Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = shell-and-tube thermal energy storage unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4062 KiB  
Article
Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit
by Maciej Fabrykiewicz, Krzysztof Tesch and Janusz T. Cieśliński
Energies 2025, 18(14), 3804; https://doi.org/10.3390/en18143804 - 17 Jul 2025
Viewed by 208
Abstract
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in [...] Read more.
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in a staggered layout. Three organic phase change materials are investigated: paraffin LTP 56, fatty acid RT54HC, and fatty acid P1801. OpenFOAM software is utilized to solve the governing equations using the Boussinesq approximation. The discretization of the equations is performed with second-order accuracy in both space and time. The three-dimensional (3D) computational domain corresponds to the inner diameter of the LHSU. Calculations are conducted assuming constant thermal properties of the fluids. The experimental and numerical results indicate that for paraffin LTP56, the charging time is approximately 8% longer than the discharging time. In contrast, the discharging times for fatty acids RT54HC and P1801 exceed their charging times, with time delays of about 14% and 49% for RT54HC and 25% and 30% for P1801, according to experimental and numerical calculations, respectively. Full article
(This article belongs to the Special Issue Advancements in Energy Storage Technologies)
Show Figures

Figure 1

14 pages, 1356 KiB  
Article
Experimental Study on Thermal Performance of PCM in an Inclined Shell-and-Tube Latent Heat Thermal Energy Storage Unit
by Kaixing Fan, Shouchao Zong, Huaibin Gao and Zhongxing Duan
Processes 2025, 13(5), 1557; https://doi.org/10.3390/pr13051557 - 17 May 2025
Viewed by 869
Abstract
Latent heat thermal energy storage systems play a crucial role in aligning energy supply with demand, enhancing the efficiency of energy usage, thereby aiding in energy conservation and emissions reduction, and promoting the efficient use of renewable energy. Therefore, we constructed an experimental [...] Read more.
Latent heat thermal energy storage systems play a crucial role in aligning energy supply with demand, enhancing the efficiency of energy usage, thereby aiding in energy conservation and emissions reduction, and promoting the efficient use of renewable energy. Therefore, we constructed an experimental apparatus for a shell-and-tube latent heat storage. This apparatus was utilized to investigate how varying the inclination angle of the heat storage device, the inlet temperature of the heat transfer fluid (HTF), and water flow direction affect both the heat transfer behavior and the thermal efficiency of the system. The findings indicate that as the inlet temperature rises, the melting rate of the phase-change material (PCM) increases; when the inclination angle is 0°, for every 5 °C increase in water temperature, the time required to reach thermal equilibrium is shortened by 2 h, and the time needed for the PCM to transition from a solid to a liquid state is correspondingly reduced by 2 h. Additionally, the temperature variation trend of the phase-change material remains fundamentally consistent at different inclination angles. However, as the angle increases from 0° to 90°, there is a gradual reduction in the melting rate. Whether the water enters from the top or bottom, the melting rate of the PCM remains almost unchanged, and the stabilized temperature of the PCM is also nearly the same. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

29 pages, 15770 KiB  
Article
A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
by Jerzy Wołoszyn and Krystian Szopa
Energies 2024, 17(22), 5760; https://doi.org/10.3390/en17225760 - 18 Nov 2024
Viewed by 1077
Abstract
Thermal energy storage systems utilising phase change materials offer significantly higher energy densities compared to traditional solutions, and are therefore attracting growing interest in both research and application fields. However, the further development of this technology requires effective methods to enhance thermal efficiency. [...] Read more.
Thermal energy storage systems utilising phase change materials offer significantly higher energy densities compared to traditional solutions, and are therefore attracting growing interest in both research and application fields. However, the further development of this technology requires effective methods to enhance thermal efficiency. We propose a horizontal periodic shell-and-tube structure as an efficient latent heat thermal energy storage unit. This research aims to analyse heat transfer not only between the tube containing the heat transfer fluid and the phase change material but also between adjacent shell-and-tube units. The results obtained for a single cell within the periodic structure are compared with those of reference single shell-and-tube units with insulated adiabatic and highly conductive shells. The enthalpy–porosity approach, combined with the Boussinesq approximation, is applied to address the heat transfer challenges encountered during melting and solidification. The periodic horizontal shell-and-tube structure proves to be an efficient latent heat thermal energy storage unit with short melting and solidification times. In contrast, the non-periodic case with neglected conduction in the shell increases the melting and solidification times by 213.8% and 21%, respectively. The shortest melting and solidification times were recorded for the case with a periodic horizontal shell-and-tube structure and shell aspect ratios of 0.44 and 1, respectively. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

