Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (627)

Search Parameters:
Keywords = short-term weather forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 430 KB  
Article
An Hour-Specific Hybrid DNN–SVR Framework for National-Scale Short-Term Load Forecasting
by Ervin Čeperić and Kristijan Lenac
Sensors 2026, 26(3), 797; https://doi.org/10.3390/s26030797 - 25 Jan 2026
Viewed by 65
Abstract
Short-term load forecasting (STLF) underpins the efficient and secure operation of power systems. This study develops and evaluates a hybrid architecture that couples deep neural networks (DNNs) with support vector regression (SVR) for national-scale day-ahead STLF using Croatian load data from 2006 to [...] Read more.
Short-term load forecasting (STLF) underpins the efficient and secure operation of power systems. This study develops and evaluates a hybrid architecture that couples deep neural networks (DNNs) with support vector regression (SVR) for national-scale day-ahead STLF using Croatian load data from 2006 to 2022. The approach employs an hour-specific framework of 24 hybrid models: each DNN learns a compact nonlinear representation for a given hour, while an SVR trained on the penultimate layer activations performs the final regression. Gradient-boosting-based feature selection yields compact, informative inputs shared across all model variants. To overcome limitations of historical local measurements, the framework integrates global numerical weather prediction data from the TIGGE archive with load and local meteorological observations in an operationally realistic setup. In the held-out test year 2022, the proposed hybrid consistently reduced forecasting error relative to standalone DNN-, LSTM- and Transformer-based baselines, while preserving a reproducible pipeline. Beyond using SVR as an alternative output layer, the contributions are as follows: addressing a 17-year STLF task, proposing an hour-specific hybrid DNN–SVR framework, providing a systematic comparison with deep learning baselines under a unified protocol, and integrating global weather forecasts into a practical day-ahead STLF solution for a real power system. Full article
(This article belongs to the Section Cross Data)
Show Figures

Figure 1

32 pages, 14257 KB  
Article
Study of the Relationship Between Urban Microclimate, Air Pollution, and Human Health in the Three Biggest Cities in Bulgaria
by Reneta Dimitrova, Stoyan Georgiev, Angel M. Dzhambov, Vladimir Ivanov, Teodor Panev and Tzveta Georgieva
Urban Sci. 2026, 10(2), 69; https://doi.org/10.3390/urbansci10020069 - 24 Jan 2026
Viewed by 80
Abstract
Public health impacts of non-optimal temperatures and air pollution have received insufficient attention in Southeast Europe, one of the most air-polluted regions in Europe, simultaneously pressured by climate change. This study employed a multimodal approach to characterize the microclimate and air quality and [...] Read more.
Public health impacts of non-optimal temperatures and air pollution have received insufficient attention in Southeast Europe, one of the most air-polluted regions in Europe, simultaneously pressured by climate change. This study employed a multimodal approach to characterize the microclimate and air quality and conduct a health impact assessment in the three biggest cities in Bulgaria. Simulation of atmospheric thermo-hydrodynamics and assessment of urban microclimate relied on the Weather Research and Forecasting model. Concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were calculated with a land-use regression model. Ischemic heart disease (IHD) hospital admissions were linked to daily measurements at background air quality stations. The results showed declining trends in PM2.5 but persistent levels of NO2, especially in Sofia and Plovdiv. Distributed lag nonlinear models revealed that, in Sofia and Plovdiv, PM2.5 was associated with IHD hospitalizations, with a fifth of cases in Sofia attributable to PM2.5. For NO2, an increased risk was observed only in Sofia. In Sofia, the risk of IHD was increased at cold temperatures, while both high and low temperatures were associated with IHD in Plovdiv and Varna. Short-term effects were observed in response to heat, while the effects of cold weather took up to several weeks to become apparent. These findings highlight the complexity of exposure–health interactions and emphasize the need for integrated policies addressing traffic emissions, urban design, and disease burden. Full article
Show Figures

