Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = shield machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7670 KiB  
Article
Identification and Experimental Study of Sand Gravel Formations Driven by an Earth Pressure Balance Shield Machine Based on GTNet
by Peng Zhou, Qian Wang, Ziwen Wang, Jiacan Xu and Zi Wang
Appl. Sci. 2025, 15(14), 7983; https://doi.org/10.3390/app15147983 - 17 Jul 2025
Viewed by 152
Abstract
The earth pressure balance shield machine (EPB) is an important piece of engineering equipment used in tunnel excavation and plays an important role in large underground tunnel projects. This article takes the sand and gravel formation as the research object, while discrete element [...] Read more.
The earth pressure balance shield machine (EPB) is an important piece of engineering equipment used in tunnel excavation and plays an important role in large underground tunnel projects. This article takes the sand and gravel formation as the research object, while discrete element simulation is utilized to study the correlation between cutterhead torque and thrust and other parameters. The EPB tunneling experiment was carried out by setting up formations with different sand and gravel contents. The reliability of the simulation model was verified by the experimental data, which provided the data samples for the training of the excavation formation identification network. Finally, a GTNet (gated Transformer network) based on the formation identification method was proposed. The reliability of the network model was verified by contrasting the model used with other network models and by analyzing the results of experiment and visualization. The effects of different parameters were weighted using the ablation study for tunneling parameters. The proposed method has a high accuracy of 0.99, and the cutterhead torque and thrust have a great recognition feature, the weight of which is over 0.95. This paper can provide significant guidance for the torque and thrust analysis of cutterheads in tunnel construction. Full article
Show Figures

Figure 1

17 pages, 5238 KiB  
Article
Study on Reinforcement Technology of Shield Tunnel End and Ground Deformation Law in Shallow Buried Silt Stratum
by Jia Zhang and Xiankai Bao
Appl. Sci. 2025, 15(14), 7657; https://doi.org/10.3390/app15147657 - 8 Jul 2025
Viewed by 248
Abstract
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At [...] Read more.
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At present, there are relatively few studies on the reinforcement technology of the initial section of shield tunnel in shallow soft ground and the evolution law of ground disturbance. This study takes the launching section of the Guanggang New City depot access tunnel on Guangzhou Metro Line 10 as the engineering background. By applying MIDAS/GTS numerical simulation, settlement monitoring, and theoretical analysis, the reinforcement technology at the tunnel face, the spatiotemporal evolution of ground settlement, and the mechanism of soil disturbance transmission during the launching process in muddy soil layer are revealed. The results show that: (1) the reinforcement scheme combining replacement filling, high-pressure jet grouting piles, and soil overburden counterpressure significantly improves surface settlement control. The primary influence zone is concentrated directly above the shield machine and in the forward excavation area. (2) When the shield machine reaches the junction between the reinforced and unreinforced zones, a large settlement area forms, with the maximum ground settlement reaching −26.94 mm. During excavation in the unreinforced zone, ground deformation mainly occurs beneath the rear reinforced section, with subsidence at the crown and uplift at the invert. (3) The transverse settlement trough exhibits a typical Gaussian distribution and the discrepancy between the measured maximum settlement and the numerical and theoretical values is only 3.33% and 1.76%, respectively. (4) The longitudinal settlement follows a trend of initial increase, subsequent decrease, and gradual stabilization, reaching a maximum when the excavation passes directly beneath the monitoring point. The findings can provide theoretical reference and engineering guidance for similar projects. Full article
Show Figures