17 pages, 3304 KiB  
Article
Exergy Analysis of a Shell and Tube Energy Storage Unit with Different Inclination Angles
by Li Peng, Hongjun Wu, Wenlong Cao and Qianjun Mao
Energies 2023, 16(11), 4297; https://doi.org/10.3390/en16114297 - 24 May 2023
Cited by 2 | Viewed by 1582
Abstract
To optimize the utilization of solar energy in the latent heat thermal energy storage (LHTES) system, this study conducts exergy analysis on a paraffin-solar water shell and tube unit established in the literature to evaluate the effects of different inclination angles, inlet temperatures, [...] Read more.
To optimize the utilization of solar energy in the latent heat thermal energy storage (LHTES) system, this study conducts exergy analysis on a paraffin-solar water shell and tube unit established in the literature to evaluate the effects of different inclination angles, inlet temperatures, original temperatures, and fluid flow rates on the exergy and exergy efficiency. Firstly, the thermodynamic characteristics of the water and the natural convection effects of the paraffin change with different inclination angles. When the inclination angle of the heat storage tank is less than 30°, the maximum exergy inlet rate rises from 0 to 144.6 W in a very short time, but it decreases to 65.7 W for an inclination angle of 60°. When the inclination angle is increased from 0° to 30°, the exergy efficiency rises from 86% to 89.7%, but it decreases from 94% to 89.9% with the inclination angle from 60° to 90°. Secondly, under the condition that the inclination angle of the energy storage unit is 60°, although increasing the inlet temperature of the solar water enhances the exergy inlet and storage and reduces the charging time, it increases the heat transfer temperature difference and the irreversible loss of the system, thus reducing the exergy efficiency. As the inlet water temperature is increased from 83 to 98 °C, the exergy efficiency decreases from 94.7% to 93.6%. Moreover, increasing the original temperature of the LHTES unit not only reduces the exergy inlet and storage rates but also decreases the available work capacity and exergy efficiency. Finally, increasing the inlet water flow rate increases the exergy inlet and storage rates slightly. The exergy efficiency decreases from 95.6% to 93.3% as the unit original temperature is increased from 15 to 30 °C, and it is enhanced from 94% to 94.6% as the inlet flow rate is increased from 0.085 to 0.34 kg/s with the unit inclination angle of 60°. It is found that arranging the shell and tube unit at an inclination angle is useful for improving the LHTES system’s thermal performance, and the exergy analysis conducted aims to reduce available energy dissipation and exergy loss in the thermal storage system. This study provides instructions for solar energy utilization and energy storage. Full article
(This article belongs to the Special Issue Application of Renewable Energy in Buildings)
Show Figures

Figure 1

35 pages, 7075 KiB  
Review
Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review
by Janusz T. Cieśliński and Maciej Fabrykiewicz
Energies 2023, 16(2), 936; https://doi.org/10.3390/en16020936 - 13 Jan 2023
Cited by 17 | Viewed by 2849
Abstract
The paper presents a survey of the experimental and numerical studies of shell-and-tube systems in which phase change material (PCM) is used. Due to the multitude of design solutions for shell-and-tube systems, the emphasis is placed on double-tube (DT), triplex-tube (TT), and multi-tube [...] Read more.
The paper presents a survey of the experimental and numerical studies of shell-and-tube systems in which phase change material (PCM) is used. Due to the multitude of design solutions for shell-and-tube systems, the emphasis is placed on double-tube (DT), triplex-tube (TT), and multi-tube (MT) units. Additionally, only single-pass systems are considered. Particular attention is paid to the method of heat transfer intensification. The analysis of the research results begins with the classification of each of the three mentioned systems. The systems are divided according to the angle of inclination, the method of heat transfer enhancement (HTE), the flow direction of heat transfer fluid (HTF), and the arrangement of tubes in the bundle. Moreover, the simplified schemes of the particular research cases are proposed. Then, the works on each of the mentioned systems, i.e., DT, TT, and MT, are discussed chronologically. Finally, in the corresponding tables, details of the discussed cases are presented, such as geometric dimensions, and the type of PCM or HTF used. A novelty in the present work is the precise classification of PCM TESUs as DT, TTH, and MTH. In the literature, there is a lot of discretion in this regard. Second, the methods of heat transfer intensification in the presented PCM TESUs are listed and discussed. Third, unified schemes of design solutions for the discussed PCM TESUs are proposed. The review shows that development directions for shell-and-tube TESUs include systems with high conductivity fins of different shapes, heights, and spacing, several PCMs, and modified shells. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