Figure 1

30 pages, 2761 KB  
Article
HST–MB–CREH: A Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN for Rare-Event-Aware PV Power Forecasting
by Guldana Taganova, Jamalbek Tussupov, Assel Abdildayeva, Mira Kaldarova, Alfiya Kazi, Ronald Cowie Simpson, Alma Zakirova and Bakhyt Nurbekov
Algorithms 2026, 19(2), 94; https://doi.org/10.3390/a19020094 - 23 Jan 2026
Viewed by 71
Abstract
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The [...] Read more.
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The model combines a spatio-temporal transformer encoder with three convolutional neural network (CNN)/recurrent neural network (RNN) branches (CNN → long short-term memory (LSTM), LSTM → gated recurrent unit (GRU), CNN → GRU) and a dense pathway for tabular meteorological and calendar features. A multitask output head simultaneously performs the regression of PV power and binary classification of extremes defined above the 95th percentile. We evaluate HST–MB–CREH on the publicly available Renewable Power Generation and Weather Conditions dataset with hourly resolutions from 2017 to 2022, using a 5-fold TimeSeriesSplit protocol to avoid temporal leakage and to cover multiple seasons. Compared with tree ensembles (RandomForest, XGBoost), recurrent baselines (Stacked GRU, LSTM), and advanced hybrid/transformer models (Hybrid Multi-Branch CNN–LSTM/GRU with Dense Path and Extreme-Event Head (HMB–CLED) and Spatio-Temporal Multitask Transformer with Extreme-Event Head (STM–EEH)), the proposed architecture achieves the best overall trade-off between accuracy and rare-event sensitivity, with normalized performance of RMSE_z = 0.2159 ± 0.0167, MAE_z = 0.1100 ± 0.0085, mean absolute percentage error (MAPE) = 9.17 ± 0.45%, R2 = 0.9534 ± 0.0072, and AUC_ext = 0.9851 ± 0.0051 across folds. Knowledge extraction is supported via attention-based analysis and permutation feature importance, which highlight the dominant role of global horizontal irradiance, diurnal harmonics, and solar geometry features. The results indicate that hybrid spatio-temporal multitask architectures can substantially improve both the forecast accuracy and robustness to extremes, making HST–MB–CREH a promising building block for intelligent decision-support tools in smart grids with a high share of PV generation. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
31 pages, 3222 KB  
Article
Hybrid Linear and Support Vector Quantile Regression for Short-Term Probabilistic Forecasting of Solar PV Power
by Roberto P. Caldas, Albert C. G. Melo and Djalma M. Falcão
Energies 2026, 19(2), 569; https://doi.org/10.3390/en19020569 - 22 Jan 2026
Viewed by 55
Abstract
The increasing penetration of solar photovoltaic (PV) generation into power systems poses significant operational and planning integration challenges due to the high variability in solar irradiance, which makes PV power forecasting difficult—particularly in the short term. These fluctuations originate from atmospheric dynamics that [...] Read more.
The increasing penetration of solar photovoltaic (PV) generation into power systems poses significant operational and planning integration challenges due to the high variability in solar irradiance, which makes PV power forecasting difficult—particularly in the short term. These fluctuations originate from atmospheric dynamics that are only partially captured by numerical weather prediction (NWP) models. In this context, probabilistic forecasting has emerged as a state-of-the-art approach, providing central estimates and additional quantification of uncertainty for decision-making under risk conditions. This work proposes a novel hybrid methodology for day-ahead, hourly resolution point, and probabilistic PV power forecasting. The approach integrates a multiple linear regression (LM) model to predict global tilted irradiance (GTI) from NWP-derived variables, followed by support vector quantile regression (SVQR) applied to the residuals to correct systematic errors and derive GTI quantile forecasts and a linear mapping to PV power quantiles. Robust data preprocessing procedures—including outlier filtering, smoothing, gap filling, and clustering—ensured consistency. The hybrid model was applied to a 960 kWp PV plant in southern Italy and outperformed benchmarks in terms of interval coverage and sharpness while maintaining accurate central estimates. The results confirm the effectiveness of hybrid risk-informed modeling in capturing forecast uncertainty and supporting reliable, data-driven operational planning in renewable energy systems. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