Figure 1

20 pages, 3123 KiB  
Article
Cryogenic Distribution System and Entropy-Based Analysis of Chosen Design Options for the Example of the Polish FEL Facility
by Tomasz Banaszkiewicz, Maciej Chorowski and Paweł Duda
Energies 2025, 18(13), 3554; https://doi.org/10.3390/en18133554 - 5 Jul 2025
Viewed by 254
Abstract
The Polish Free-Electron Laser (PolFEL), which is currently under construction in the National Centre for Nuclear Research in Świerk near Warsaw, will comprise an electron gun and from four to six cryomodules, each accommodating two nine-cell TESLA RF superconducting resonant cavities. To cool [...] Read more.
The Polish Free-Electron Laser (PolFEL), which is currently under construction in the National Centre for Nuclear Research in Świerk near Warsaw, will comprise an electron gun and from four to six cryomodules, each accommodating two nine-cell TESLA RF superconducting resonant cavities. To cool the superconducting resonant cavities, the cryomodules will be supplied with superfluid helium at a temperature of 2 K. Other requirements regarding the cooling power of PolFEL result from the need to cool the power couplers for the accelerating cryomodules (5 K) and thermal shields, which limit the heat inleaks due to radiation (40–80 K). The machine will utilize several thermodynamic states of helium, including two-phase superfluid helium, supercritical helium, and low-pressure helium vapours. Supercritical helium will be supplied from a cryoplant by a cryogenic distribution system (CDS)—transfer line and valve boxes—where it will be thermodynamically transformed into a superfluid state. This article presents the architecture of the CDS, discusses several design solutions that could have been decided on with the use of second law analysis, and presents the design methodology of the chosen CDS elements. Full article
Show Figures

Figure 1

13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Viewed by 292
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 258
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5586 KiB  
Article
Prediction of Settlement Due to Shield TBM Tunneling Based on Three-Dimensional Numerical Analysis
by Ji-Seok Yun, Han-Kyu Yoo, Sung-Pil Hwang, Woo-Seok Kim and Han-Eol Kim
Buildings 2025, 15(13), 2235; https://doi.org/10.3390/buildings15132235 - 25 Jun 2025
Viewed by 429
Abstract
The Tunnel Boring Machine (TBM) method has gained attention as an eco-friendly tunneling technique, effectively reducing noise, vibration, and carbon emissions compared to conventional blasting methods. However, ground settlement and volume loss are inevitable during TBM excavation due to the deformation of the [...] Read more.
The Tunnel Boring Machine (TBM) method has gained attention as an eco-friendly tunneling technique, effectively reducing noise, vibration, and carbon emissions compared to conventional blasting methods. However, ground settlement and volume loss are inevitable during TBM excavation due to the deformation of the surrounding ground, which may even lead to ground collapse in severe cases. In this study, a Shield TBM model, validated using field data, was employed to perform numerical analyses on parameters such as tunnel diameter, ground elastic modulus, face pressure, and backfill pressure. Based on the simulation results, the influence of each parameter on settlement was evaluated, and a predictive model for estimating maximum settlement was developed. The proposed model was statistically validated using p-value assessment, variance inflation factor (VIF), coefficient of determination (R2), and residual analysis. Furthermore, the prediction model showed high agreement with the field data, yielding a prediction error of 8.25%. This study emphasizes the applicability of verified numerical modeling for accurately predicting ground settlement in Shield TBM tunneling and provides a reliable approach for settlement prediction under varying construction conditions. Full article
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Safety Risk Assessment of Double-Line Tunnel Crossings Beneath Existing Tunnels in Complex Strata
by Bafeng Ren, Shengbin Hu, Min Hu, Zhi Chen and Hang Lin
Buildings 2025, 15(12), 2103; https://doi.org/10.3390/buildings15122103 - 17 Jun 2025
Viewed by 294
Abstract
With the acceleration of urbanization, the development of urban rail transit networks has become an essential component of modern urban transportation. The construction of new urban rail transit lines often involves crossing existing operational lines, posing significant safety risks and technical challenges. This [...] Read more.
With the acceleration of urbanization, the development of urban rail transit networks has become an essential component of modern urban transportation. The construction of new urban rail transit lines often involves crossing existing operational lines, posing significant safety risks and technical challenges. This paper presents a comprehensive study on the safety risk assessment and control measures for the construction of new double-line shield tunnels crossing beneath existing tunnels in complex strata, using the project of Line 5 of the Nanning Urban Rail Transit crossing beneath the existing Line 2 interval tunnel as a case study. This study employs methods such as status investigation, numerical simulation, and field measurement to analyze the construction risks. Key findings include the successful identification and control of major risk sources through refined risk assessment and comprehensive technical measurement. The maximum settlement of the existing tunnel was effectively controlled at −2.55 mm, well within the deformation monitoring control values. This study demonstrates that optimized shield machine selection, improved lining design, interlayer soil reinforcement, the dynamic adjustment of shield parameters, and the precise measurement of shield posture significantly enhance the efficiency of shield tunneling and construction safety. The results provide a valuable reference for the settlement and deformation control of similar projects. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