19 pages, 10607 KiB  
Article
Low-Temperature Industrial Waste Heat (IWH) Recovery Using a New Design for Fast-Charging Thermal Energy Storage Units
by Mehdi Ghalambaz, Hani Abulkhair, Obai Younis, Mehdi Fteiti, Ali J. Chamkha, Iqbal Ahmed Moujdin and Abdulmohsen Omar Alsaiari
Mathematics 2023, 11(1), 153; https://doi.org/10.3390/math11010153 - 28 Dec 2022
Cited by 1 | Viewed by 2209
Abstract
The dynamic melting of CuO–coconut oil was addressed in a latent-heat thermal energy storage unit loaded with copper foam. In a new design, the thermal storage unit is made of a shell-tube-shaped chamber, in which a liquid flow of hot phase-change material (PCM) [...] Read more.
The dynamic melting of CuO–coconut oil was addressed in a latent-heat thermal energy storage unit loaded with copper foam. In a new design, the thermal storage unit is made of a shell-tube-shaped chamber, in which a liquid flow of hot phase-change material (PCM) is allowed to enter the chamber from a port at the bottom and exit at the top. A fin is mounted in the chamber to forward the entrance PCM liquid toward the solid regions. The control equations were solved using the finite element method. The impact of foam porosity, inlet pressure, fin length, and the concentrations of CuO nanoparticles on the thermal charging time of the chamber was investigated. A fast-charging time of 15 min with a foam porosity of 0.95 was achieved. A porosity of 0.95 can provide a maximum thermal charging power of 15.1 kW/kg. The inlet pressure was a significant parameter, and increasing the inlet pressure from 0.5 kPa to 4 kPa reduced the melting time by 2.6 times. The presence of the fin is not advantageous, and even a long fin could extend the thermal charging time. Moreover, dispersed nanoparticles were not beneficial to dynamic melting and extended the thermal charging time. Full article
Show Figures

Figure 1

26 pages, 8663 KiB  
Article
Computational Modeling of Latent Heat Thermal Energy Storage in a Shell-Tube Unit: Using Neural Networks and Anisotropic Metal Foam
by Jana Shafi, Mehdi Ghalambaz, Mehdi Fteiti, Muneer Ismael and Mohammad Ghalambaz
Mathematics 2022, 10(24), 4774; https://doi.org/10.3390/math10244774 - 15 Dec 2022
Cited by 16 | Viewed by 2735
Abstract
Latent heat storage in a shell-tube is a promising method to store excessive solar heat for later use. The shell-tube unit is filled with a phase change material PCM combined with a high porosity anisotropic copper metal foam (FM) of high thermal conductivity. [...] Read more.
Latent heat storage in a shell-tube is a promising method to store excessive solar heat for later use. The shell-tube unit is filled with a phase change material PCM combined with a high porosity anisotropic copper metal foam (FM) of high thermal conductivity. The PCM-MF composite was modeled as an anisotropic porous medium. Then, a two-heat equation mathematical model, a local thermal non-equilibrium approach LTNE, was adopted to consider the effects of the difference between the thermal conductivities of the PCM and the copper foam. The Darcy–Brinkman–Forchheimer formulation was employed to model the natural convection circulations in the molten PCM region. The thermal conductivity and the permeability of the porous medium were a function of an anisotropic angle. The finite element method was employed to integrate the governing equations. A neural network model was successfully applied to learn the transient physical behavior of the storage unit. The neural network was trained using 4998 sample data. Then, the trained neural network was utilized to map the relationship between control parameters and melting behavior to optimize the storage design. The impact of the anisotropic angle and the inlet pressure of heat transfer fluid (HTF) was addressed on the thermal energy storage of the storage unit. Moreover, an artificial neural network was successfully utilized to learn the transient behavior of the thermal storage unit for various combinations of control parameters and map the storage behavior. The results showed that the anisotropy angle significantly affects the energy storage time. The melting volume fraction MVF was maximum for a zero anisotropic angle where the local thermal conductivity was maximum perpendicular to the heated tube. An optimum storage rate could be obtained for an anisotropic angle smaller than 45°. Compared to a uniform MF, utilizing an optimum anisotropic angle could reduce the melting time by about 7% without impacting the unit’s thermal energy storage capacity or adding weight. Full article
Show Figures

Figure 1

15 pages, 4257 KiB  
Article
Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration
by Meng Yu, Xiaowei Sun, Wenjuan Su, Defeng Li, Jun Shen, Xuejun Zhang and Long Jiang
Energies 2022, 15(21), 8200; https://doi.org/10.3390/en15218200 - 3 Nov 2022
Cited by 4 | Viewed by 1862
Abstract
A case study on the melting performance of a shell-and-tube phase change material (PCM) thermal energy storage unit with a novel rectangular fin configuration is conducted in this paper. Paraffin wax and circulated water are employed as the PCM and heat transfer fluid [...] Read more.
A case study on the melting performance of a shell-and-tube phase change material (PCM) thermal energy storage unit with a novel rectangular fin configuration is conducted in this paper. Paraffin wax and circulated water are employed as the PCM and heat transfer fluid (HTF), respectively. It can be observed that the melting performance could be significantly improved by using rectangular fins. Melting photographs demonstrate that the melting of the PCM is firstly dominated by heat conduction; then, the melting rate is improved further due to natural convection. Moreover, the results illustrate that the influence of the inlet HTF temperature on the melting performance is significantly greater than that of the inlet HTF flow rate. The liquid fraction of paraffin wax in the PCM unit with a higher inlet HTF temperature is always higher than that with a lower inlet HTF temperature at the same time. The total charging time is reduced by 62.38% and the average charging rate is increased by 165.51% when the inlet HTF temperature is increased from 57 °C to 68 °C. As a result, a higher value of the inlet HTF temperature and a lower value of the HTF flow rate are able to improve the energy efficiency of the PCM unit with a rectangular fin configuration. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

23 pages, 10757 KiB  
Article
Numerical Study of Heat Transfer Enhancement by Arc-Shaped Fins in a Shell-Tube Thermal Energy Storage Unit
by Qicheng Chen, Junting Wu, Kanglong Sun and Yingjin Zhang
Energies 2022, 15(20), 7799; https://doi.org/10.3390/en15207799 - 21 Oct 2022
Cited by 12 | Viewed by 2194
Abstract
Latent heat thermal energy storage (LHTES) technology can alleviate the mismatch between the supply and demand of solar energy and industrial waste heat, but the low thermal conductivity of phase change materials (PCMs) is an issue that needs to be solved. In this [...] Read more.
Latent heat thermal energy storage (LHTES) technology can alleviate the mismatch between the supply and demand of solar energy and industrial waste heat, but the low thermal conductivity of phase change materials (PCMs) is an issue that needs to be solved. In this work, the effects of the bifurcated fins on melting and solidification are studied, and local and global entropy generation are discussed. The radial lag time and the circumferential lag time were defined to evaluate thermal penetration and thermal uniformity. Subsequently, a novel arc-shaped fin configuration was proposed to further enhance the heat transfer. The results showed that attaching the bifurcated fins could effectively reduce the global entropy generation. Increasing the trunk fin length was beneficial to enhance the thermal uniformity and promote the melting process, while increasing the branch fin was more effective in the solidification process. Overall, thermal uniformity determined the phase change process. More importantly, the concentric arc-shaped fins significantly reduced the heat transfer hysteresis region, showed better thermal performance than straights fins, and the energy storage and release time were reduced by 52.7% and 51.6%, respectively. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 6646 KiB  
Article
Enhancing the Melting Process of Shell-and-Tube PCM Thermal Energy Storage Unit Using Modified Tube Design
by Aissa Abderrahmane, Naef A. A. Qasem, Abed Mourad, Mohammad Al-Khaleel, Zafar Said, Kamel Guedri, Obai Younis and Riadh Marzouki
Nanomaterials 2022, 12(17), 3078; https://doi.org/10.3390/nano12173078 - 5 Sep 2022
Cited by 27 | Viewed by 3016
Abstract
Recently, phase change materials (PCMs) have gained great attention from engineers and researchers due to their exceptional properties for thermal energy storing, which would effectively aid in reducing carbon footprint and support the global transition of using renewable energy. The current research attempts [...] Read more.
Recently, phase change materials (PCMs) have gained great attention from engineers and researchers due to their exceptional properties for thermal energy storing, which would effectively aid in reducing carbon footprint and support the global transition of using renewable energy. The current research attempts to enhance the thermal performance of a shell-and-tube heat exchanger by means of using PCM and a modified tube design. The enthalpy–porosity method is employed for modelling the phase change. Paraffin wax is treated as PCM and poured within the annulus; the annulus comprises a circular shell and a fined wavy (trefoil-shaped) tube. In addition, copper nanoparticles are incorporated with the base PCM to enhance the thermal conductivity and melting rate. Effects of many factors, including nanoparticle concentration, the orientation of the interior wavy tube, and the fin length, were examined. Results obtained from the current model imply that Cu nanoparticles added to PCM materials improve thermal and melting properties while reducing entropy formation. The highest results (27% decrease in melting time) are obtained when a concentration of nanoparticles of 8% is used. Additionally, the fins’ location is critical because fins with 45° inclination could achieve a 50% expedition in the melting process. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 4154 KiB  
Article
A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
by Anuwat Jirawattanapanit, Aissa Abderrahmane, Abe Mourad, Kamel Guedri, Obai Younis, Belgacem Bouallegue, Khanyaluck Subkrajang, Grienggrai Rajchakit and Nehad Ali Shah
Nanomaterials 2022, 12(15), 2519; https://doi.org/10.3390/nano12152519 - 22 Jul 2022
Cited by 9 | Viewed by 2900
Abstract
Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials’ weak thermal conductivity in these systems. This [...] Read more.
Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials’ weak thermal conductivity in these systems. This work addresses the creation of a basic shell and a tube thermal storage device with wavy outer walls. Then, two key methods for thermal augmentation are discussed: fins and the use of a nano-enhanced phase change material (NePCM). Using the enthalpy–porosity methodology, a numerical model is developed to highlight the viability of designing such a model utilizing reduced assumptions, both for engineering considerations and real-time predictive control methods. Different concentrations of copper nanoparticles (0, 2, and 4 vol%) and wavenumbers (4,6 and 8) are investigated in order to obtain the best heat transmission and acceleration of the melting process. The time required to reach total melting in the studied TES system is reduced by 14% and 31% in the examined TES system, respectively, when NePCM (4 vol% nanoparticles) and N = 8 are used instead of pure PCM and N = 4. The finding from this investigation could be used to design a shell-and-tube base thermal energy storage unit. Full article
(This article belongs to the Special Issue Functional Phase Change Materials in Nanoscale)
Show Figures

