Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,561)

Search Parameters:
Keywords = shipping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1620 KiB  
Article
Maxillary Sinus Puncture: A Traditional Procedure in Decline—Insights from SHIP
by Fabian Paperlein, Johanna Klinger-König, Chia-Jung Busch, Christian Scharf and Achim Georg Beule
J. Clin. Med. 2025, 14(15), 5578; https://doi.org/10.3390/jcm14155578 - 7 Aug 2025
Abstract
Background: Maxillary sinus puncture (MSP), once a cornerstone for diagnosing and treating acute rhinosinusitis (ARS), has declined with the rise in less invasive techniques. This study explores MSP trends, its association with age, and long-term effects on quality of life using data from [...] Read more.
Background: Maxillary sinus puncture (MSP), once a cornerstone for diagnosing and treating acute rhinosinusitis (ARS), has declined with the rise in less invasive techniques. This study explores MSP trends, its association with age, and long-term effects on quality of life using data from the Study of Health in Pomerania (SHIP). Methods: Data from SHIP-START-2 (n = 2332), SHIP-START-3 (n = 1717), and SHIP-TREND-0 (n = 4420) cohorts were analyzed to assess MSP prevalence, demographic correlations, and quality- of-life impacts using SNOT-20-D, EQ-5D-3L, and SF-12. Results: MSP prevalence was higher in older SHIP-START cohorts (11.2% in START-2) compared to SHIP-TREND-0 (9.5%), reflecting its historical decline. The procedure was more frequently reported by participants aged > 60 years (e.g., 14.0% in START-2) than by younger groups (<40 years: 3.5% in START-2). MSP was associated with increased SNOT-20-D scores across cohorts (e.g., +0.28 in START-2, p < 0.001) and minor reductions in EQ-5D-3L and SF-12 mental health scores, indicating greater symptom burden but limited general health impact. The age- and time-related decline in MSP highlights its diminishing role in modern practice. Conclusions: While MSP offers diagnostic insights and serves as an indicator for ARS, its modest impact on long-term quality-of-life underscores the need for alternative, minimally invasive techniques for sinonasal conditions. Full article
Show Figures

Figure 1

18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

22 pages, 3532 KiB  
Article
A Method for Early Identification of Vessels Potentially Threatening Critical Maritime Infrastructure
by Miroslaw Wielgosz and Marzena Malyszko
Appl. Sci. 2025, 15(15), 8716; https://doi.org/10.3390/app15158716 - 7 Aug 2025
Abstract
This paper presents a procedural method aimed at protecting maritime critical infrastructure, which is essential for the functioning of developed nations. A novel approach, developed by the authors, is introduced—focusing on the behavioral analysis of vessels to enable early identification of suspicious maritime [...] Read more.
This paper presents a procedural method aimed at protecting maritime critical infrastructure, which is essential for the functioning of developed nations. A novel approach, developed by the authors, is introduced—focusing on the behavioral analysis of vessels to enable early identification of suspicious maritime activity and to prevent damage or destruction to key infrastructure elements. An integrated system is proposed, combining real-time electronic surveillance with continuous access to and analysis of data from both national and international databases. Drawing inspiration from medical sciences, a screening-based methodology has been developed. Data on vessels collected from various sources are processed according to the criteria adopted by the authors, using a multi-criteria decision analysis (MCDA) approach. MCDA is a decision-support method that considers multiple criteria simultaneously. It allows for the comparison and evaluation of different options, even when they are difficult to compare directly. This characteristic is used to select high-risk vessels for further monitoring. An initial classification of a vessel as suspicious does not constitute proof of criminal activity but rather serves as a trigger for further coordinated actions. Data on vessels is collected from the AIS (automatic identification system) and platforms that store vessel history. The AIS is a powerful tool that processes parameters such as a ship’s speed and course. This article presents sample results from surveillance and pre-selection analyses using the AIS, followed by a multi-criteria assessment of the behavior of vessels identified through this process. The results are presented both graphically and numerically. The authors conducted several scenarios, analyzing different groups of vessels. Based on this analysis, recommendations were developed for the interpretation of the findings. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

25 pages, 2458 KiB  
Article
Numerical Analysis of Heat Transfer in a Double-Pipe Heat Exchanger for an LPG Fuel Supply System
by Seongwoo Lee, Younghun Kim, Ancheol Choi and Sungwoong Choi
Energies 2025, 18(15), 4179; https://doi.org/10.3390/en18154179 - 6 Aug 2025
Abstract
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in [...] Read more.
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in LPG fuel supply systems. This study investigates the heat transfer performance of a glycol–steam double-pipe heat exchanger (DPHE) within an LPG fuel supply system under varying operating conditions. A computational model and methodology were developed and validated by comparing the numerical results with experimental data obtained from commissioning tests. Additionally, the effects of turbulence models and parametric variations were evaluated by analyzing the glycol–water mixing ratio and flow direction—both of which are critical operational parameters for DPHE systems. Numerical validation against the commissioning data showed a deviation of ±2% under parallel-flow conditions, confirming the reliability of the proposed model. With respect to the glycol–water mixing ratio and flow configuration, thermal conductance (UA) decreased by approximately 11% in parallel flow and 13% in counter flow for every 20% increase in glycol concentration. Furthermore, parallel flow exhibited approximately 0.6% higher outlet temperatures than counter flow, indicating superior heat transfer efficiency under parallel-flow conditions. Finally, the heat transfer behavior of the DPHE was further examined by considering the effects of geometric characteristics, pipe material, and fluid properties. This study offers significant contributions to the engineering design of double-pipe heat exchanger systems for LPG fuel supply applications. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

