters of the electrical system in which it is connected. Therefore, it is necessary to study and know the power system (supplier and consumer sides) before its installation. For instance, in the electrical system with diode or thyristor-bridge as loads, the SAPF performance efficiency may not be satisfied due to the high rate of current change (di/dt) at the points of commutation notches. In this paper, the performed simulation and laboratory experiments show that for a better operating efficiency of the SAPF, the input reactor parameters should be selected based not only on the effective reduction in the inverter switching ripple or the control system demand, but also on the parameters of the load, such as the parameters of the diode or thyristor-bridge input reactor. Apart from the experimental demonstrations on how the input reactor size influences the SAPF work efficiency, the novelties in this paper are: the formulated recommendations on how to choose the SAPF input reactor parameters (the SAPF is more efficient in terms of harmonics, asymmetry and reactive power mitigation when the inductance of its input reactor (L-filter) is smaller than the one of the diode or thyristor-bridge input reactor); the proposed SAPF control system; the proposed expressions to compute the SAPF input reactor inductance, DC voltage and capacitor. Full article
(This article belongs to the Special Issue Whole-Energy System Modeling)
Show Figures

Figure 1

17 pages, 3769 KiB  
Article
Numerical Simulation of an Inverted Perovskite Solar Cell Using a SiOx Layer as Down-Conversion Energy Material to Improve Efficiency and Stability
by Ezequiel Paz Totolhua, Jesús Carrillo López, Alfredo Benítez Lara, Karim Monfil Leyva, Ana C. Piñón Reyes, Javier Flores-Méndez and José Alberto Luna López
Materials 2023, 16(23), 7445; https://doi.org/10.3390/ma16237445 - 30 Nov 2023
Cited by 7 | Viewed by 2341
Abstract
Inverted perovskite solar cells (PSCs) have gained much attention due to their low hysteresis effect, easy fabrication, and good stability. In this research, an inverted perovskite solar cell ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag structure was simulated and optimized using SCAPS-1D version [...] Read more.
Inverted perovskite solar cells (PSCs) have gained much attention due to their low hysteresis effect, easy fabrication, and good stability. In this research, an inverted perovskite solar cell ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag structure was simulated and optimized using SCAPS-1D version 3.3.10 software. The influence on the device of parameters, including perovskite thickness, total defect density, series and shunt resistances, and operating temperature, are discussed and analyzed. With optimized parameters, the efficiency increased from 13.47% to 18.33%. Then, a new SiOx/ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag device was proposed which includes a silicon-rich oxide (SiOx) layer. This material was used as the down-conversion energy material, which converts high-energy photons (ultraviolet UV light) into low-energy photons (visible light), improving the stability and absorption of the device. Finally, with SiOx, we obtained an efficiency of 22.46% in the simulation. Therefore, the device with the SiOx layer is the most suitable as it has better values for current density–voltage output and quantum efficiency than the device without SiOx. Full article
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Efficient Cathode Interfacial Layer for Low-Light/Indoor Non-Fullerene Organic Photovoltaics
by Muhammad Jahandar, Jinhee Heo, Soyeon Kim and Dong Chan Lim
Nanoenergy Adv. 2023, 3(2), 155-169; https://doi.org/10.3390/nanoenergyadv3020009 - 20 Jun 2023
Viewed by 2150
Abstract
Indoor organic photovoltaics (IOPVs) have attained considerable research attention as a power source for a low-power consumption self-sustainable electronic device for Internet of Things (IoT) applications. This study aims to develop an efficient cathode interfacial layer (CIL) based on a polyethyleneimine (PEIE) derivative, [...] Read more.
Indoor organic photovoltaics (IOPVs) have attained considerable research attention as a power source for a low-power consumption self-sustainable electronic device for Internet of Things (IoT) applications. This study aims to develop an efficient cathode interfacial layer (CIL) based on a polyethyleneimine (PEIE) derivative, processed at room temperature, for the advancement of non-fullerene acceptor (NFA)-based IOPVs. Using a simple chemical reaction between polyethyleneimine and cobalt (II) chloride, we developed a 3D network-structured CIL. Through quaternary ammonium salts and chelating, metal ions act as mediators and induce metal-ion doping. An inverted device architecture with wide-bandgap and low-bandgap photo-absorber layer is utilized to understand the role of CILs under standard 1 sun and low-light or indoor light illuminations. The IOPV devices with modified CIL (Co-PEIE) having PBDB-T: IT-M and PBDB-T-2F: BTP-4F photo-absorber layers demonstrate a power conversion efficiency of 22.60% and 18.34% under 1000 lux LED lamp (2700 K) illumination conditions, respectively, whereas the IOPV devices with pristine PEIE CIL realized a poor device performance of 18.31% and 14.32% for the PBDB-T: IT-M and PBDB-T-2F: BTP-4F active layers, respectively. The poor device performance of PEIE interlayer-based IOPV under low-light conditions is the result of the significantly high leakage current and low shunt resistance that directly affect the open-circuit voltage (VOC) and fill factor (FF). Therefore, the adjustable energy barrier and notably low leakage current exhibited by the Co-PEIE CIL have a crucial impact on mitigating losses in VOC and FF when operating under low-light conditions. Full article
Show Figures