Figure 1

25 pages, 16684 KiB  
Article
Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins
by Mustafa Z. Mahmoud, Hayder I. Mohammed, Jasim M. Mahdi, Dmitry Olegovich Bokov, Nidhal Ben Khedher, Naif Khalaf Alshammari, Pouyan Talebizadehsardari and Wahiba Yaïci
Nanomaterials 2021, 11(11), 3153; https://doi.org/10.3390/nano11113153 - 22 Nov 2021
Cited by 38 | Viewed by 2990
Abstract
Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy demand from immediate supply availability. However, due to their high heat resistance, these materials necessitate the introduction [...] Read more.
Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy demand from immediate supply availability. However, due to their high heat resistance, these materials necessitate the introduction of enhancing additives, such as expanded surfaces and fins, to enable their deployment in more widespread thermal and energy storage applications. This study reports on how circular fins with staggered distribution and variable orientations can be employed for addressing the low thermal response rates in a PCM (Paraffin RT-35) triple-tube heat exchanger consisting of two heat-transfer fluids flow in opposites directions through the inner and the outer tubes. Various configurations, dimensions, and orientations of the circular fins at different flow conditions of the heat-transfer fluid were numerically examined and optimized using an experimentally validated computational fluid-dynamic model. The results show that the melting rate, compared with the base case of finless, can be improved by 88% and the heat charging rate by 34%, when the fin orientation is downward–upward along the left side and the right side of the PCM shell. The results also show that there is a benefit if longer fins with smaller thicknesses are adopted in the vertical direction of the storage unit. This benefit helps natural convection to play a greater role, resulting in higher melting rates. Changing the fins’ dimensions from (thickness × length) 2 × 7.071 mm2 to 0.55 × 25.76 mm2 decreases the melting time by 22% and increases the heat charging rate by 9.6%. This study has also confirmed the importance of selecting the suitable values of Reynolds numbers and the inlet temperatures of the heat-transfer fluid for optimizing the melting enhancement potential of circular fins with downward–upward fin orientations. Full article
(This article belongs to the Special Issue Nano-Enhanced Phase Change Materials)
Show Figures