19 pages, 3742 KB  
Article
Short-Term Solar and Wind Power Forecasting Using Machine Learning Algorithms for Microgrid Operation
by Vidhi Rajeshkumar Patel, Havva Sena Cakar and Mohsin Jamil
Energies 2026, 19(2), 550; https://doi.org/10.3390/en19020550 - 22 Jan 2026
Viewed by 41
Abstract
Accurate short-term forecasting of renewable energy sources is essential for stable and efficient microgrid operation. Existing models primarily focus on either solar or wind prediction, often neglecting their combined stochastic behavior within isolated systems. This study presents a comparative evaluation of three machine-learning [...] Read more.
Accurate short-term forecasting of renewable energy sources is essential for stable and efficient microgrid operation. Existing models primarily focus on either solar or wind prediction, often neglecting their combined stochastic behavior within isolated systems. This study presents a comparative evaluation of three machine-learning models—Random Forest, ANN, and LSTM—for short-term solar and wind forecasting in microgrid environments. Historical meteorological data and power generation records are used to train and validate three ML models: Random Forest, Long Short-Term Memory, and Artificial Neural Networks. Each model is optimized to capture nonlinear and rapidly fluctuating weather dynamics. Forecasting performance is quantitatively evaluated using Mean Absolute Error, Root Mean Square Error, and Mean Percentage Error. The predicted values are integrated into a microgrid energy management system to enhance operational decisions such as battery storage scheduling, diesel generator coordination, and load balancing. Among the evaluated models, the ANN achieved the lowest prediction error with an MAE of 64.72 kW on the one-year dataset, outperforming both LSTM and Random Forest. The novelty of this study lies in integrating multi-source data into a unified ML-based predictive framework, enabling improved reliability, reduced fossil fuel usage, and enhanced energy resilience in remote microgrids. This research used Orange 3.40 software and Python 3.12 code for prediction. By enhancing forecasting accuracy, the project seeks to reduce reliance on fossil fuels, lower operational costs, and improve grid stability. Outcomes will provide scalable insights for remote microgrids transitioning to renewables. Full article
Show Figures

Figure 1

28 pages, 1641 KB  
Article
SeADL: Self-Adaptive Deep Learning for Real-Time Marine Visibility Forecasting Using Multi-Source Sensor Data
by William Girard, Haiping Xu and Donghui Yan
Sensors 2026, 26(2), 676; https://doi.org/10.3390/s26020676 - 20 Jan 2026
Viewed by 161
Abstract
Accurate prediction of marine visibility is critical for ensuring safe and efficient maritime operations, particularly in dynamic and data-sparse ocean environments. Although visibility reduction is a natural and unavoidable atmospheric phenomenon, improved short-term prediction can substantially enhance navigational safety and operational planning. While [...] Read more.
Accurate prediction of marine visibility is critical for ensuring safe and efficient maritime operations, particularly in dynamic and data-sparse ocean environments. Although visibility reduction is a natural and unavoidable atmospheric phenomenon, improved short-term prediction can substantially enhance navigational safety and operational planning. While deep learning methods have demonstrated strong performance in land-based visibility prediction, their effectiveness in marine environments remains constrained by the lack of fixed observation stations, rapidly changing meteorological conditions, and pronounced spatiotemporal variability. This paper introduces SeADL, a self-adaptive deep learning framework for real-time marine visibility forecasting using multi-source time-series data from onboard sensors and drone-borne atmospheric measurements. SeADL incorporates a continuous online learning mechanism that updates model parameters in real time, enabling robust adaptation to both short-term weather fluctuations and long-term environmental trends. Case studies, including a realistic storm simulation, demonstrate that SeADL achieves high prediction accuracy and maintains robust performance under diverse and extreme conditions. These results highlight the potential of combining self-adaptive deep learning with real-time sensor streams to enhance marine situational awareness and improve operational safety in dynamic ocean environments. Full article
Show Figures

