Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = shipborne HFSWR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1862 KiB  
Article
Extraction of Significant Wave Height from Spreading First-Order Bragg Peaks of Shipborne High-Frequency Surface Wave Radar with a Single Antenna
by Xinbo Zhang, Junhao Xie, Guowei Yao and Chenghui Cao
Remote Sens. 2025, 17(6), 1006; https://doi.org/10.3390/rs17061006 - 13 Mar 2025
Viewed by 747
Abstract
Shipborne high-frequency surface wave radar (HFSWR) can extend the measurement area due to the flexible movement of the platform and provide a new way to monitor large-area marine environment parameters. It has already been applied to wind and current measurements. However, extracting significant [...] Read more.
Shipborne high-frequency surface wave radar (HFSWR) can extend the measurement area due to the flexible movement of the platform and provide a new way to monitor large-area marine environment parameters. It has already been applied to wind and current measurements. However, extracting significant wave height using shipborne HFSWR presents challenges due to the complex effects of platform motion on the Doppler spectrum, which invalidate onshore methods. To address this, a novel method for extracting significant wave height from the spreading first-order Bragg peaks of shipborne HFSWR with a single antenna is proposed, which is immune to inevitable antenna pattern distortion and especially suitable for the space-constrained shipborne HFSWR. The method sequentially estimates wind directions, spreading parameters, and wind speeds from Bragg peaks and develops a new relationship between significant wave height and wind speed to enable wave height extraction. Additionally, a preprocessing step is introduced to mitigate the impact of noise and discretization errors. Simulations and field experiments validate the feasibility and accuracy of the method across various scenarios, with a detection range of up to 120 km without auxiliary measurements. Comparisons between the radar-extracted and fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) or buoy-measured results demonstrate consistency. Full article
Show Figures

Figure 1

24 pages, 11892 KiB  
Article
An RD-Domain Virtual Aperture Extension Method for Shipborne HFSWR
by Youmin Qu, Xingpeng Mao, Yuguan Hou and Xue Li
Remote Sens. 2024, 16(21), 3929; https://doi.org/10.3390/rs16213929 - 22 Oct 2024
Cited by 3 | Viewed by 856
Abstract
High-frequency surface wave radar (HFSWR) is widely used for detecting sea surface or low-altitude targets due to its all-weather operation and over-the-horizon detection capability. To further enhance the maneuverability and detection range of HFSWR, shipborne HFSWR has been developed. However, compared to shore-based [...] Read more.
High-frequency surface wave radar (HFSWR) is widely used for detecting sea surface or low-altitude targets due to its all-weather operation and over-the-horizon detection capability. To further enhance the maneuverability and detection range of HFSWR, shipborne HFSWR has been developed. However, compared to shore-based platforms, shipborne platforms face challenges such as a small array aperture and reduced Direction of Arrival (DOA) estimation performance due to their limited size. The traditional time–domain virtual aperture extension method, based on the principle of space-time equivalence, aims to improve the array aperture but has limitations when used for HFSWR background or multiple targets with different speeds. To address these issues, this paper proposes a range-Doppler domain (RD-domain) virtual aperture extension method for the uniform linear array, based on the uniform motion model. The contributions of this work include (1) a continuous motion model for shipborne HFSWR, (2) a virtual aperture processing flowchart for shipborne HFSWR, and (3) an RD-domain aperture extension method suitable for HFSWR background or multiple targets with varying speeds. Through simulation and experimental data, we validate the proposed method and analyze its performance. Full article
Show Figures