20 pages, 3472 KiB  
Article
Risk Assessment of Mud Cake on Shield Cutter Head Based on Modified Analytic Hierarchy Process
by Wen Cao, Shoubao Xue, Yujia Xu, Huanyu Lin, Hui Li, Shengjun Deng, Lin Li and Yun Bai
Computation 2025, 13(6), 139; https://doi.org/10.3390/computation13060139 - 4 Jun 2025
Viewed by 1096
Abstract
When the shield machines are constructed in soft soil, excavation may be impeded by the accumulation of cutter head mud. Geological conditions and shield construction are identified as the main factors for cutter head mud formation, based on analysis of its mechanism. In [...] Read more.
When the shield machines are constructed in soft soil, excavation may be impeded by the accumulation of cutter head mud. Geological conditions and shield construction are identified as the main factors for cutter head mud formation, based on analysis of its mechanism. In addition to traditional metrics, the imperforation area in the cutter head center is incorporated into the analysis of shield construction factors. The Analytic Hierarchy Process (AHP) is utilized to establish a risk assessment model for shield cutter head mud cake, determining the weight of each sub-factor and enabling a preliminary risk assessment of mud cake occurrence. This study applies Analytic Hierarchy Process (AHP) to classify the factors affecting shield mud by using the Mawan cross-sea channel construction project (Moon Bay Avenue along the Yangtze River) as a case study. Each factor is scored and weighted according to established scoring criteria and evaluation formulas, and then the results of the risk of shield mud cake in the Mawan tunnel are obtained. Moreover, field observations validate the proposed risk model, with the derived risk index demonstrating strong alignment with actual data. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

19 pages, 5299 KiB  
Article
Inverse Neural Network Approach for Optimizing Chemical Composition in Shielded Metal Arc Weld Metals
by Taehyun Yoon, Young IL Park, Jaewoong Kim and Jeong-Hwan Kim
Materials 2025, 18(11), 2592; https://doi.org/10.3390/ma18112592 - 1 Jun 2025
Viewed by 570
Abstract
This study presents a hybrid machine learning framework combining an artificial neural network and a genetic algorithm to optimize chemical compositions of shielded metal arc weld metals for achieving targeted mechanical properties. First, a neural network model was trained using a large experimental [...] Read more.
This study presents a hybrid machine learning framework combining an artificial neural network and a genetic algorithm to optimize chemical compositions of shielded metal arc weld metals for achieving targeted mechanical properties. First, a neural network model was trained using a large experimental database provided by Dr. Glyn M. Evans, which includes the chemical compositions and mechanical properties of over 950 shielded metal arc weld metals. The neural network model, optimized via Bayesian optimization, demonstrated high predictive accuracy for properties such as yield strength, ultimate tensile strength, and Charpy impact transition temperatures. To enable inverse design, a genetic algorithm-based optimization was applied to the trained neural network model, iteratively exploring the composition space to find optimal elemental combinations that match predefined mechanical property targets. The proposed hybrid approach successfully identified multiple feasible compositions that closely match the desired mechanical behavior, demonstrating the potential of neural network-assisted inverse design in welding alloy development. Full article
Show Figures

Figure 1

19 pages, 8615 KiB  
Article
Monte Carlo and Machine Learning-Based Evaluation of Fe-Enriched Al Alloys for Nuclear Radiation Shielding Applications
by Sevda Saltık, Ozan Kıyıkcı, Türkan Akman, Erdinç Öz and Esra Kavaz Perişanoğlu
Materials 2025, 18(11), 2582; https://doi.org/10.3390/ma18112582 - 31 May 2025
Viewed by 517
Abstract
This study presents a hybrid computational investigation into the radiation shielding behavior of Fe-enriched Al-based alloys (Al-Fe-Mo-Si-Zr) for potential use in nuclear applications. Four alloy compositions with varying Fe contents (7.21, 6.35, 5.47, and 4.58 wt%) were analyzed using a combination of Monte [...] Read more.
This study presents a hybrid computational investigation into the radiation shielding behavior of Fe-enriched Al-based alloys (Al-Fe-Mo-Si-Zr) for potential use in nuclear applications. Four alloy compositions with varying Fe contents (7.21, 6.35, 5.47, and 4.58 wt%) were analyzed using a combination of Monte Carlo simulations, machine learning (ML) predictions based on multilayer perceptrons (MLPs), EpiXS, and SRIM-based charged particle transport modeling. Key photon interaction parameters—including mass attenuation coefficient (MAC), half-value layer (HVL), buildup factors, and effective atomic number (Zeff)—were calculated across a wide energy range (0.015–15 MeV). Results showed that the 7.21Fe alloy exhibited a maximum MAC of 12 cm2/g at low energies and an HVL of 0.19 cm at 0.02 MeV, indicating improved gamma attenuation with increasing Fe content. The ML model accurately predicted MAC values in agreement with Monte Carlo and XCOM data, validating the applicability of AI-assisted modeling in material evaluation. SRIM calculations demonstrated enhanced charged particle shielding: the projected range of 10 MeV protons decreased from ~55 µm (low Fe) to ~50 µm (high Fe), while alpha particle penetration reduced accordingly. In terms of fast neutron attenuation, the 7.21Fe alloy reached a maximum removal cross-section (ΣR) of 0.08164 cm−1, showing performance comparable to conventional materials like concrete. Overall, the results confirm that Fe-rich Al-based alloys offer a desirable balance of lightweight design, structural stability, and dual-function radiation shielding, making them strong candidates for next-generation protective systems in high-radiation environments. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

22 pages, 14181 KiB  
Article
Vibration Characteristics of Double-Shield TBM Cutterhead Under Rock–Machine Interaction Excitation
by Guang Zhang, Qing Song, Qiuming Gong, Dongxing Liu, Dongwei Li and Minghao Sun
Buildings 2025, 15(11), 1824; https://doi.org/10.3390/buildings15111824 - 26 May 2025
Viewed by 478
Abstract
During the tunneling process of a double-shield TBM, vibrations generated by rock–machine interaction can affect its safe, efficient, and stable operation. This study was based on the Eping Water Diversion TBM Project. By deploying a vibration monitoring system, the original vibration signals of [...] Read more.
During the tunneling process of a double-shield TBM, vibrations generated by rock–machine interaction can affect its safe, efficient, and stable operation. This study was based on the Eping Water Diversion TBM Project. By deploying a vibration monitoring system, the original vibration signals of the double-shield TBM were acquired. A denoising method combining Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Multi-scale Permutation Entropy (MPE) was applied for signals reconstruct. The time-domain and frequency-domain characteristics of the reconstructed signals were extracted, and the three-directional vibration characteristics of the cutterhead were analyzed. The influence of surrounding rock classes and tunneling parameters on the vibration characteristics of the double-shield TBM cutterhead was investigated. The results indicate that cutterhead vibration exhibits anisotropy, with the tangential vibration amplitude being the largest, followed by the axial and radial components. The vibration energy is primarily concentrated in the high-frequency range. As the surrounding rock changes from Class II to Class V, the vibration intensity gradually decreases. During the transition from Class II to Class IV rock, the axial vibration frequency decreases while the tangential vibration frequency increases due to changes in rock-breaking patterns. In Class V rock, lower thrust leads to uneven load distribution at the cutterhead-fragmented rock interface, which increases axial vibration frequency. Meanwhile, lower rotational speed results in smoother cutting and reduces tangential vibration frequency. Increasing cutterhead rotational speed or thrust amplifies vibration intensity. Higher rotational speed shifts vibration energy toward lower frequencies, whereas increased thrust introduces more high-frequency components. The findings of this study provide valuable insights for the structural design, tunneling parameter optimization, geological condition perception, fault diagnosis and prediction of double-shield TBMs, thereby promoting green and intelligent tunneling construction. Full article
Show Figures

