Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (796)

Search Parameters:
Keywords = shell shape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2831 KB  
Article
Cockle Population Dynamics in a Complex Ecological Aquatic System
by Simão Correia, Marta Lobão Lopes, Ana Picado, João M. Dias, Nuno Vaz, Rosa Freitas and Luísa Magalhães
Biology 2025, 14(10), 1427; https://doi.org/10.3390/biology14101427 - 17 Oct 2025
Viewed by 42
Abstract
Cerastoderma edule, the European edible cockle, is a key species in the coastal ecosystems of Portugal, particularly in Ria de Aveiro, a biodiversity hotspot and a critical area for cockle harvesting. This study aimed to assess the population dynamics of C. edule [...] Read more.
Cerastoderma edule, the European edible cockle, is a key species in the coastal ecosystems of Portugal, particularly in Ria de Aveiro, a biodiversity hotspot and a critical area for cockle harvesting. This study aimed to assess the population dynamics of C. edule in Ria de Aveiro, focusing on spatial and seasonal patterns in density, growth, cohort composition, and recruitment areas, to provide baseline data for sustainable management. Our results revealed marked spatial and seasonal variability in cockle density, ranging from complete absence at some upstream sites to peaks of over 5900 ind. m−2, with recruitment concentrated in summer and early autumn. Environmental gradients, particularly decreasing salinity inland, seasonal temperature shifts, and current velocity, strongly shaped the distribution of recruits and adults, while cohort lifespan and growth performance varied with sediment conditions and lagoon position. Concerningly, the maximum mean shell length observed is close to the legal minimum catch size, raising questions about population sustainability under current harvesting pressures. This interplay of environmental drivers and harvesting pressures poses risks to population viability. Effective management strategies, including adjusted catch sizes, seasonal harvesting bans, and habitat conservation, are essential to ensure the sustainable exploitation of cockles in Ria de Aveiro. Enhanced research and monitoring efforts are recommended to support informed management decisions and protect this valuable resource. Full article
Show Figures

Figure 1

25 pages, 7130 KB  
Article
Shock Absorption Control of Sand-Layer Isolation Liquid Storage Structure with Soft Steel
by Hulin Zhang, Yiting Mu, Kai Ding and Xuansheng Cheng
Appl. Sci. 2025, 15(20), 10966; https://doi.org/10.3390/app152010966 - 13 Oct 2025
Viewed by 221
Abstract
Wall plate rupture in liquid storage structures (LSSs) induced by earthquakes is a prevalent issue. To mitigate the impacts of seismic hazards on plate–shell composite concrete liquid storage structures (CLSSs), in this study, we propose an investigation into X-type mild steel–Shape Memory Alloy [...] Read more.
Wall plate rupture in liquid storage structures (LSSs) induced by earthquakes is a prevalent issue. To mitigate the impacts of seismic hazards on plate–shell composite concrete liquid storage structures (CLSSs), in this study, we propose an investigation into X-type mild steel–Shape Memory Alloy (SMA) seismic mitigation control for plate–shell composite CLSSs with sand-layer seismic isolation. Via finite element parametric analysis, this study examines the effects of two key parameters—the sand-layer friction coefficient and the spring-damping ratio of X-type mild steel–SMA seismic mitigation elements—on the dynamic response of CLSSs. The results indicate the following: under unidirectional seismic excitation, the proposed mitigation method achieves a favorable control effect on the maximum principal stress of the structure; under bidirectional seismic excitation, the optimal control effect on the maximum principal stress is achieved when the spring-damping ratio of the mitigation elements is 0.3 and the friction coefficient of the seismic isolation sand layer is 0.4. Additionally, under both unidirectional and bidirectional seismic excitation, this method exhibits a noticeable control effect on the peak liquid sloshing height. Full article
Show Figures

Figure 1

14 pages, 1662 KB  
Article
Characterization of Nanocrystals of Eu-Doped GaN Powders Obtained via Pyrolysis, Followed by Their Nitridation
by Erick Gastellóu, Rafael García, Ana M. Herrera, Antonio Ramos, Godofredo García, Gustavo A. Hirata, José A. Luna, Roberto C. Carrillo, Jorge A. Rodríguez, Roman Romano, Yani D. Ramírez, Francisco Brown and Antonio Coyopol
Photonics 2025, 12(10), 982; https://doi.org/10.3390/photonics12100982 - 2 Oct 2025
Viewed by 222
Abstract
Nanocrystals of Eu-doped GaN powders are produced via pyrolysis of a viscous compound made from europium and gallium nitrates. Furthermore, carbohydrazide is used as a fuel and toluene as a solvent; subsequently, a crucial nitridation process is carried out at 1000 °C for [...] Read more.
Nanocrystals of Eu-doped GaN powders are produced via pyrolysis of a viscous compound made from europium and gallium nitrates. Furthermore, carbohydrazide is used as a fuel and toluene as a solvent; subsequently, a crucial nitridation process is carried out at 1000 °C for one hour. A slight shift of 0.04 degrees toward larger angles was observed for the X-ray diffraction patterns in the Eu-doped GaN powders regarding the undoped GaN powders, while Raman scattering also displayed a slight shift of 10.03 cm−1 toward lower frequencies regarding the undoped GaN powders for the vibration mode, E2(H), in both cases indicating the incorporation of europium atoms into the GaN crystal lattice. A scanning electron microscope micrograph demonstrated a surface morphology for the Eu-doped GaN with a shape similar to elongated platelets with a size of 3.77 µm in length. Energy-dispersive spectroscopy and X-ray photoelectron spectroscopy studies demonstrated the europium elemental contribution in the GaN. The X-ray photoelectron spectroscopy spectrum for gallium demonstrated the binding energies for Ga 2P3/2, Ga 2P1/2, and Eu 3d5/2, which could indicate the incorporation of europium into the GaN and the bonding between gallium and europium atoms. The transmission electron microscope micrograph showed the presence of nanocrystals with an average size of 9.03 nm in length. The photoluminescence spectrum showed the main Eu3+ transition at 2.02 eV (611.69 nm) for europium emission energy, corresponding to the 5D07F2 transition of the f shell, which is known as a laser transition. Full article
(This article belongs to the Special Issue Emerging Trends in Rare-Earth Doped Material for Photonics)
Show Figures

Figure 1

27 pages, 10626 KB  
Article
Meshless Time–Frequency Stochastic Dynamic Analysis for Sandwich Trapezoidal Plate–Shell Coupled Systems in Supersonic Airflow
by Ningze Sun, Guohua Gao, Dong Shao and Weige Liang
Aerospace 2025, 12(10), 880; https://doi.org/10.3390/aerospace12100880 - 29 Sep 2025
Viewed by 158
Abstract
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a [...] Read more.
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a sandwich trapezoidal plate–shell coupled system. The general governing equations are derived based on the first-order shear deformation theory (FSDT), linear piston theory and Hamilton’s principle, and the stochastic excitation is integrated into the meshless framework based on the pseudo-excitation method (PEM). By constructing the meshless shape function covering the entire structural domain from Chebyshev polynomials and discretizing the continuous domain into a series of nodes within a square definition domain, the points are assembled according to the sequence number and the equilibrium relationship on the coupling edge to obtain the overall vibration equations. The validity is demonstrated by matching the mode shapes, PSD responses, time history displacement and critical flutter boundaries with FEM simulation and reported data. Finally, the time–frequency characteristics of each substructure under global and single stochastic excitation, and the effect of aerodynamic pressure on full-domain stochastic vibration, are revealed. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 301 KB  
Article
Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region
by Dina Nabil, Georgia Irina Oros, Awatef Shahin and Hanan Darwish
Axioms 2025, 14(9), 711; https://doi.org/10.3390/axioms14090711 - 21 Sep 2025
Viewed by 310
Abstract
In this paper, we introduce and investigate a new subclass Rςug(ϕ) of universally prestarlike generalized functions of order ς, where ς1, associated with a shell-shaped region defined by [...] Read more.
In this paper, we introduce and investigate a new subclass Rςug(ϕ) of universally prestarlike generalized functions of order ς, where ς1, associated with a shell-shaped region defined by Λ=C[1,) for the present investigation, by utilizing the Srivastava–Owa fractional derivative of order δ. Coefficient inequalities for |a2| and |a3| for functions belonging to the newly introduced class are obtained. Additionally, the Fekete–Szegö inequality is investigated for this class of functions. In order to enhance the coefficient studies for this class, the second Hankel determinant is also evaluated. Full article
(This article belongs to the Special Issue New Developments in Geometric Function Theory, 4th Edition)
16 pages, 6102 KB  
Article
Vibro-Acoustic Coupling Characteristics Underwater of Disc-Shaped Double-Layer Shell with Stiffeners
by Yue Zhang, Zhaocheng Sun and Tongshun Yu
J. Mar. Sci. Eng. 2025, 13(9), 1821; https://doi.org/10.3390/jmse13091821 - 19 Sep 2025
Viewed by 418
Abstract
A disc-shaped double-layer shell structure reinforced by stiffeners is introduced for underwater gliders. Based on the finite element method integrated with automatic matching layer (FEM/AML) technology and the direct boundary element method (DBEM), the acoustic response of a disc-shaped double-layer shell with six [...] Read more.
A disc-shaped double-layer shell structure reinforced by stiffeners is introduced for underwater gliders. Based on the finite element method integrated with automatic matching layer (FEM/AML) technology and the direct boundary element method (DBEM), the acoustic response of a disc-shaped double-layer shell with six longitudinal ribs within the frequency range of 10–500 Hz is obtained. The resonant frequencies of the sound pressure level (SPL) correlate with the structural–acoustic modes. At resonance frequencies, the acoustic directivity and spatial sound pressure distribution of the double-layer shell exhibit symmetry relative to the mid-cross-section. The influence of longitudinal rib counts on vibro-acoustic behavior is investigated. The analysis results of frequency–spatial spectrum for radiated sound pressure reveal that the resonant frequencies migrate to the mid-high frequency with increases in the longitudinal rib quantity. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 7887 KB  
Article
Sustainable Thermal Post-Processing of PLA 3D Prints: Increased Dimensional Precision and Autoclave Compatibility
by Florina Chiscop, Carmen-Cristiana Cazacu, Dragos-Alexandru Cazacu and Costel Emil Cotet
J. Funct. Biomater. 2025, 16(9), 334; https://doi.org/10.3390/jfb16090334 - 8 Sep 2025
Viewed by 871
Abstract
This study investigates the thermal properties and sterilization efficacy of polylactic acid (PLA) components fabricated via fused deposition modeling (FDM), focusing on PLA’s compatibility with autoclave sterilization protocols. While PLA is extensively recognized for its biobased and biodegradable characteristics, its limited thermal stability [...] Read more.
This study investigates the thermal properties and sterilization efficacy of polylactic acid (PLA) components fabricated via fused deposition modeling (FDM), focusing on PLA’s compatibility with autoclave sterilization protocols. While PLA is extensively recognized for its biobased and biodegradable characteristics, its limited thermal stability has traditionally restricted its application in high-temperature sterilization settings, such as in medical contexts. In our research, we examined three distinct specimen geometries—cylindrical, rectangular, and curved—subjecting them to thermal post-processing through constrained annealing, employing salt or silicone as the embedding medium. Following this process, we exposed the specimens to elevated temperatures, simulating typical sterilization conditions. The outcomes indicated that the annealed PLA specimens exhibited dimensional stability at temperatures exceeding 170 °C, thereby demonstrating their viability for steam sterilization procedures. To translate these findings into practical applications, we selected a small, complex geometrically relevant component, the Easy Bone Collector (EBC) shell, for autoclave testing at 134 °C. Post-sterilization, the part successfully retained its shape and functionality, indicating that, with appropriate thermal conditioning, PLA can be effectively utilized to manufacture cost-efficient, autoclavable components suitable for medical use. These results reveal a promising and sustainable approach to producing reusable, sterilization-compatible PLA devices, particularly in low-volume or single-use applications where biodegradability is advantageous. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

20 pages, 10615 KB  
Article
Blast-Resistant Performance Evaluation of Steel Box Girder of Suspension Bridge
by Qi Peng, Qizhen Wang and Liangliang Ma
Buildings 2025, 15(17), 3210; https://doi.org/10.3390/buildings15173210 - 5 Sep 2025
Viewed by 538
Abstract
Explosions pose significant risks to large-span steel bridges, which are integral to modern transportation networks and construction projects. This study evaluates the blast resistance of the orthotropic bridge deck of the Taizhou Yangtze River Bridge using numerical simulations validated by explosion tests. Five [...] Read more.
Explosions pose significant risks to large-span steel bridges, which are integral to modern transportation networks and construction projects. This study evaluates the blast resistance of the orthotropic bridge deck of the Taizhou Yangtze River Bridge using numerical simulations validated by explosion tests. Five vehicular bomb scenarios, as specified by the Federal Emergency Management Agency, were analyzed to understand the damage mechanisms under above-deck explosions. Results show that all scenarios cause petal-shaped openings in the top plate, fractures in U-stiffeners, and plastic deformation in diaphragms. Larger TNT masses lead to additional failures, such as outward bending and bottom plate openings. Energy dissipation primarily occurs through plastic deformation and failure of various deck components, with the extent depending on the TNT mass. The vehicle shell significantly reduces damage for smaller charges (454 kg TNT) but has a minor effect for larger charges (>4536 kg TNT). This research enhances the understanding of blast resistance in orthotropic steel decks, a key component in modern bridge construction, and informs practices for designing resilient structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 5791 KB  
Review
Review of Age Estimation Techniques and Growth Models for Shelled Organisms in Marine Animal Forests
by Ömerhan Dürrani, Çağdaş Can Cengiz, Halyna Gabrielczak, Esra Özcan, Madona Varshanidze, Genuario Belmonte and Kadir Seyhan
J. Mar. Sci. Eng. 2025, 13(9), 1693; https://doi.org/10.3390/jmse13091693 - 2 Sep 2025
Viewed by 641
Abstract
Marine shelled organisms exhibit diverse growth strategies shaped by species-specific traits and environmental conditions that critically influence their ecological roles, particularly within Marine Animal Forests (MAF), which are structurally complex habitats and biodiversity-rich habitats. This review compiles and compares empirical growth data for [...] Read more.
Marine shelled organisms exhibit diverse growth strategies shaped by species-specific traits and environmental conditions that critically influence their ecological roles, particularly within Marine Animal Forests (MAF), which are structurally complex habitats and biodiversity-rich habitats. This review compiles and compares empirical growth data for 16 bivalve and gastropod species across seven families, classified as full MAF contributors (Pinna nobilis, Flexopecten glaber, Pecten maximus, and Placopecten magellanicus), partial MAF contributors (Cerastoderma edule, C. glaucum, Chamelea gallina, Ruditapes philippinarum, Mercenaria mercenaria, Panopea generosa, Anadara kagoshimensis, A. inaequivalvis, and Tegillarca granosa), and ecologically relevant non-MAF species (Buccinum undatum, Hexaplex trunculus, and Rapana venosa). Age estimation methods included direct techniques, such as shell growth ring and opercular annulus analysis, alongside indirect approaches, such as length-frequency analysis, stable isotope profiling, and mark–recapture studies. Growth trajectories were modelled using von Bertalanffy growth function (VBGF) parameters to estimate the shell size from ages 1 to 4. Based on these estimates, species were categorised into slow, moderate, fast, and exceptional growth groups. These classifications were further explored through hierarchical clustering that grouped species according to their VBGF-derived growth values, revealing consistent and contrasting life history strategies. This comparative analysis should enhance the understanding of molluscan growth dynamics and support the conservation and management of MAF-associated ecosystems by informing restoration planning, guiding species selection, and contributing to evidence-based policy development. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 514
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

33 pages, 1826 KB  
Article
Comprehensive Evaluation of Probiotic Effects on Laying Hen Physiology: From Performance to Bone and Gut Morphology
by E. Ebru Onbaşılar, Sakine Yalçın, Caner Bakıcı, Barış Batur, Yeliz Kaya Kartal, Ozan Ahlat, İhsan Berat Kılıçlı and Suzan Yalçın
Animals 2025, 15(16), 2408; https://doi.org/10.3390/ani15162408 - 16 Aug 2025
Viewed by 882
Abstract
This study investigated the effects of probiotic supplementation on performance, egg quality, antioxidant capacity, gut morphology, fecal microbiota, and bone morphology in Lohmann Brown laying hens aged 44 weeks over a 16-week period. Ninety-six hens were randomly divided into control and probiotic groups [...] Read more.
This study investigated the effects of probiotic supplementation on performance, egg quality, antioxidant capacity, gut morphology, fecal microbiota, and bone morphology in Lohmann Brown laying hens aged 44 weeks over a 16-week period. Ninety-six hens were randomly divided into control and probiotic groups (n = 48 each). The probiotic group received probiotic supplement containing Lactobacillus acidophilus KUEN 1607 and Pediococcus acidilactici KUEN 1608 via drinking water at 0.5%. Probiotic supplementation significantly improved feed conversion ratio (FCR), eggshell strength and thickness, and albumen quality (p < 0.001) and reduced the incidence of cracked and shell-less eggs (p < 0.05). Yolk and serum cholesterol levels decreased (p < 0.001), and antioxidant parameters improved, along with elevated serum IgG (p < 0.001). Histological analysis showed an increased ratio of villus height to crypt depth (p < 0.001) in the jejunum, indicating enhanced intestinal health. Fecal samples revealed increased Lactobacillus spp. and reduced coliform counts (p < 0.001), suggesting improved gut microbiota balance. While bone volume and surface area showed no significant difference, 3D geometric morphometric analysis identified subtle shape changes in long bones, especially the femur and tibiotarsus. These findings demonstrate that the selected probiotic combination supports nutrient utilization, egg quality, gut integrity, immune status, and skeletal health, offering a sustainable strategy to enhance productivity and welfare in laying hens. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

32 pages, 10173 KB  
Article
Field-Calibrated Nonlinear Finite Element Diagnosis of Localized Stern Damage from Tugboat Collision: A Measurement-Driven Forensic Approach
by Myung-Su Yi and Joo-Shin Park
J. Mar. Sci. Eng. 2025, 13(8), 1523; https://doi.org/10.3390/jmse13081523 - 8 Aug 2025
Viewed by 521
Abstract
This study conducts a high-resolution forensic evaluation of stern structural damage resulting from a tugboat collision during berthing, integrating real-world measurement data with calibrated nonlinear finite element analysis. Based on field-acquired deformation geometry and residual dent profiles at Frame 76, five distinct collision [...] Read more.
This study conducts a high-resolution forensic evaluation of stern structural damage resulting from a tugboat collision during berthing, integrating real-world measurement data with calibrated nonlinear finite element analysis. Based on field-acquired deformation geometry and residual dent profiles at Frame 76, five distinct collision scenarios varying in impact orientation, contact area, and load path were simulated using shell-based nonlinear plastic analysis. Particular attention is given to comparing the plastic equivalent strain (PEEQ), von-Mises stress fields, and residual deformation contours at Point A—the critical zone identified from damage surveys. Among the five cases, Case-2, defined by a vertically eccentric external impact, demonstrated the highest plastic strain intensity (PEEQ > 2.0%), the sharpest post-yield drops in stiffness, and the closest match to the residual dent profile observed in the actual structure. The integrated correlation between field damage and some of the results (strain, stress, and deformed shape) enabled clear identification of the most probable accident mechanism with engineering accuracy. This study proposes a validated, measurement-calibrated nonlinear finite element analysis framework to diagnose stern damage from tugboat collisions, enhancing repair decision-making and structural safety assessment. Such a calibrated forensic strategy enhances the reliability of structural safety predictions in marine collision incidents and supports eco-friendly rescue engineering by minimizing unnecessary structural renewal through precise damage localization. The proposed approach establishes a new benchmark for scenario-driven collision assessment, particularly relevant to sustainable, automation-compatible, and damage-tolerant ship design practices. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Mechanical and Naval Engineering)
Show Figures

Figure 1

22 pages, 6992 KB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 - 7 Aug 2025
Cited by 1 | Viewed by 434
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

21 pages, 13405 KB  
Article
Impact of Nonresonant Intense Laser and Electric Fields on a Low-Dimensional CdTe/CdSe Type-II Cone
by Fredy Amador Donado, Fernando Guerrero Almanza, Camilo Frías Viña, Juan Alejandro Vinasco, J. Sierra-Ortega, Gene Elizabeth Escorcia-Salas, R. V. H. Hahn, M. E. Mora-Ramos, O. Mommadi, A. El Moussaouy, R. Boussetta, D. Duque, A. L. Morales, S. Uran-Parra and C. A. Duque
Nanomaterials 2025, 15(15), 1208; https://doi.org/10.3390/nano15151208 - 7 Aug 2025
Viewed by 544
Abstract
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a [...] Read more.
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a type-II CdTe/CdSe heterostructure (core/shell). Using the effective mass approximation with parabolic bands and the finite element method, the Schrödinger equation was solved to analyze the confined states of electron, hole, and exciton. This study demonstrates the potential of combining nonresonant intense laser and electric fields to control confinement properties in semiconductor nanodevices, with potential applications in optoelectronics and quantum mechanics-related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 4972 KB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 - 4 Aug 2025
Viewed by 489
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

Back to TopTop