Figure 1

28 pages, 7299 KB  
Article
Performance Evaluation of WRF Model for Short-Term Forecasting of Solar Irradiance—Post-Processing Approach for Global Horizontal Irradiance and Direct Normal Irradiance for Solar Energy Applications in Italy
by Irena Balog, Massimo D’Isidoro and Giampaolo Caputo
Appl. Sci. 2026, 16(2), 978; https://doi.org/10.3390/app16020978 - 18 Jan 2026
Viewed by 100
Abstract
The accurate short-term forecasting of global horizontal irradiance (GHI) is essential to optimizing the operation and integration of solar energy systems into the power grid. This study evaluates the performance of the Weather Research and Forecasting (WRF) model in predicting GHI over a [...] Read more.
The accurate short-term forecasting of global horizontal irradiance (GHI) is essential to optimizing the operation and integration of solar energy systems into the power grid. This study evaluates the performance of the Weather Research and Forecasting (WRF) model in predicting GHI over a 48 h forecast horizon at an Italian site: the ENEA Casaccia Research Center, near Rome (central Italy). The instantaneous GHI provided by WRF at model output frequency was post-processed to derive the mean GHI over the preceding hour, consistent with typical energy forecasting requirements. Furthermore, a decomposition model was applied to estimate direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) from the forecasted GHI. These derived components enable the estimation of solar energy yield for both concentrating solar power (CSP) and photovoltaic (PV) technologies (on tilted surfaces) by accounting for direct, diffuse, and reflected components of solar radiation. Model performance was evaluated against ground-based pyranometer and pyrheliometer measurements by using standard statistical indicators, including RMSE, MBE, and correlation coefficient (r). Results demonstrate that WRF-based forecasts, combined with suitable post-processing and decomposition techniques, can provide reliable 48 h predictions of GHI and DNI at the study site, highlighting the potential of the WRF framework for operational solar energy forecasting in the Mediterranean region. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

47 pages, 17315 KB  
Article
RNN Architecture-Based Short-Term Forecasting Framework for Rooftop PV Surplus to Enable Smart Energy Scheduling in Micro-Residential Communities
by Abdo Abdullah Ahmed Gassar, Mohammad Nazififard and Erwin Franquet
Buildings 2026, 16(2), 390; https://doi.org/10.3390/buildings16020390 - 17 Jan 2026
Viewed by 107
Abstract
With growing community awareness of greenhouse gas emissions and their environmental consequences, distributed rooftop photovoltaic (PV) systems have emerged as a sustainable energy alternative in residential settings. However, the high penetration of these systems without effective operational strategies poses significant challenges for local [...] Read more.
With growing community awareness of greenhouse gas emissions and their environmental consequences, distributed rooftop photovoltaic (PV) systems have emerged as a sustainable energy alternative in residential settings. However, the high penetration of these systems without effective operational strategies poses significant challenges for local distribution grids. Specifically, the estimation of surplus energy production from these systems, closely linked to complex outdoor weather conditions and seasonal fluctuations, often lacks an accurate forecasting approach to effectively capture the temporal dynamics of system output during peak periods. In response, this study proposes a recurrent neural network (RNN)- based forecasting framework to predict rooftop PV surplus in the context of micro-residential communities over time horizons not exceeding 48 h. The framework includes standard RNN, long short-term memory (LSTM), bidirectional LSTM (BiLSTM), and gated recurrent unit (GRU) networks. In this context, the study employed estimated surplus energy datasets from six single-family detached houses, along with weather-related variables and seasonal patterns, to evaluate the framework’s effectiveness. Results demonstrated the significant effectiveness of all framework models in forecasting surplus energy across seasonal scenarios, with low MAPE values of up to 3.02% and 3.59% over 24-h and 48-h horizons, respectively. Simultaneously, BiLSTM models consistently demonstrated a higher capacity to capture surplus energy fluctuations during peak periods than their counterparts. Overall, the developed data-driven framework demonstrates potential to enable short-term smart energy scheduling in micro-residential communities, supporting electric vehicle charging from single-family detached houses through efficient rooftop PV systems. It also provides decision-making insights for evaluating renewable energy contributions in the residential sector. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 544 KB  
Article
Physics-Aware Deep Learning Framework for Solar Irradiance Forecasting Using Fourier-Based Signal Decomposition
by Murad A. Yaghi and Huthaifa Al-Omari
Algorithms 2026, 19(1), 81; https://doi.org/10.3390/a19010081 - 17 Jan 2026
Viewed by 121
Abstract
Photovoltaic Systems have been a long-standing challenge to integrate with electrical Power Grids due to the randomness of solar irradiance. Deep Learning (DL) has potential to forecast solar irradiance; however, black-box DL models typically do not offer interpretation, nor can they easily distinguish [...] Read more.
Photovoltaic Systems have been a long-standing challenge to integrate with electrical Power Grids due to the randomness of solar irradiance. Deep Learning (DL) has potential to forecast solar irradiance; however, black-box DL models typically do not offer interpretation, nor can they easily distinguish between deterministic astronomical cycles, and random meteorological variability. The objective of this study was to develop and apply a new Physics-Aware Deep Learning Framework that identifies and utilizes physical attributes of solar irradiance via Fourier-based signal decomposition. The proposed method decomposes the time-series into polynomial trend, Fourier-based seasonal component and stochastic residual, each of which are processed within different neural network paths. A wide variety of architectures were tested (Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN)), at multiple historical window sizes and forecast horizons on a diverse dataset from a three-year span. All of the architectures tested demonstrated improved accuracy and robustness when using the physics aware decomposition as opposed to all other methods. Of the architectures tested, the GRU architecture was the most accurate and performed well in terms of overall evaluation. The GRU model had an RMSE of 78.63 W/m2 and an R2 value of 0.9281 for 15 min ahead forecasting. Additionally, the Fourier-based methodology was able to reduce the maximum absolute error by approximately 15% to 20%, depending upon the architecture used, and therefore it provided a way to reduce the impact of the larger errors in forecasting during periods of unstable weather. Overall, this framework represents a viable option for both physically interpretive and computationally efficient real-time solar forecasting that provides a bridge between Physical Modeling and Data-Driven Intelligence. Full article
(This article belongs to the Special Issue Artificial Intelligence in Sustainable Development)
Show Figures

Figure 1

25 pages, 16529 KB  
Article
Multi-Scale Photovoltaic Power Forecasting with WDT–CRMABIL–Fusion: A Two-Stage Hybrid Deep Learning Framework
by Reza Khodabakhshi Palandi, Loredana Cristaldi and Luca Martiri
Energies 2026, 19(2), 455; https://doi.org/10.3390/en19020455 - 16 Jan 2026
Viewed by 200
Abstract
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel [...] Read more.
Ultra-short-term photovoltaic (PV) power forecasts are vital for secure grid operation as solar penetration rises. We propose a two-stage hybrid framework, WDT–CRMABIL–Fusion. In Stage 1, we apply a three-level discrete wavelet transform to PV power and key meteorological series (shortwave radiation and panel irradiance). We then forecast the approximation and detail sub-series using specialized component predictors: a 1D-CNN with dual residual multi-head attention (feature-wise and time-wise) together with a BiLSTM. In Stage 2, a compact dense fusion network recombines the component forecasts into the final PV power trajectory. We use 5-min data from a PV plant in Milan and evaluate 5-, 10-, and 15-min horizons. The proposed approach outperforms strong baselines (DCC+LSTM, CNN+LSTM, CNN+BiLSTM, CRMABIL direct, and WDT+CRMABIL direct). For the 5-min horizon, it achieves MAE = 1.60 W and RMSE = 4.21 W with R2 = 0.943 and CORR = 0.973, compared with the best benchmark (MAE = 3.87 W; RMSE = 7.89 W). The gains persist across K-means++ weather clusters (rainy/sunny/cloudy) and across seasons. By combining explicit multi-scale decomposition, attention-based sequence learning, and learned fusion, WDT–CRMABIL–Fusion provides accurate and robust ultra-short-term PV forecasts suitable for storage dispatch and reserve scheduling. Full article
Show Figures

Figure 1

23 pages, 3280 KB  
Article
Research on Short-Term Photovoltaic Power Prediction Method Using Adaptive Fusion of Multi-Source Heterogeneous Meteorological Data
by Haijun Yu, Jinjin Ding, Yuanzhi Li, Lijun Wang, Weibo Yuan, Xunting Wang and Feng Zhang
Energies 2026, 19(2), 425; https://doi.org/10.3390/en19020425 - 15 Jan 2026
Viewed by 138
Abstract
High-precision short-term photovoltaic (PV) power prediction has become a critical technology in ensuring grid accommodation capacity, optimizing dispatching decisions, and enhancing plant economic benefits. This paper proposes a long short-term memory (LSTM)-based short-term PV power prediction method with the genetic algorithm (GA)-optimized adaptive [...] Read more.
High-precision short-term photovoltaic (PV) power prediction has become a critical technology in ensuring grid accommodation capacity, optimizing dispatching decisions, and enhancing plant economic benefits. This paper proposes a long short-term memory (LSTM)-based short-term PV power prediction method with the genetic algorithm (GA)-optimized adaptive fusion of space-based cloud imagery and ground-based meteorological data. The effective integration of satellite cloud imagery is conducted in the PV power prediction system, and the proposed method addresses the issues of low accuracy, poor robustness, and inadequate adaptation to complex weather associated with using a single type of meteorological data for PV power prediction. The multi-source heterogeneous data are preprocessed through outlier detection and missing value imputation. Spearman correlation analysis is employed to identify meteorological attributes highly correlated with PV power output. A dedicated dataset compatible with LSTM algorithm-based prediction models is constructed. An LSTM prediction model with a GA algorithm-based adaptive multi-source heterogeneous data fusion method is proposed, and the ability to construct a precise short-term PV power prediction model is demonstrated. Experimental results demonstrate that the proposed method outperforms single-source LSTM, single-source CNN-LSTM, and dual-source CNN-Transformer models in prediction accuracy, achieving an RMSE of 0.807 kWh and an MAPE of 6.74% on a critical test day. The proposed method enables real-time precision forecasting for grid dispatch centers and lightweight edge deployment at PV plants, enhancing renewable energy integration while effectively mitigating grid instability from power fluctuations. Full article
Show Figures