Figure 1

19 pages, 4486 KiB  
Article
Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects
by Gang Hu, Zhengzhong Zhou, Zhihao Zhang and Haiming Zhao
Lubricants 2025, 13(5), 227; https://doi.org/10.3390/lubricants13050227 - 19 May 2025
Viewed by 543
Abstract
In slurry shield tunneling projects, leakage from floating seals frequently leads to abnormal failures of disc cutters. To investigate the leakage characteristics at the floating seal end faces of the cutters, a numerical method is proposed for analyzing the dynamic leakage behavior of [...] Read more.
In slurry shield tunneling projects, leakage from floating seals frequently leads to abnormal failures of disc cutters. To investigate the leakage characteristics at the floating seal end faces of the cutters, a numerical method is proposed for analyzing the dynamic leakage behavior of the floating seal end faces, considering the effects of wear. The elastohydrodynamic lubrication problem of the floating seal was addressed using the Reynolds equation and the slicing method, leading to the development of a computational model for the pressure and thickness distribution of the oil film on rough surfaces. Based on the Archard wear equation, a dynamic surface roughness model considering wear was established. Furthermore, a numerical model for dynamic leakage of the floating seal end faces in shield machine cutters, incorporating wear effects, was developed. Simulated friction and wear tests of the floating seal end faces, along with cutter seal leakage experiments, were conducted for validation. The results demonstrate that the dynamic surface roughness model considering wear can effectively predict the roughness evolution of worn surfaces. The trend of the theoretical leakage rate is generally consistent with that of the experimental results, verifying the effectiveness of the proposed model. Full article
Show Figures

Figure 1

9 pages, 3787 KiB  
Proceeding Paper
Powder-Mixed Micro Electrical Discharge Machining-Assisted Surface Modification of Ti-35Nb-7Zr-5Ta Alloy in Biomedical Applications
by Altair Kossymbayev, Shahid Ali, Didier Talamona and Asma Perveen
Eng. Proc. 2025, 92(1), 71; https://doi.org/10.3390/engproc2025092071 - 16 May 2025
Viewed by 307
Abstract
One of the most popular alloys for biomedical applications is TiAl6V4. Even though TiAl6V4 is widely used, it faces several challenges. Firstly, TiAl6V4 is prone to stress shielding caused by the difference in Young’s moduli of the alloy (110 GPa) and human bones [...] Read more.
One of the most popular alloys for biomedical applications is TiAl6V4. Even though TiAl6V4 is widely used, it faces several challenges. Firstly, TiAl6V4 is prone to stress shielding caused by the difference in Young’s moduli of the alloy (110 GPa) and human bones (20–30 GPa). Secondly, there is the presence of cytotoxic elements, aluminum and vanadium. Researchers have proposed Ti-35Nb-7Zr-5Ta (TNZT) alloy to overcome these disadvantages, an excellent substitute for natural human bones. This alloy offers a lower elastic modulus (up to 81 GPa), much closer to human bones than TiAl6V4 alloy. Also, TNZT alloy contains no cytotoxic elements and has excellent biocompatibility and high corrosion resistance. Given the positive outcomes on powder-mixed micro electro-discharge machining (PM-μ-EDM) of Ti alloy using hydroxyapatite (HA) powder, we studied the machinability of TNZT alloy using HA powder mixed-μ-EDM by changing the HA powder concentration (0, 5, and 10 g/L), gap voltage (90, 100, and 110 V), and capacitance (10, 100, and 400 nF) according to the Taguchi L9 method. Machining performance metrics such as material removal rate (MRR), overcut, and circularity were examined using a tungsten carbide tool of 237 µm diameter. The results showed an overcut of 10.33 µm, circularity of 8.47 µm, and MRR of 6030.89 µm3/s for the lowest energy setup. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