Figure 1

32 pages, 15347 KiB  
Article
Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm
by Naamane Debdouche, Brahim Deffaf, Habib Benbouhenni, Zarour Laid and Mohamed I. Mosaad
Energies 2023, 16(10), 4103; https://doi.org/10.3390/en16104103 - 15 May 2023
Cited by 40 | Viewed by 3078
Abstract
This study proposes a simplified super-twisting algorithm (SSTA) control strategy for improving the power quality of grid-connected photovoltaic (PV) power systems. Some quality issues are considered in this study including the power factor, reducing the total harmonic distortion (THD) of current, compensating the [...] Read more.
This study proposes a simplified super-twisting algorithm (SSTA) control strategy for improving the power quality of grid-connected photovoltaic (PV) power systems. Some quality issues are considered in this study including the power factor, reducing the total harmonic distortion (THD) of current, compensating the reactive power, and injecting at the same time the energy supplied by the PV system into the grid considering non-linear load. This improvement is achieved by two topologies; controlling both the boost DC–DC converter and the DC–AC inverter that links the PV system to the grid. The DC–DC converter is controlled using proportional-integral (PI) and SSTA to maximize the power generated from the PV panel regardless of its normal and abnormal conditions, while the DC–AC inverter is employed to direct power control strategy with modified space vector modulation using the phase-locked loop (PLL) technique of a three-level neutral-point-clamped (NPC) inverter based on the proposed strategies (PI and SSTA). In addition, a shunt active power filter (SAPF) is used to connect the PV system to the AC grid and feed a non-linear load. To validate the simulation results presented in this paper using Matlab software, a comparative study between the PI controller and the SSTA is presented. The results show the effectiveness and moderation of the suggested SSTA technique in terms of feasibility, tracking performance, less power ripple, dynamic response, THD value, overshoot, steady-state error, and robustness under varying irradiation, temperature, and non-linear conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 8189 KiB  
Article
A New Control for Improving the Power Quality Generated by a Three-Level T-Type Inverter
by Brahim Deffaf, Naamane Debdouche, Habib Benbouhenni, Farid Hamoudi and Nicu Bizon
Electronics 2023, 12(9), 2117; https://doi.org/10.3390/electronics12092117 - 5 May 2023
Cited by 20 | Viewed by 3089
Abstract
A new controller based on a fractional-order synergetic controller (FOSC) is proposed for a three-level T-type inverter using a shunt active power filter (SAPF). The SAPF is designed to compensate for the reactive power and eliminate the current harmonics caused by non-linear loads, [...] Read more.
A new controller based on a fractional-order synergetic controller (FOSC) is proposed for a three-level T-type inverter using a shunt active power filter (SAPF). The SAPF is designed to compensate for the reactive power and eliminate the current harmonics caused by non-linear loads, in cases of distorted or unbalanced source voltages. The proposed FOSC technique with the designed parameters and defined macro-variable is a robust control technique that operates well in both transient and steady-state scenarios, ensuring fast convergence and closed-loop system stability. The FOSC technique utilizes a phase-locked loop (PLL) technique on a self-tuning filter (STF) to enhance the SAPF’s ability to compensate current harmonics and reactive power in all situations involving non-linear loads and source voltage variations according to IEEE Std. 519. The proposed control was implemented and verified using Matlab software, where the obtained results were compared with the results of the conventional control based on proportional-integral (PI) controllers in different operating conditions. The results indicate that the proposed FOSC technique outperformed the traditional control in terms of DC voltage tracking and the minimization of the total harmonic distortion of the current. Full article
(This article belongs to the Special Issue Recent Advances in Power Quality Improvement)
Show Figures

Figure 1

Back to TopTop