Figure 1

29 pages, 12305 KiB  
Article
APO-ELM Model for Improving Azimuth Correction of Shipborne HFSWR
by Yaning Wang, Haibo Yu, Ling Zhang and Gangsheng Li
Remote Sens. 2023, 15(15), 3818; https://doi.org/10.3390/rs15153818 - 31 Jul 2023
Cited by 3 | Viewed by 1570
Abstract
Shipborne high-frequency surface wave radar (HFSWR) has a wide range of applications and plays an important role in moving target detection and tracking. However, the complexity of the sea detection environment causes the target signals received by shipborne HFSWR to be seriously disturbed [...] Read more.
Shipborne high-frequency surface wave radar (HFSWR) has a wide range of applications and plays an important role in moving target detection and tracking. However, the complexity of the sea detection environment causes the target signals received by shipborne HFSWR to be seriously disturbed by sea clutter. Sea clutter increases the difficulty of azimuth estimation, resulting in a challenging problem for shipborne HFSWR. To solve this problem, a novel azimuth correction method based on adaptive boosting error feedback dynamic weighted particle swarm optimization extreme learning machine (APO-ELM) is proposed to improve the azimuth estimation accuracy of shipborne HFSWR. First, the sea clutter is modeled and simulated. Then, we study its characteristics and analyze the influence of its characteristics on the first-order clutter spectrum and target detection accuracy, respectively. In addition, the proposed improved particle swarm optimization (PSO) and adaptive neuron clipping algorithm are used to optimize the input parameters of the ELM network. Then, the network performs error feedback based on the optimized parameter performance and updates the feature matrix, which can give a minimum clutter-error estimation. After that, it iteratively trains multiple weak learners using the adaptive boosting (AdaBoost) algorithm to form a strong learner and make strong predictions. Finally, after error compensation, the best azimuth estimation results are obtained. The sample sets used for the APO-ELM network are obtained from field shipborne HFSWR data. The network training and testing features include the wind direction, sea current, wind speed, platform speed, and signal-to-clutter ratio (SCR). The experimental results show that this method has a lower root-mean-square error than the back-propagation neural network and support vector regression (SVR) azimuth correction methods, which verifies the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Feature Paper Special Issue on Ocean Remote Sensing - Part 2)
Show Figures

Graphical abstract

38 pages, 14304 KiB  
Article
Unambiguous Wind Direction Estimation Method for Shipborne HFSWR Based on Wind Direction Interval Limitation
by Yunfeng Zhang, Yiming Wang, Yonggang Ji and Ming Li
Remote Sens. 2023, 15(11), 2952; https://doi.org/10.3390/rs15112952 - 5 Jun 2023
Cited by 2 | Viewed by 2012
Abstract
Due to its maneuverability and agility, the shipborne high-frequency surface wave radar (HFSWR) provides a new way of monitoring large-area marine dynamics and environment information. However, wind direction ambiguity is problematic when using monostatic shipborne HFSWR for wind direction inversion. In this article, [...] Read more.
Due to its maneuverability and agility, the shipborne high-frequency surface wave radar (HFSWR) provides a new way of monitoring large-area marine dynamics and environment information. However, wind direction ambiguity is problematic when using monostatic shipborne HFSWR for wind direction inversion. In this article, an unambiguous wind direction measurement method based on wind direction interval limitation is proposed. The two first-order spectral wind direction estimation methods are first presented using the relationship between the normalized amplitude differences or ratios of the broadened Doppler spectrum and the wind direction. Moreover, based on the characteristic of a small wind direction estimation error in a large included angle between the spectral wind direction and the radar beam, the wind direction interval is obtained by counting the distribution of radar-measured wind direction within this included angle. Furthermore, the eliminated ambiguity of wind direction is transformed to judge the relationship between the wind direction interval and the two curves, which represent the relationship between the spreading parameter and the wind direction. Therefore, the remote sensing monitoring of ocean surface wind direction fields can be realized by shipborne HFSWR. The simulation results are used to evaluate the performance of the proposed method and the multi-beam sampling method for wind direction inversion. The experimental results show that the errors of wind direction estimated by the multi-beam sampling method and the equivalent dual-station model are large, and the proposed method can improve the accuracy of wind direction measurement. Three widely used wave directional spreading models have been applied for performance comparison. The wind direction field measured by the proposed method under a modified cosine model agrees well with that observed by the China-France Oceanography Satellite (CFOSAT). Full article
(This article belongs to the Special Issue Feature Paper Special Issue on Ocean Remote Sensing - Part 2)
Show Figures

Graphical abstract

16 pages, 5269 KiB  
Article
Shipborne HFSWR Target Detection in Clutter Regions Based on Multi-Frame TFI Correlation
by Tao Wang, Ling Zhang and Gangsheng Li
Remote Sens. 2022, 14(17), 4192; https://doi.org/10.3390/rs14174192 - 25 Aug 2022
Cited by 8 | Viewed by 3176
Abstract
High-frequency surface wave radar (HFSWR) is an important marine monitoring technology, and this new regime of radar plays an important role in large-scale, continuous early-warning monitoring at sea. In particular, shipborne HFSWR has wider applications in detecting interesting sea areas, with the advantages [...] Read more.
High-frequency surface wave radar (HFSWR) is an important marine monitoring technology, and this new regime of radar plays an important role in large-scale, continuous early-warning monitoring at sea. In particular, shipborne HFSWR has wider applications in detecting interesting sea areas, with the advantages of flexible deployment and extended detection capability. Due to the large amount of sea clutter accompanying the echo signals of shipborne HFSWR and the spread of sea clutter due to platform motion, the detection of targets in clutter regions is extremely difficult. In this paper, a multi-frame time-frequency (TF) analysis–based target-detection method is proposed. First, the sea clutter spreading area in the HFSWR echo signal is modeled, and the effects of platform motion and currents on the sea clutter spread are analyzed to determine the sea clutter coverage area; this paper focuses on frequency modeling. Then the TF image (TFI) of each range cell is obtained by TF analysis of the cells within a certain range of the echo signal, and the range cells of possible target points are determined by binary classification of the TFI through a convolutional neural network. Finally, the location of the final target point is obtained by correlation of multi-frame TFIs. Shipborne HFSWR field experiments show that the proposed detection method performs well in detecting targets concealed by sea clutter. Full article
(This article belongs to the Special Issue Feature Paper Special Issue on Ocean Remote Sensing - Part 2)
Show Figures

Graphical abstract

15 pages, 4430 KiB  
Article
First-Order Ocean Surface Cross Section for Shipborne Bistatic HFSWR: Derivation and Simulation
by Yonggang Ji, Xu Liang, Weifeng Sun, Weimin Huang, Yiming Wang, Xinling Wang and Zhihao Li
J. Mar. Sci. Eng. 2022, 10(5), 649; https://doi.org/10.3390/jmse10050649 - 10 May 2022
Cited by 1 | Viewed by 1822
Abstract
A bistatic high-frequency surface wave radar (HFSWR) with both receiving and transmitting stations placed on different ships (platforms) is a new radar system and referred to as shipborne bistatic HFSWR. In this paper, a first-order ocean surface cross section of shipborne bistatic HFSWR [...] Read more.
A bistatic high-frequency surface wave radar (HFSWR) with both receiving and transmitting stations placed on different ships (platforms) is a new radar system and referred to as shipborne bistatic HFSWR. In this paper, a first-order ocean surface cross section of shipborne bistatic HFSWR was derived. The first-order cross-section models for three different cases, i.e., ships moving with uniform, periodic, and hybrid motion states, respectively, are presented. The corresponding first-order Doppler spectra were simulated, and the spread width of the first-order spectrum was investigated. The simulation results show that the characteristics of the first-order spectrum are similar to those of a shore-based bistatic HFSWR when the transmitting and receiving platforms move in opposite directions. The first-order spectral spread width in the case of platforms with opposite directions is much smaller than that in the case of platforms with the same direction. This finding is useful for reducing HFSWR first-order spectrum spread due to platform motion, thus improving the target detection performance of the shipborne bistatic HFSWR. In addition, periodic oscillation motion of both platforms will cause complex motion-induced peaks in the first-order spectrum, which may be detrimental to target detection and ocean remote sensing. These results have important implications for the application of shipborne bistatic HFSWR. Full article
Show Figures

Figure 1

23 pages, 3475 KiB  
Article
A Motion Compensation Method for Shipborne HFSWR by Using Dual Reference RF Signals Generated Onshore
by Maorong Chen, Jiong Niu, Ming Li, Ling Zhang, Yonggang Ji, Wenxiang Wan and Q. M. Jonathan Wu
Remote Sens. 2022, 14(5), 1055; https://doi.org/10.3390/rs14051055 - 22 Feb 2022
Cited by 6 | Viewed by 2704
Abstract
The echo of shipborne high-frequency surface wave radar (HFSWR) is modulated by six-degrees-of-freedom (6-DOF) motion, affecting the detection of the target and the remote sensing of ocean surface dynamics parameters. Commonly, motion compensation methods of shipborne HFSWR describe each aspect of the 6-DOF [...] Read more.
The echo of shipborne high-frequency surface wave radar (HFSWR) is modulated by six-degrees-of-freedom (6-DOF) motion, affecting the detection of the target and the remote sensing of ocean surface dynamics parameters. Commonly, motion compensation methods of shipborne HFSWR describe each aspect of the 6-DOF motion as the superposition of sinusoidal motion, which results in the effect of motion compensation affected by the precision of 6-DOF motion parameters. A motion compensation method based on dual reference radio frequency (RF) signals is proposed in this paper, without depending on a sinusoidal motion model to describe the 6-DOF motion. By using the motion compensation parameters, which are relevant to the motion attitude and calculated from the information of dual reference RF signals located onshore, the method realizes the compensation of shipborne HFSWR echo modulated by platform 6-DOF motion. This paper proposes the extraction of reference RF signals from radar echo and analyzes the influence of the location of the reference RF signals’ emission source on the motion compensation method. The result shows that a good motion compensation effect is achieved in eliminating the influence of 6-DOF motion modulation. In addition, a traversal of different reference RF signals’ emission source locations is conducted, and the simulation results show that the method proposed in this paper has universality. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

24 pages, 9759 KiB  
Article
Vessel Target Echo Characteristics and Motion Compensation for Shipborne HFSWR under Non-Uniform Linear Motion
by Yonggang Ji, Yiming Wang, Weimin Huang, Weifeng Sun, Jie Zhang, Ming Li and Xiaoyu Cheng
Remote Sens. 2021, 13(14), 2826; https://doi.org/10.3390/rs13142826 - 19 Jul 2021
Cited by 15 | Viewed by 2950
Abstract
For shipborne high-frequency surface wave radar (HFSWR), the movement of the ship has a great impact on the radar echo, thus affecting target detection performance. In this paper, the characteristics of the target echo spectrum and the motion compensation methods for shipborne HFSWR [...] Read more.
For shipborne high-frequency surface wave radar (HFSWR), the movement of the ship has a great impact on the radar echo, thus affecting target detection performance. In this paper, the characteristics of the target echo spectrum and the motion compensation methods for shipborne HFSWR are investigated. Firstly, simulation analysis of echo from a moving target under different ship motion conditions was conducted with a focus on the frequency shift and broadening characteristics of the target echo spectrum. The simulation results show that the non-uniform linear motion and yaw of the ship will shift and broaden the target echoes, resulting in signal-to-noise ratio (SNR) reduction. When the ship velocity and yaw angle change periodically, false target echo peaks will appear in the echo spectrum, which will reduce the accuracy of target detection. To tackle this problem, a motion compensation scheme for the target echo is proposed, including the heading compensation for the effect of yaw and the velocity compensation for non-uniform movement. The influence of the velocity and yaw angle measurement accuracy on the compensation results is also analyzed. Finally, the target echo characteristics and motion compensation method of shipborne HFSWR are verified with experimental data. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

17 pages, 5741 KiB  
Article
A Knowledge-Based Auxiliary Channel STAP for Target Detection in Shipborne HFSWR
by Liang Guo, Weibo Deng, Di Yao, Qiang Yang, Lei Ye and Xin Zhang
Remote Sens. 2021, 13(4), 621; https://doi.org/10.3390/rs13040621 - 9 Feb 2021
Cited by 11 | Viewed by 2640
Abstract
The broadened first-order sea clutter in shipborne high frequency surface wave radar (HFSWR), which will mask the targets with low radial velocity, is a kind of classical space–time coupled clutter. Space–time adaptive processing (STAP) has been proven to be an effective clutter suppression [...] Read more.
The broadened first-order sea clutter in shipborne high frequency surface wave radar (HFSWR), which will mask the targets with low radial velocity, is a kind of classical space–time coupled clutter. Space–time adaptive processing (STAP) has been proven to be an effective clutter suppression algorithm for space-time coupled clutter. To further improve the efficiency of clutter suppression, a STAP method based on a generalized sidelobe canceller (GSC) structure, named as the auxiliary channel STAP, was introduced into shipborne HFSWR. To obtain precise clutter information for the clutter covariance matrix (CCM) estimation, an approach based on the prior knowledge to auxiliary channel selection is proposed. Auxiliary channels are selected along the clutter ridge of the first-order sea clutter, whose distribution can be determined by the system parameters and regarded as pre-knowledge. To deal with the heterogeneity of the spreading first-order sea clutter, an innovative training samples selection approach according to the Riemannian distance is presented. The range cells that had shorter Riemannian distances to the cell under test (CUT) were chosen as training samples. Experimental results with measured data verified the effectiveness of the proposed algorithm, and the comparison with the existing clutter suppression algorithms showed the superiority of the algorithm. Full article
(This article belongs to the Special Issue Remote Sensing for Maritime Safety and Security)
Show Figures

Graphical abstract

27 pages, 3485 KiB  
Article
Motion Parameter Identification and Motion Compensation for Shipborne HFSWR by Using the Reference RF Signal Generated at the Shore
by Di Zhu, Jiong Niu, Ming Li, Ling Zhang, Yonggang Ji and Q. M. Jonathan Wu
Remote Sens. 2020, 12(17), 2807; https://doi.org/10.3390/rs12172807 - 29 Aug 2020
Cited by 9 | Viewed by 3364
Abstract
The shipborne high-frequency surface wave radar (HFSWR) platform produces six degrees of freedom (DOF) motion at sea, which affects the performance of radar target detection and remote sensing of ocean surface dynamics parameters. Motion compensation can mitigate the effect of six-DOF motion, but [...] Read more.
The shipborne high-frequency surface wave radar (HFSWR) platform produces six degrees of freedom (DOF) motion at sea, which affects the performance of radar target detection and remote sensing of ocean surface dynamics parameters. Motion compensation can mitigate the effect of six-DOF motion, but motion parameters (including amplitude and angular frequency) need to be known. Motion parameters obtained by using high precision sensors are affected by the precision error and time delay, thus affecting the effect of motion compensation. To obtain the motion parameters accurately and in real time, a method of identifying the motion parameters by using an artificially transmitted reference radio frequency (RF) signal generated at the shore is proposed. Based on the results of the parameter identification, the reference RF signal and the first-order radar cross-sections (RCSs) modulated by six-DOF motion of the shipborne HFSWR platform can be compensated. The identification of angular frequency is divided into two steps: (1) Preliminary identification results are obtained by using the reference RF signal; (2) the pattern search method is used to further improve the identification accuracy of angular frequency. The amplitude of translation (including surge and sway) can be identified accurately through the reference RF signal. Due to the small amplitude of rotation (including roll, pitch, and yaw), it needs to be identified by the reference RF signal and pattern search method. After identifying the motion parameters, division in the time domain is used for motion compensation. Through the simulation results, both translation and rotation have good motion compensation effects. In addition, the method of using high precision sensors to obtain motion parameters and compensation is compared with the method in this paper, the simulation results of motion compensation show that the latter is better. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

16 pages, 5128 KiB  
Article
A Single-Dataset-Based Pre-Processing Joint Domain Localized Algorithm for Clutter-Suppression in Shipborne High-Frequency Surface-Wave Radar
by Liang Guo, Xin Zhang, Di Yao, Qiang Yang, Yang Bai and Weibo Deng
Sensors 2020, 20(13), 3773; https://doi.org/10.3390/s20133773 - 5 Jul 2020
Cited by 3 | Viewed by 2862
Abstract
Due to the motion of the platform, the spectrum of first-order sea clutter will widen and mask low-velocity targets such as ships in shipborne high-frequency surface-wave radar (HFSWR). Limited by the quantity of qualified training samples, the performance of the generally used clutter-suppression [...] Read more.
Due to the motion of the platform, the spectrum of first-order sea clutter will widen and mask low-velocity targets such as ships in shipborne high-frequency surface-wave radar (HFSWR). Limited by the quantity of qualified training samples, the performance of the generally used clutter-suppression method, space–time adaptive processing (STAP) degrades in shipborne HFSWR. To deal with this problem, an innovative training sample acquisition method is proposed, in the area of joint domain localized (JDL) reduced-rank STAP. In this clutter-suppression method, based on a single range of cell data, the unscented transformation is introduced as a preprocessing step to obtain adequate homogeneous secondary data and roughly estimated clutter covariance matrix (CCM). The accurate CCM is calculated by integrating the approximate CCM of different range of cells. Compared with existing clutter-suppression algorithms for shipborne HFSWR, the proposed approach has a better signal-to-clutter-plus-noise ratio (SCNR) improvement tested by real data. Full article
Show Figures

Figure 1

20 pages, 14214 KiB  
Article
Coast–Ship Bistatic HF Surface Wave Radar: Simulation Analysis and Experimental Verification
by Yonggang Ji, Jie Zhang, Yiming Wang, Chao Yue, Weichun Gong, Junwei Liu, Hao Sun, Changjun Yu and Ming Li
Remote Sens. 2020, 12(3), 470; https://doi.org/10.3390/rs12030470 - 2 Feb 2020
Cited by 17 | Viewed by 4059
Abstract
The coast–ship bistatic high-frequency surface wave radar (HFSWR) not only has the anti-interference advantages of the coast-based bistatic HFSWR, but also has the advantages of maneuverability and an extended detection area of the shipborne HFSWR. In this paper, theoretical formulas were derived for [...] Read more.
The coast–ship bistatic high-frequency surface wave radar (HFSWR) not only has the anti-interference advantages of the coast-based bistatic HFSWR, but also has the advantages of maneuverability and an extended detection area of the shipborne HFSWR. In this paper, theoretical formulas were derived for the coast–ship bistatic radar, including the first-order sea clutter scattering cross-section and the Doppler frequency shift of moving targets. Then, simulation results of the first-order sea clutter spectrum under different operating conditions were given, and the range of broadening of the first-order sea clutter spectrum and its influence on target detection were investigated. The simulation results show the broadening ranges of the right sea clutter spectrum and left sea clutter spectrum were symmetric when the shipborne platform was anchored, whereas they were asymmetric when the shipborne platform was underway. This asymmetry is primarily a function of platform velocity and radar frequency. Based on experimental data of the coast–ship bistatic HFSWR conducted in 2019, the broadening range of the sea clutter and the target frequency shift were analyzed and compared with simulation results based on the same parameter configuration. The agreement of the measured results with the simulation results verifies the theoretical formulas. Full article
(This article belongs to the Special Issue Bistatic HF Radar)
Show Figures

Graphical abstract

Back to TopTop