21 pages, 6803 KiB  
Article
Optimized Data Preprocessing and Model Selection for TBM Cutter Wear Prediction
by Liping Bai, Deyun Mo, Hongshu Li, Weiran Huang and Zelun Cai
Coatings 2025, 15(5), 564; https://doi.org/10.3390/coatings15050564 - 9 May 2025
Viewed by 566
Abstract
The estimation of disc cutter life is important due to the high equipment replacement cost in tunnel boring machines (TBMs). In this paper, we propose a comprehensive method for predicting disc cutter wear, integrating dimensionality reduction in shield tunneling parameters, data input preprocessing, [...] Read more.
The estimation of disc cutter life is important due to the high equipment replacement cost in tunnel boring machines (TBMs). In this paper, we propose a comprehensive method for predicting disc cutter wear, integrating dimensionality reduction in shield tunneling parameters, data input preprocessing, and optimized model selection. First, we select core TBM operation parameters as model inputs through principal component analysis (PCA) and PCA directly. And, then, based on the characteristics of the operation parameters, we propose a data preprocessing method for time series models. This method uses excavation rings as units, providing a more accurate representation of the actual shield excavation process. Furthermore, by evaluating the prediction accuracy, training efficiency, and inference efficiency of various models, we demonstrate that the combined PCA data + Min Max Scaler + gated recurrent unit (GRU) method achieves the most accurate prediction results while offering real-time prediction capabilities. Full article
Show Figures

Figure 1

31 pages, 15172 KiB  
Article
Analysis of Local Settlements Due to Operational EPB Tunneling Driving Parameters: A Case Study of the Barcelona Metro Line 9 Tunnel
by Maria Teresa Yubero, Enrique Bonet and Antonio Gens
Sustainability 2025, 17(9), 3966; https://doi.org/10.3390/su17093966 - 28 Apr 2025
Cited by 1 | Viewed by 519
Abstract
Line 9 of the Barcelona Metro crosses beneath the Llobregat and Besòs Rivers, requiring tunneling through soft deltaic deposits of Holocene age. The excavation was carried out using Earth Pressure Balance (EPB) Tunnel Boring Machines (TBMs), a method commonly employed in urban environments [...] Read more.
Line 9 of the Barcelona Metro crosses beneath the Llobregat and Besòs Rivers, requiring tunneling through soft deltaic deposits of Holocene age. The excavation was carried out using Earth Pressure Balance (EPB) Tunnel Boring Machines (TBMs), a method commonly employed in urban environments to control ground movements and minimize settlements. This study analyzes the ground response to EPB tunneling, focusing on key factors such as TBM operational parameters (face pressure, shield pressure, etc.), grouting techniques, and the influence of shaft entry/exit points, hyperbaric stops, tool wear, and the learning curve. Additionally, secondary influences, including variations in cover depth and the presence of lightly compacted made ground, were found to exacerbate ground movements. Field data collected from Section 1 of Line 9 provide a detailed assessment of settlement patterns and ground behavior. Results indicate that, while EPB TBMs generally maintain ground stability with minimal settlement (with average volume losses below 0.5%), certain site-specific challenges, such as inconsistent grouting and shaft transitions, led to localized volume losses and settlement. This paper contributes to refining predictive models of ground–structure interaction in soft ground tunneling, offering insights to optimize future EPB operations in similar geological conditions, ensuring more effective control over ground movements and settlement mitigation. Full article
Show Figures

Figure 1

Back to TopTop