Figure 1

28 pages, 8930 KB  
Article
Data-Driven AI Modeling of Renewable Energy-Based Smart EV Charging Stations Using Historical Weather and Load Data
by Hamza Bin Sajjad, Farhan Hameed Malik, Muhammad Irfan Abid, Muhammad Omer Khan, Zunaib Maqsood Haider and Muhammad Junaid Arshad
World Electr. Veh. J. 2026, 17(1), 37; https://doi.org/10.3390/wevj17010037 - 13 Jan 2026
Viewed by 310
Abstract
The trend of the world to electric mobility and the inclusion of renewable energy requires complex control and predictive models of Smart Electric Vehicle Charging Stations (SEVCSs). The paper describes an experimental artificial intelligence (AI) model that can be used to optimize EV [...] Read more.
The trend of the world to electric mobility and the inclusion of renewable energy requires complex control and predictive models of Smart Electric Vehicle Charging Stations (SEVCSs). The paper describes an experimental artificial intelligence (AI) model that can be used to optimize EV charging in New York City based on ten years of historical load and weather information. Nonlinear environmental relationships with urban energy demand and the use of Neural Fitting and Regression Learner models in MATLAB were used to explore the nonlinear relationships between the environment and energy demand. The quality of the input data was maintained with a lot of preprocessing, such as outlier removal, smoothing, and time alignment. The performance measurements showed that there was a Mean Absolute Percentage Error (MAPE) of 4.9, and a coefficient of determination (R2) of 0.93, meaning that there was a high level of concordance between the predicted and measured load profiles. Such findings indicate that AI-based models can be used to replicate load dynamics during renewable energy variability. The research combines the findings of long-term and multi-source data with the short-term forecasting to address the research gaps of past studies that were limited to a few small datasets or single-variable-based time series, which will provide a replicable base to develop energy-efficient and intelligent EV charging networks in line with future grid decarbonization goals. The proposed neural network had an R2 = 0.93 and RMSE = 36.4 MW. The Neural Fitting model led to less RMSE than linear regression and lower MAPE than the persistence method by a factor of about 15 and 22 percent, respectively. Full article
Show Figures

Figure 1

22 pages, 4971 KB  
Article
Optimized Hybrid Deep Learning Framework for Reliable Multi-Horizon Photovoltaic Power Forecasting in Smart Grids
by Bilali Boureima Cisse, Ghamgeen Izat Rashed, Ansumana Badjan, Hussain Haider, Hashim Ali I. Gony and Ali Md Ershad
Electricity 2026, 7(1), 4; https://doi.org/10.3390/electricity7010004 - 12 Jan 2026
Viewed by 160
Abstract
Accurate short-term forecasting of photovoltaic (PV) output is critical to managing the variability of PV generation and ensuring reliable grid operation with high renewable integration. We propose an enhanced hybrid deep learning framework that combines Temporal Convolutional Networks (TCNs), Gated Recurrent Units (GRUs), [...] Read more.
Accurate short-term forecasting of photovoltaic (PV) output is critical to managing the variability of PV generation and ensuring reliable grid operation with high renewable integration. We propose an enhanced hybrid deep learning framework that combines Temporal Convolutional Networks (TCNs), Gated Recurrent Units (GRUs), and Random Forests (RFs) in an optimized weighted ensemble strategy. This approach leverages the complementary strengths of each component: TCNs capture long-range temporal dependencies via dilated causal convolutions; GRUs model sequential weather-driven dynamics; and RFs enhance robustness to outliers and nonlinear relationships. The model was evaluated on high-resolution operational data from the Yulara solar plant in Australia, forecasting horizons from 5 min to 1 h. Results show that the TCN-GRU-RF model consistently outperforms conventional benchmarks, achieving R2 = 0.9807 (MAE = 0.0136; RMSE = 0.0300) at 5 min and R2 = 0.9047 (RMSE = 0.0652) at 1 h horizons. Notably, the degradation in R2 across forecasting horizons was limited to 7.7%, significantly lower than the typical 10–15% range observed in the literature, highlighting the model’s scalability and resilience. These validated results indicate that the proposed approach provides a robust, scalable forecasting solution that enhances grid reliability and supports the integration of distributed renewable energy sources. Full article
Show Figures

Figure 1

15 pages, 1913 KB  
Article
A Short-Term Wind Power Forecasting Method Based on Multi-Decoder and Multi-Task Learning
by Qiang Li, Yongzhi Liu, Xinyue Yan, Haipeng Zhang, Siyu Wang and Ran Li
Energies 2026, 19(2), 349; https://doi.org/10.3390/en19020349 - 10 Jan 2026
Viewed by 163
Abstract
In short-term power forecasting for wind farms, factors such as weather conditions and geographic location lead to certain correlations in the power output of different wind farms, resulting in complex coupling relationships between them. Traditional wind power forecasting methods often predict each wind [...] Read more.
In short-term power forecasting for wind farms, factors such as weather conditions and geographic location lead to certain correlations in the power output of different wind farms, resulting in complex coupling relationships between them. Traditional wind power forecasting methods often predict each wind farm independently, without considering these coupling relationships. To address this issue, this paper proposes a multi-task Transformer model based on multiple decoders, which accounts for the intrinsic connections between different wind farms, enabling joint power forecasting across multiple sites. The proposed model adopts a single encoder-multiple decoder structure, where a unified encoder processes all input data, and multiple decoders perform prediction tasks for each wind farm separately. Testing on actual wind farm data from the Inner Mongolia region of China shows that, compared to other forecasting models, the proposed model significantly improves the accuracy of power predictions for different wind farms. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Integrated Zero-Carbon Power Plant)
Show Figures

Figure 1

19 pages, 784 KB  
Article
For Autonomous Driving: The LGAT Model—A Method for Long-Term Time Series Forecasting
by Guoyu Qi, Jiaqi Kang, Yufeng Sun and Guangle Song
Electronics 2026, 15(2), 305; https://doi.org/10.3390/electronics15020305 - 9 Jan 2026
Viewed by 206
Abstract
Time series forecasting plays a critical role in a wide range of applications, including energy load forecasting, traffic flow management, weather prediction, and vision-based state prediction for autonomous driving. In the context of autonomous vehicles, accurate forecasting of sequential visual information—such as traffic [...] Read more.
Time series forecasting plays a critical role in a wide range of applications, including energy load forecasting, traffic flow management, weather prediction, and vision-based state prediction for autonomous driving. In the context of autonomous vehicles, accurate forecasting of sequential visual information—such as traffic participant trajectories, road condition variations, and obstacle motion trends perceived by onboard sensors—is a fundamental prerequisite for safe and reliable decision-making. To overcome the limitations of existing long-term time series forecasting models, particularly their insufficient capability in temporal feature extraction, this paper proposes a Local–Global Adaptive Transformer (LGAT) for long-term time series forecasting. The proposed model incorporates three key innovations: (1) a period-aware positional encoding mechanism that embeds intrinsic periodic patterns of time series into positional representations and adaptively adjusts encoding parameters according to data-specific periodicity; (2) a temporal feature enhancement module based on gated convolution, which effectively suppresses noise in raw inputs while emphasizing discriminative temporal characteristics; and (3) a local–global adaptive attention layer that combines sliding window–based local attention with importance-aware global attention to simultaneously capture short-term local variations and long-term global dependencies. Experimental results on five public benchmark datasets demonstrate that LGAT consistently outperforms most baseline models, indicating its strong potential for time series forecasting applications in autonomous driving scenarios. Full article
(This article belongs to the Special Issue Deep Perception in Autonomous Driving, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop