Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = ship management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3220 KiB  
Article
Distributed Energy Management for Ship-Integrated Energy System Under Marine Environmental Risk Field
by Yuxin Zhang, Yang Xiao and Tieshan Li
Energies 2025, 18(15), 4163; https://doi.org/10.3390/en18154163 - 6 Aug 2025
Abstract
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. [...] Read more.
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. Meanwhile, an energy management model that considers both economic and environmental benefits is developed to enhance the penetration rate of renewable resources. Subsequently, a distributed energy management algorithm based on finite-time consensus theory is proposed to ensure a rapid and accurate response to load demand. Moreover, a mathematical analysis is provided to demonstrate the algorithm’s effectiveness. Finally, the sea area between Singapore Port (Singapore) and Penang Port (Malaysia) is chosen as the simulation environment. The experimental results demonstrate the effectiveness of energy management for the S-IES. Full article
Show Figures

Figure 1

17 pages, 1455 KiB  
Article
STID-Mixer: A Lightweight Spatio-Temporal Modeling Framework for AIS-Based Vessel Trajectory Prediction
by Leiyu Wang, Jian Zhang, Guangyin Jin and Xinyu Dong
Eng 2025, 6(8), 184; https://doi.org/10.3390/eng6080184 - 3 Aug 2025
Viewed by 124
Abstract
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and [...] Read more.
The Automatic Identification System (AIS) has become a key data source for ship behavior monitoring and maritime traffic management, widely used in trajectory prediction and anomaly detection. However, AIS data suffer from issues such as spatial sparsity, heterogeneous features, variable message formats, and irregular sampling intervals, while vessel trajectories are characterized by strong spatial–temporal dependencies. These factors pose significant challenges for efficient and accurate modeling. To address this issue, we propose a lightweight vessel trajectory prediction framework that integrates Spatial–Temporal Identity encoding with an MLP-Mixer architecture. The framework discretizes spatial and temporal features into structured IDs and uses dual MLP modules to model temporal dependencies and feature interactions without relying on convolution or attention mechanisms. Experiments on a large-scale real-world AIS dataset demonstrate that the proposed STID-Mixer achieves superior accuracy, training efficiency, and generalization capability compared to representative baseline models. The method offers a compact and deployable solution for large-scale maritime trajectory modeling. Full article
Show Figures

Figure 1

44 pages, 2693 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

18 pages, 1065 KiB  
Article
A Machine Learning-Based Model for Predicting High Deficiency Risk Ships in Port State Control: A Case Study of the Port of Singapore
by Ming-Cheng Tsou
J. Mar. Sci. Eng. 2025, 13(8), 1485; https://doi.org/10.3390/jmse13081485 - 31 Jul 2025
Viewed by 149
Abstract
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and [...] Read more.
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and safety indicators of ships, including but not limited to flag state, ship age, past deficiencies, and detention history. By analyzing these factors in depth, this research enhances the efficiency and accuracy of PSC inspections, provides decision support for port authorities, and offers strategic guidance for shipping companies to comply with international safety standards. During the research process, I first conducted detailed data preprocessing, including data cleaning and feature selection, to ensure the effectiveness of model training. Using the Random Forest algorithm, I identified key factors influencing the detention risk of ships and established a risk prediction model accordingly. The model validation results indicated that factors such as ship age, tonnage, company performance, and flag state significantly affect whether a ship exhibits a high deficiency rate. In addition, this study explored the potential and limitations of applying the Random Forest model in predicting high deficiency risk under PSC, and proposed future research directions, including further model optimization and the development of real-time prediction systems. By achieving these goals, I hope to provide valuable experience for other global shipping hubs, promote higher international maritime safety standards, and contribute to the sustainable development of the global shipping industry. This research not only highlights the importance of machine learning in the maritime domain but also demonstrates the potential of data-driven decision-making in improving ship safety management and port inspection efficiency. It is hoped that this study will inspire more maritime practitioners and researchers to explore advanced data analytics techniques to address the increasingly complex challenges of global shipping. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

36 pages, 16047 KiB  
Article
Insights into Sea Spray Ice Adhesion from Laboratory Testing
by Paul Rübsamen-v. Döhren, Sönke Maus, Zhiliang Zhang and Jianying He
Thermo 2025, 5(3), 27; https://doi.org/10.3390/thermo5030027 - 30 Jul 2025
Viewed by 227
Abstract
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is [...] Read more.
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is a critical factor in predicting the build-up of ice loads on structures. While the adhesion strength of freshwater ice has been extensively studied, knowledge about sea spray ice adhesion remains limited. This study intends to bridge this gap by investigating the adhesion strength of sea spray icing under controlled laboratory conditions. In this study, we built a new in situ ice adhesion test setup and grew ice at −7 °C to −15 °C on quadratic aluminium samples of 3 cm to 12 cm edge length. The results reveal that sea spray ice adhesion strength is in a significantly lower range—5 kPa to 100 kPa—compared to fresh water ice adhesion and shows a low dependency on the temperature during the spray event, but a notable size effect and influence of the brine layer thickness on the adhesion strength. These findings provide critical insights into sea spray icing, enhancing the ability to predict and manage ice loads in marine environments. Full article
(This article belongs to the Special Issue Frosting and Icing)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 347
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 4687 KiB  
Article
EU MRV Data-Based Review of the Ship Energy Efficiency Framework
by Hui Xing, Shengdai Chang, Ranqi Ma and Kai Wang
J. Mar. Sci. Eng. 2025, 13(8), 1437; https://doi.org/10.3390/jmse13081437 - 28 Jul 2025
Viewed by 379
Abstract
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse [...] Read more.
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse gas emissions by employing the technical and operational energy efficiency metrics as effective appraisal tools. To quantify the ship energy efficiency performance and review the existing energy efficiency framework, this paper analyzed the data for the reporting year of 2023 extracted from the European Union (EU) monitoring, reporting, and verification (MRV) system, and investigated the operational profiles and energy efficiency for the ships calling at EU ports. The results show that the data accumulated in the EU MRV system could provide powerful support for conducting ship energy efficiency appraisals, which could facilitate the formulation of decarbonization policies for global shipping and management decisions for stakeholders. However, data quality, ship operational energy efficiency metrics, and co-existence with the IMO data collection system (DCS) remain issues to be addressed. With the improvement of IMO DCS system and the implementation of IMO Net-Zero Framework, harmonizing the two systems and avoiding duplicated regulation of shipping emissions at the EU and global levels are urgent. Full article
Show Figures

Figure 1

17 pages, 5257 KiB  
Article
Research on Draft Control Optimization of Ship Passing a Lock Based on CFD Method
by Yuan Zhuang, Yu Ding, Jialun Liu and Song Zhang
J. Mar. Sci. Eng. 2025, 13(8), 1406; https://doi.org/10.3390/jmse13081406 - 23 Jul 2025
Viewed by 206
Abstract
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations [...] Read more.
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations for a representative inland cargo vessel navigating the Three Gorges on the Yangtze River. We develop a predictive sinkage model that integrates four key hydrodynamic parameters: ship velocity, draft, water depth, and bank clearance, applicable to both open shallow water and lockage conditions. The model enables determination of maximum safe drafts for lock transit by analyzing upstream/downstream water levels and corresponding chamber depths. Our results demonstrate the technical feasibility of enhancing single-lock cargo capacity while maintaining safety margins. These findings provide (1) a scientifically grounded framework for draft control optimization, and (2) actionable insights for lock operation management. The study establishes a methodological foundation for balancing navigational safety with growing throughput requirements in constrained waterways. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7173 KiB  
Article
LiDAR Data-Driven Deep Network for Ship Berthing Behavior Prediction in Smart Port Systems
by Jiyou Wang, Ying Li, Hua Guo, Zhaoyi Zhang and Yue Gao
J. Mar. Sci. Eng. 2025, 13(8), 1396; https://doi.org/10.3390/jmse13081396 - 23 Jul 2025
Viewed by 271
Abstract
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing [...] Read more.
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing the fine-grained and highly dynamic changes in berthing scenarios. Therefore, the accuracy of BBP remains a crucial challenge. In this paper, a novel BBP method based on Light Detection and Ranging (LiDAR) data is proposed. To test its feasibility, a comprehensive dataset is established by conducting on-site collection of berthing data at Dalian Port (China) using a shore-based LiDAR system. This dataset comprises equal-interval data from 77 berthing activities involving three large ships. In order to find a straightforward architecture to provide good performance on our dataset, a cascading network model combining convolutional neural network (CNN), a bi-directional gated recurrent unit (BiGRU) and bi-directional long short-term memory (BiLSTM) are developed to serve as the baseline. Experimental results demonstrate that the baseline outperformed other commonly used prediction models and their combinations in terms of prediction accuracy. In summary, our research findings help overcome the limitations of AIS data in berthing scenarios and provide a foundation for predicting complete berthing status, therefore offering practical insights for safer, more efficient, and automated management in smart port systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Assessing Port Connectivity from the Perspective of the Supply Chain: A Bayesian Network-Based Integrated Approach
by Yuan Ji, Jing Lu, Wan Su and Danlan Xie
Sustainability 2025, 17(14), 6643; https://doi.org/10.3390/su17146643 - 21 Jul 2025
Viewed by 373
Abstract
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this [...] Read more.
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this gap, this study develops an integrated Bayesian Network (BN) modeling approach that, for the first time, simultaneously incorporates international connectivity, port competitiveness, and hinterland connectivity within a unified probabilistic framework. Drawing on empirical data from 26 major coastal countries in Asia, the model quantifies the multi-layered and interdependent determinants of port connectivity. The results demonstrate that port competitiveness and hinterland connectivity are the dominant drivers, while the impact of international shipping links is comparatively limited in the current Asian context. Sensitivity analysis further highlights the critical roles of rail transport development and trade facilitation in enhancing port connectivity. The proposed BN framework supports comprehensive scenario analysis under uncertainty and offers targeted, practical policy recommendations for port authorities and regional planners. By systematically capturing the interactions among maritime, port, and inland factors, this study advances both the theoretical understanding and practical management of port connectivity. Full article
Show Figures

Figure 1

18 pages, 1768 KiB  
Article
Comparative Risk Assessment of Legionella spp. Colonization in Water Distribution Systems Across Hotels, Passenger Ships, and Healthcare Facilities During the COVID-19 Era
by Antonios Papadakis, Eleftherios Koufakis, Elias Ath Chaidoutis, Dimosthenis Chochlakis and Anna Psaroulaki
Water 2025, 17(14), 2149; https://doi.org/10.3390/w17142149 - 19 Jul 2025
Viewed by 782
Abstract
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare [...] Read more.
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare facilities, public hospitals, and private clinics. A total of 1081 water samples were collected and analyzed, and the overall positivity was calculated using culture-based methods. Only 16.46% of the samples exceeded the regulatory limit (>103 CFU/L) in the total sample, with 44.59% overall Legionella positivity. Colonization by facility category showed the highest rates in primary healthcare facilities with 85.96%, followed by public hospitals (46.36%), passenger ships with 36.93%, hotels with 38.08%, and finally private clinics (21.42%). The association of environmental risk factors with Legionella positivity revealed a strong effect at hot water temperatures < 50 °C (RR = 2.05) and free chlorine residuals < 0.2 mg/L (RR = 2.22) (p < 0.0001). Serotyping analysis revealed the overall dominance of Serogroups 2–15 of L. pneumophila; nevertheless, Serogroup 1 was particularly prevalent in hospitals, passenger ships, and hotels. Based on these findings, the requirement for continuous environmental monitoring and risk management plans with preventive thermochemical controls tailored to each facility is highlighted. Finally, operational disruptions, such as those experienced during the COVID-19 pandemic, especially in primary care facilities and marine systems, require special attention. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

19 pages, 441 KiB  
Article
Exploring the Impact of the Maritime Regulatory Framework on the Barrier System in Ship Operations
by Darijo Mišković and Huanxin Wang
J. Mar. Sci. Eng. 2025, 13(7), 1361; https://doi.org/10.3390/jmse13071361 - 17 Jul 2025
Viewed by 184
Abstract
The backbone of maritime transportation has always been the successful execution of ship operations. However, the human factor has proven to be a weak point in the system. To reduce and mitigate it, a regulatory framework and consequently a safety system for ship [...] Read more.
The backbone of maritime transportation has always been the successful execution of ship operations. However, the human factor has proven to be a weak point in the system. To reduce and mitigate it, a regulatory framework and consequently a safety system for ship barriers were created and implemented with this goal in mind. The expected result of these measures was the creation of a resilient maritime transport system. Nevertheless, the available statistics show that most of the reported accidents and incidents occurred during ship operation, with the human factor as the main cause. Therefore, it is useful to investigate whether the regulatory framework can influence the safety system of ship barriers. Therefore, the objectives of the study are as follows: (a) to investigate and determine the regulatory safety requirements and the elements related to the ship barrier system, and (b) to investigate the influence of the regulatory safety requirements on the elements related to the ship barrier system. From the data obtained and the analyses performed, seven factors emerged. Four of them were related to the regulatory requirements and three to the shipboard barrier system, a basis for the presented models. Several important findings were obtained that have theoretical and practical implications and further highlight the importance and potential undesirable side effects of the provisions of the current regulatory framework. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 358
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 669
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

24 pages, 1517 KiB  
Article
Developing a Competency-Based Transition Education Framework for Marine Superintendents: A DACUM-Integrated Approach in the Context of Eco-Digital Maritime Transformation
by Yung-Ung Yu, Chang-Hee Lee and Young-Joong Ahn
Sustainability 2025, 17(14), 6455; https://doi.org/10.3390/su17146455 - 15 Jul 2025
Viewed by 390
Abstract
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework [...] Read more.
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework to support such transitions poses a critical challenge for shipping companies seeking to secure sustainable human resources. The aim of this study was to develop a competency-based training program that facilitates the effective transition of seafarers to shore-based ship superintendent roles. We integrated a developing a curriculum (DACUM) analysis with competency-based job analysis to achieve this aim. The core competencies required for ship superintendent duties were identified through three expert consultations. In addition, social network analysis (SNA) was used to quantitatively assess the structure and priority of the training content. The analysis revealed that convergent competencies, such as digital technology literacy, responsiveness to environmental regulations, multicultural organizational management, and interpretation of global maritime regulations, are essential for a successful career shift. Based on these findings, a modular training curriculum comprising both common foundational courses and specialized advanced modules tailored to job categories was designed. The proposed curriculum integrated theoretical instruction, practical training, and reflective learning to enhance both applied understanding and onsite implementation capabilities. Furthermore, the concept of a Seafarer Success Support Platform was proposed to support a lifecycle-based career development pathway that enables rotational mobility between sea and shore positions. This digital learning platform was designed to offer personalized success pathways aligned with the career stages and competency needs of maritime personnel. Its cyclical structure, comprising career transition, competency development, field application, and performance evaluation, enables seamless career integration between shipboard- and shore-based roles. Therefore, the platform has the potential to evolve into a practical educational model that integrates training, career development, and policies. This study contributes to maritime human resource development by integrating the DACUM method with a competency-based framework and applying social network analysis (SNA) to quantitatively prioritize training content. It further proposes the Seafarer Success Support Platform as an innovative model to support structured career transitions from shipboard roles to shore-based supervisory positions. Full article
Show Figures

Figure 1

Back to TopTop