25 pages, 3220 KiB  
Article
Distributed Energy Management for Ship-Integrated Energy System Under Marine Environmental Risk Field
by Yuxin Zhang, Yang Xiao and Tieshan Li
Energies 2025, 18(15), 4163; https://doi.org/10.3390/en18154163 - 6 Aug 2025
Abstract
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. [...] Read more.
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. Meanwhile, an energy management model that considers both economic and environmental benefits is developed to enhance the penetration rate of renewable resources. Subsequently, a distributed energy management algorithm based on finite-time consensus theory is proposed to ensure a rapid and accurate response to load demand. Moreover, a mathematical analysis is provided to demonstrate the algorithm’s effectiveness. Finally, the sea area between Singapore Port (Singapore) and Penang Port (Malaysia) is chosen as the simulation environment. The experimental results demonstrate the effectiveness of energy management for the S-IES. Full article
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 1407 KiB  
Article
Symmetry-Driven Two-Population Collaborative Differential Evolution for Parallel Machine Scheduling in Lace Dyeing with Probabilistic Re-Dyeing Operations
by Jing Wang, Jingsheng Lian, Youpeng Deng, Lang Pan, Huan Xue, Yanming Chen, Debiao Li, Xixing Li and Deming Lei
Symmetry 2025, 17(8), 1243; https://doi.org/10.3390/sym17081243 - 5 Aug 2025
Viewed by 1
Abstract
In lace textile manufacturing, the dyeing process in parallel machine environments faces challenges from sequence-dependent setup times due to color family transitions, machine eligibility constraints based on weight capacities, and probabilistic re-dyeing operations arising from quality inspection failures, which often lead to increased [...] Read more.
In lace textile manufacturing, the dyeing process in parallel machine environments faces challenges from sequence-dependent setup times due to color family transitions, machine eligibility constraints based on weight capacities, and probabilistic re-dyeing operations arising from quality inspection failures, which often lead to increased tardiness. To tackle this multi-constrained problem, a stochastic integer programming model is formulated to minimize total estimated tardiness. A novel symmetry-driven two-population collaborative differential evolution (TCDE) algorithm is then proposed. It features two symmetrically complementary subpopulations that achieve a balance between global exploration and local exploitation. One subpopulation employs chaotic parameter adaptation through a logistic map for symmetrically enhanced exploration, while the other adjusts parameters based on population diversity and convergence speed to facilitate symmetry-aware exploitation. Moreover, it also incorporates a symmetrical collaborative mechanism that includes the periodic migration of top individuals between subpopulations, along with elite-set guidance, to enhance both population diversity and convergence efficiency. Extensive computational experiments were conducted on 21 small-scale (optimally validated via CVX) and 15 large-scale synthetic datasets, as well as 21 small-scale (similarly validated) and 20 large-scale industrial datasets. These experiments demonstrate that TCDE significantly outperforms state-of-the-art comparative methods. Ablation studies also further verify the critical role of its symmetry-based components, with computational results confirming its superiority in solving the considered problem. Full article
(This article belongs to the Special Issue Meta-Heuristics for Manufacturing Systems Optimization, 3rd Edition)
Show Figures

Figure 1

26 pages, 3478 KiB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 167
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

22 pages, 4658 KiB  
Article
Experimental Research on Ship Wave-Induced Motions of Tidal Turbine Catamaran
by Tinghui Liu, Xiwu Gong, Zijian Yu and Yonghe Xie
Fluids 2025, 10(8), 205; https://doi.org/10.3390/fluids10080205 - 4 Aug 2025
Viewed by 101
Abstract
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model [...] Read more.
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model and a catamaran as the carrier model of the tidal current energy generator under the combined effect of waves and ocean currents. The experimental results show that the increase in ship speed increases the amplitude of the carrier motion re-response. When the ship speed increases from 1.2 m/s to 1.478 m/s, the roll amplitude increases by 220%. At the same time, a decrease in the distance and draft of the navigating vessel also increases the amplitude of the motion response. Then, the actual sea conditions are simulated by the combined effect of ship waves and regular waves. As the wave period decreases and the height increases, the platform motion response is gradually reduced by the ship-generated waves. These findings provide important insights for optimizing the mooring system design in wave-dominated marine environments. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

32 pages, 2102 KiB  
Article
D* Lite and Transformer-Enhanced SAC: A Hybrid Reinforcement Learning Framework for COLREGs-Compliant Autonomous Navigation in Dynamic Maritime Environments
by Tianqing Chen, Yamei Lan, Yichen Li, Jiesen Zhang and Yijie Yin
J. Mar. Sci. Eng. 2025, 13(8), 1498; https://doi.org/10.3390/jmse13081498 - 4 Aug 2025
Viewed by 149
Abstract
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently [...] Read more.
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently rely on simplistic state representations that fail to capture complex spatio-temporal interactions among vessels. We introduce a novel hybrid reinforcement learning framework, D* Lite + Transformer-Enhanced Soft Actor-Critic (TE-SAC), to overcome these limitations. This hierarchical framework synergizes the strengths of global and local planning. An enhanced D* Lite algorithm generates efficient, long-horizon reference paths at the global level. At the local level, the TE-SAC agent performs COLREGs-compliant tactical maneuvering. The core innovation resides in TE-SAC’s synergistic state encoder, which uniquely combines a Graph Neural Network (GNN) to model the instantaneous spatial topology of vessel encounters with a Transformer encoder to capture long-range temporal dependencies and infer vessel intent. Comprehensive simulations demonstrate the framework’s superior performance, validating the strengths of both planning layers. At the local level, our TE-SAC agent exhibits remarkable tactical intelligence, achieving an exceptional 98.7% COLREGs compliance rate and reducing energy consumption by 15–20% through smoother, more decisive maneuvers. This high-quality local control, guided by the efficient global paths from the enhanced D* Lite algorithm, culminates in a 10–32 percentage point improvement in overall task success rates compared to state-of-the-art baselines. This work presents a robust, verifiable, and efficient framework. By demonstrating superior performance and compliance with rules in high-fidelity simulations, it lays a crucial foundation for advancing the practical application of intelligent autonomous navigation systems. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—3rd Edition)
Show Figures

Figure 1

19 pages, 7432 KiB  
Article
Image-Level Anti-Personnel Landmine Detection Using Deep Learning in Long-Wave Infrared Images
by Jun-Hyung Kim and Goo-Rak Kwon
Appl. Sci. 2025, 15(15), 8613; https://doi.org/10.3390/app15158613 - 4 Aug 2025
Viewed by 88
Abstract
This study proposes a simple deep learning-based framework for image-level anti-personnel landmine detection in long-wave infrared imagery. To address challenges posed by the limited size of the available dataset and the small spatial size of anti-personnel landmines within images, we integrate two key [...] Read more.
This study proposes a simple deep learning-based framework for image-level anti-personnel landmine detection in long-wave infrared imagery. To address challenges posed by the limited size of the available dataset and the small spatial size of anti-personnel landmines within images, we integrate two key techniques: transfer learning using pre-trained vision foundation models, and attention-based multiple instance learning to derive discriminative image features. We evaluate five pre-trained models, including ResNet, ConvNeXt, ViT, OpenCLIP, and InfMAE, in combination with attention-based multiple instance learning. Furthermore, to mitigate the reliance of trained models on irrelevant features such as artificial or natural structures in the background, we introduce an inpainting-based image augmentation method. Experimental results, conducted on a publicly available “legbreaker” anti-personnel landmine infrared dataset, demonstrate that the proposed framework achieves high precision and recall, validating its effectiveness for landmine detection in infrared imagery. Additional experiments are also performed on an aerial image dataset designed for detecting small-sized ship targets to further validate the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Image Processing)
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 - 3 Aug 2025
Viewed by 166
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
Show Figures

Figure 1

20 pages, 6543 KiB  
Article
Study of Antarctic Sea Ice Based on Shipborne Camera Images and Deep Learning Method
by Xiaodong Chen, Shaoping Guo, Qiguang Chen, Xiaodong Chen and Shunying Ji
Remote Sens. 2025, 17(15), 2685; https://doi.org/10.3390/rs17152685 - 3 Aug 2025
Viewed by 185
Abstract
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab [...] Read more.
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab and U-Net, were employed to automatically obtain sea ice concentration (SIC) and sea ice thickness (SIT), providing high-frequency data at 5-min intervals. During the observation period, ice navigation accounted for 32 days, constituting less than 20% of the total 163 voyage days. Notably, 63% of the navigation was in ice fields with less than 10% concentration, while only 18.9% occurred in packed ice (concentration > 90%) or level ice regions. SIT ranges from 100 cm to 234 cm and follows a normal distribution. The results demonstrate that, to achieve enhanced navigation efficiency and fulfill expedition objectives, the research vessel substantially reduced duration in high-concentration ice areas. Additionally, the results of SIC extracted from shipborne camera images were compared with the data from the Copernicus Marine Environment Monitoring Service (CMEMS) satellite remote sensing. In summary, the sea ice parameter data obtained from shipborne camera images offer high spatial and temporal resolution, making them more suitable for engineering applications in establishing sea ice environmental parameters. Full article
Show Figures

Figure 1

21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 267
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop