Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region
Abstract
1. Introduction
2. Preliminaries
3. Estimates for the Coefficients and Fekete–Szegö Inequality
4. The Hankel Inequality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, R.M.; Badghaish, A.O.; Ravichandran, V.; Swaminathan, A. Starlikeness of integral transforms and duality. J. Math. Anal. Appl. 2012, 385, 808–822. [Google Scholar] [CrossRef]
- Raghavendar, K.; Swaminathan, A. Integral transforms of functions to be in certain class defined by the combination of starlike and convex functions. Comput. Math. Appl. 2012, 63, 1296–1308. [Google Scholar] [CrossRef]
- Alsoboh, A.; Oros, G.I. A Class of Bi-Univalent Functions in a Leaf-Like Domain Defined through Subordination via q-Calculus. Mathematics 2024, 12, 1594. [Google Scholar] [CrossRef]
- Kavitha, P.; Balaji, V.K.; Stalin, T. On the Fekete–Szegö inequality for analytic functions via Hohlov operator on leaf-like domains. Results Nonlinear Anal. 2025, 8, 172–183. [Google Scholar] [CrossRef]
- Naik, A.; Sahoo, S.C. Fekete–Szegö Inequality Estimate for Analytic Functions Using Salagean-Difference Operator and Leaf-Like Domain. Eur. J. Pure Appl. Math. 2025, 18, 6349. [Google Scholar] [CrossRef]
- Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-Type Bi-Close-to-Convex and Bi-Concave Functions Involving a Modified Caputo’s Fractional Operator Linked with a Three-Leaf Function. Fractal Fract. 2024, 8, 220. [Google Scholar] [CrossRef]
- Shaba, T.G.; Araci, S.; Adebesin, B.O. Application of Three Leaf Domain on a Subclass of Bi-univalent Functions. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2–4 April 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Cho, N.E.; Swaminathan, A.; Wani, L.A. Radius constants for functions associated with a Limacon domain. J. Korean Math. Soc. 2022, 59, 353–365. [Google Scholar] [CrossRef]
- Paprocki, E.; Sokół, J. The extremal problems in some subclass of strongly starlike functions. Zeszyty Nauk. Politech. Rzesz. Mat. 1996, 20, 89–94. [Google Scholar]
- Ma, W.; Minda, D. A unified treatment of some special classes of functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Conference Proceedings and Lecture Notes in Analysis. Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Saliu, A.; Jabeen, K.; Ravichandran, V. Differential subordination for certain strongly starlike functions. Rend. Circ. Mat. Palermo Ser. 2 2024, 73, 1–18. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, R.K. On Coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Sokół, J.; Thomas, D.K. Further results on a class of starlike functions related to the Bernoulli lemniscate. Houst. J. Math. 2018, 44, 83–95. [Google Scholar]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Séminaire de Mathématiques Supérieures; Presses de l’Université de Montréal: Montreal, QC, Canada, 1982; Volume 83. [Google Scholar]
- Ruscheweyh, S. Some properties of prestarlike and universally prestarlike functions. J. Anal. 2007, 15, 247–254. [Google Scholar]
- Ruscheweyh, S.; Salinas, L. Universally prestarlike functions as convolution multipliers. Math. Z. 2009, 263, 607–617. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Salinas, L.; Sugawa, T. Completely monotone sequences and universally prestarlike functions. Isr. J. Math. 2009, 171, 285–304. [Google Scholar] [CrossRef]
- Shanmugam, T.N.; Mary, J.L. A note on universally prestarlike functions. Stud. Univ. Babes-Bolyai Math. 2012, 57, 53–60. [Google Scholar]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; Halstead Press: Sydney, Australia; Ellis Horwood Ltd.: Chichester, UK; JohnWiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Srivastava, H.M. Fractional calculus and its applications. CUBO Matemática Educ. 2003, 5, 33–48. [Google Scholar]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Noor, K.I. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Appl. 1983, 28, 731–739. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problem associated with q-derivative operator. J. Phys. Conf. Ser. 2019, 1212, 012003. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving q-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef]
- Elhaddad, S.; Darus, M. On Fekete–Szegö problems for a certain subclass defined by q-analogue of Ruscheweyh operator. J. Phys. Conf. Ser. 2019, 1212, 012002. [Google Scholar] [CrossRef]
- Vijaya, K.; Murugusundaramoorthy, G.; Yalçın, S. Universally prestarlike functions associated with shell like domain. Mat. Stud. 2022, 57, 53–61. [Google Scholar] [CrossRef]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Vijaya, K. Second Hankel determinant for universally prestarlike functions related with exponential function. Afr. Mat. 2021, 32, 685–694. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Carathéodory, C. Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Sher, M.; Shah, K.; Ali, Z.; Abdeljawad, T.; Alqudah, M. Using deep neural network in computational analysis of coupled systems of fractional integro-differential equations. J. Comput. Appl. Math. 2026, 474, 116912. [Google Scholar] [CrossRef]
- Ali, Z.; Shah, K.; Abdeljawad, T.; Ali, A. Analyzing wave dynamics of Burger–Poisson fractional partial differential equation. Partial. Differ. Equ. Appl. Math. 2025, 14, 101153. [Google Scholar] [CrossRef]
- Shah, K.; Abdeljawad, T.; Abdalla, B.; Ali, Z. Analyzing a coupled dynamical system of materials recycling in chemostat systems with artificial deep neural network. Model. Earth Syst. Environ. 2025, 11, 313. [Google Scholar] [CrossRef]
- Elshazly, I.S.; Murugusundaramoorthy, G.; Halouani, B.; El-Qadeem, A.H.; Vijaya, K. Bi-Starlike Function of Complex Order Involving Mathieu-Type Series in the Shell-Shaped Region. Axioms 2024, 13, 747. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabil, D.; Oros, G.I.; Shahin, A.; Darwish, H. Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region. Axioms 2025, 14, 711. https://doi.org/10.3390/axioms14090711
Nabil D, Oros GI, Shahin A, Darwish H. Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region. Axioms. 2025; 14(9):711. https://doi.org/10.3390/axioms14090711
Chicago/Turabian StyleNabil, Dina, Georgia Irina Oros, Awatef Shahin, and Hanan Darwish. 2025. "Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region" Axioms 14, no. 9: 711. https://doi.org/10.3390/axioms14090711
APA StyleNabil, D., Oros, G. I., Shahin, A., & Darwish, H. (2025). Coefficient Estimates, the Fekete–Szegö Inequality, and Hankel Determinants for Universally Prestarlike Functions Defined by Fractional Derivative in a Shell-Shaped Region. Axioms, 14(9), 711. https://doi.org/10.3390/axioms14090711