Figure 1

16 pages, 2495 KiB  
Article
Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology with Material Selection, Storage Performance Evaluation, and Cost Minimization
by Lizhong Yang, Haoxin Xu, Fabrizio Cola, Bakytzhan Akhmetov, Antoni Gil, Luisa F. Cabeza and Alessandro Romagnoli
Appl. Sci. 2021, 11(9), 4180; https://doi.org/10.3390/app11094180 - 4 May 2021
Cited by 17 | Viewed by 5091
Abstract
Shell-and-tube latent heat thermal energy storage units employ phase change materials to store and release heat at a nearly constant temperature, deliver high effectiveness of heat transfer, as well as high charging/discharging power. Even though many studies have investigated the material formulation, heat [...] Read more.
Shell-and-tube latent heat thermal energy storage units employ phase change materials to store and release heat at a nearly constant temperature, deliver high effectiveness of heat transfer, as well as high charging/discharging power. Even though many studies have investigated the material formulation, heat transfer through simulation, and experimental studies, there is limited research dedicated to the storage unit design methodology. This study proposes a comprehensive methodology that includes the material assessment with multi-attribute decision-making and multi-objective decision-making tools, epsilon-NTU method, and cost minimization using Genetic Algorithm. The methodology is validated by a series of experimental results, and implemented in the optimization of a storage unit for solar absorption chiller application. A unit cost of as low as USD 8396 per unit is reported with a power of 1.42 kW. The methodology proves to be an efficient, reliable, and systematic tool to fulfill the preliminary design of shell-and-tube LHTES before the computational fluid dynamics or detailed experimental studies are engaged. Full article
(This article belongs to the Special Issue Design and System Integration of Thermal Energy Storage)
Show Figures

Figure 1

17 pages, 10302 KiB  
Article
The Thermal Charging Performance of Finned Conical Thermal Storage System Filled with Nano-Enhanced Phase Change Material
by Mohammad Ghalambaz, Hassan Shirivand, Kasra Ayoubi Ayoubloo, S.A.M. Mehryan, Obai Younis, Pouyan Talebizadehsardari and Wahiba Yaïci
Molecules 2021, 26(6), 1605; https://doi.org/10.3390/molecules26061605 - 14 Mar 2021
Cited by 7 | Viewed by 2534
Abstract
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging [...] Read more.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration. Full article
(This article belongs to the Special Issue Innovative Materials for Energy Storage)
Show Figures

Figure 1

20 pages, 6317 KiB  
Article
Simulation of a Fast-Charging Porous Thermal Energy Storage System Saturated with a Nano-Enhanced Phase Change Material
by Mohammad Ghalambaz, S.A.M. Mehryan, Hassan Shirivand, Farshid Shalbafi, Obai Younis, Kiao Inthavong, Goodarz Ahmadi and Pouyan Talebizadehsardari
Energies 2021, 14(6), 1575; https://doi.org/10.3390/en14061575 - 12 Mar 2021
Cited by 6 | Viewed by 2528
Abstract
The melting of a coconut oil–CuO phase change material (PCM) embedded in an engineered nonuniform copper foam was theoretically analyzed to reduce the charging time of a thermal energy storage unit. A nonuniform metal foam could improve the effective thermal conductivity of a [...] Read more.
The melting of a coconut oil–CuO phase change material (PCM) embedded in an engineered nonuniform copper foam was theoretically analyzed to reduce the charging time of a thermal energy storage unit. A nonuniform metal foam could improve the effective thermal conductivity of a porous medium at regions with dominant conduction heat transfer by increasing local porosity. Moreover, the increase in porosity contributes to flow circulation in the natural convection-dominant regimes and adds a positive impact to the heat transfer rate, but it reduces the conduction heat transfer and overall heat transfer. The Taguchi optimization method was used to minimize the charging time of a shell-and-tube thermal energy storage (TES) unit by optimizing the porosity gradient, volume fractions of nanoparticles, average porosity, and porous pore sizes. The results showed that porosity is the most significant factor and lower porosity has a faster charging rate. A nonuniform porosity reduces the charging time of TES. The size of porous pores induces a negligible impact on the charging time. Lastly, the increase in volume fractions of nanoparticles reduces the charging time, but it has a minimal impact on the TES unit’s charging power. Full article
(This article belongs to the Special Issue Computational Heat Transfer and Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop