Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = sheet-based gyroid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5093 KB  
Article
Enhancing Solar Thermal Energy Storage via Torsionally Modified TPMS Structures Embedded in Sodium Acetate Trihydrate
by Martin Beer and Radim Rybár
Energies 2025, 18(13), 3234; https://doi.org/10.3390/en18133234 - 20 Jun 2025
Viewed by 494
Abstract
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, [...] Read more.
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, which is inherently low in the solid phase, by embedding a thermally conductive metallic structure made of aluminum alloy 6061. The simulations compared four gyroid configurations with different degrees of torsional deformation (0°, 90°, 180°, and 360°) alongside a reference model without any structure. Using numerical analysis, the study evaluated the time required to heat the entire volume of SAT above its phase transition temperature (58 °C) as well as the spatial distribution of the temperature field. The results demonstrate that all gyroid configurations significantly reduced the charging time compared with the reference case, with the highest efficiency achieved by the 360° twisted structure. Temperature maps revealed a more uniform thermal distribution within the phase change material and a higher heat flux into the volume. These findings highlight the strong potential of TPMS-based structures for improving the performance of latent heat thermal energy storage systems. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

18 pages, 3912 KB  
Article
Numerical Investigation of Sheet-Gyroid Structure Modifications for Mixing Application in Renewable Energy Technologies
by Martin Beer and Radim Rybár
Energies 2025, 18(9), 2265; https://doi.org/10.3390/en18092265 - 29 Apr 2025
Cited by 1 | Viewed by 1044
Abstract
The presented study focuses on evaluating the mixing properties of structures derived from the so-called sheet-gyroid geometry and their modifications as advanced mixing elements in renewable energy technologies. Using numerical simulations based on computational fluid dynamics (CFD), the hydrodynamic characteristics of the basic [...] Read more.
The presented study focuses on evaluating the mixing properties of structures derived from the so-called sheet-gyroid geometry and their modifications as advanced mixing elements in renewable energy technologies. Using numerical simulations based on computational fluid dynamics (CFD), the hydrodynamic characteristics of the basic sheet-gyroid structure and five geometric modifications were analyzed under laminar flow conditions simulating the mixing of water and ethylene glycol. The evaluation was conducted using the parameters mixing index and performance index, which express the efficiency of fluid homogenization and its associated energy demands. The results show that all tested geometries significantly improve the degree of mixing compared to an empty channel. The highest concentration homogeneity and best energy efficiency were achieved by the twisted sheet-gyroid structure. This geometric modification exhibits the highest value of the performance index, confirming its ability to achieve excellent mixing with minimal pressure losses. The results of the study demonstrated that, despite similar hydraulic losses among some of the structures, their fluid mixing performance differs, which highlights the importance of targeted geometric design of sheet-gyroid structures. These findings are essential for the design of efficient mixers in technological applications where intensive mixing combined with minimal energy consumption is a critical factor. Full article
Show Figures

Figure 1

22 pages, 16995 KB  
Article
Effect of Unit Cell Design and Volume Fraction of 3D-Printed Lattice Structures on Compressive Response and Orthopedics Screw Pullout Strength
by Boonyanuch Suksawang, Pisaisit Chaijareenont and Patcharawan Silthampitag
Materials 2025, 18(6), 1349; https://doi.org/10.3390/ma18061349 - 19 Mar 2025
Viewed by 940
Abstract
We aimed to evaluate the effects of unit cell design and the volume fraction of 3D-printed lattice structures with relative densities of 30% or 45% on compressive response and orthopedics screw pullout strength. All 3D lattice models were created using FLatt Pack software [...] Read more.
We aimed to evaluate the effects of unit cell design and the volume fraction of 3D-printed lattice structures with relative densities of 30% or 45% on compressive response and orthopedics screw pullout strength. All 3D lattice models were created using FLatt Pack software (version 3.31.0.0). The unit cell size of sheet-based triply periodic minimal surfaces (TPMSs)—Gyroid and Schwarz Diamond—was 5.08 mm, whereas that of skeletal TPMS—Skeletal Gyroid, Skeletal Schwarz Diamond, and Skeletal Schoen I-Wrapped Package—was scaled down to 3.175 and 2.54 mm. Two photopolymer resin types—Rigid 10k and Standard Grey—were used. In uniaxial compression tests, Rigid 10k resin lattices failed at relatively lower strains (<0.11), while Standard Grey lattices endured higher strains (>0.60) and experienced less softening effects, resulting in stress–strain curve plateauing followed by lattice densification. ANOVA revealed significant effects of design and volume fraction at p < 0.001 on compressive modulus, screw pullout strength, and screw withdrawal stiffness of the 3D-printed lattice. The pullout load from 3D-printed lattices (61.00–2839.42 N) was higher than that from open-cell polyurethane foam (<50 N) and lower than that of human bone of similar volume fraction (1134–2293 N). These findings demonstrate that 3D-printed lattices can be tailored to approximate different bone densities, enabling more realistic orthopedic and dental training models. Full article
Show Figures

Figure 1

17 pages, 8297 KB  
Article
Deformation Behavior of Inconel 625 Alloy with TPMS Structure
by Kangning Xu, Jiahui Cao, Zhiwei Zheng, Rusheng Zhao, Gaopeng Xu, Hao Wang, Jincheng Wang, Boyoung Hur and Xuezheng Yue
Materials 2025, 18(2), 396; https://doi.org/10.3390/ma18020396 - 16 Jan 2025
Cited by 2 | Viewed by 1248
Abstract
Triply periodic minimal surfaces (TPMSs) are known for their smooth, fully interconnected, and naturally porous characteristics, offering a superior alternative to traditional porous structures. These structures often suffer from stress concentration and a lack of adjustability. Using laser powder bed fusion (LPBF), we [...] Read more.
Triply periodic minimal surfaces (TPMSs) are known for their smooth, fully interconnected, and naturally porous characteristics, offering a superior alternative to traditional porous structures. These structures often suffer from stress concentration and a lack of adjustability. Using laser powder bed fusion (LPBF), we have fabricated Inconel 625 sheet-based TPMS lattice structures with four distinct topologies: Primitive, IWP, Diamond, and Gyroid. The compressive responses and energy absorption capabilities of the four lattice designs were meticulously evaluated. The discrepancies between theoretical predictions and the fabricated specimens were precisely quantified using the Archimedes’ principle for volume displacement. Subsequently, the LPBF-manufactured samples underwent uniaxial compression tests, which were complemented by numerical simulation for validation. The experimental results demonstrate that the IWP lattice consistently outperformed the other three configurations in terms of yield strength. Furthermore, when comparing energy absorption efficiencies, the IWP structures were confirmed to be more effective and closer to the ideal performance. An analysis of the deformation mechanisms shows that the IWP structure characteristically failed in a layer-by-layer manner, distinct from the other structures that exhibited significant shear banding. This distinct behavior was responsible for the higher yield strength (113.16 MPa), elastic modulus (735.76 MPa), and energy absorption capacity (9009.39 MJ/m3) observed in the IWP configuration. To examine the influence of porosity on structural performance, specimens with two varying porosities (70% and 80%) were selected for each of the four designs. Ultimately, the mechanical performance of Inconel 625 under compression was assessed both pre- and post-deformation to elucidate its impact on the material’s integrity. Full article
Show Figures

Figure 1

21 pages, 14267 KB  
Article
Optimisation of Heat Exchanger Performance Using Modified Gyroid-Based TPMS Structures
by Martin Beer and Radim Rybár
Processes 2024, 12(12), 2943; https://doi.org/10.3390/pr12122943 - 23 Dec 2024
Cited by 9 | Viewed by 4123
Abstract
Triply periodic minimal surfaces (TPMS) represent an innovative approach to the design of heat exchangers, enabling the optimisation of thermal and hydraulic performance. This study presents a comparative analysis of three geometric TPMS configurations: sheet gyroid, skeletal gyroid, and the newly proposed combined [...] Read more.
Triply periodic minimal surfaces (TPMS) represent an innovative approach to the design of heat exchangers, enabling the optimisation of thermal and hydraulic performance. This study presents a comparative analysis of three geometric TPMS configurations: sheet gyroid, skeletal gyroid, and the newly proposed combined gyroid geometry. Using numerical analysis based on simulations of fluid flow and heat transfer, key parameters such as the heat transfer coefficient, Nusselt number, friction factor, Chilton–Colburn j-factor, and pressure drop were evaluated. The results demonstrated that the combined gyroid geometry achieves the highest heat transfer efficiency, exhibiting significant improvements in the Nusselt number and heat transfer coefficient across the entire flow range. Simultaneously, it maintains low pressure losses, making it well suited for applications demanding high thermal performance with minimal energy losses. This study highlights the potential of TPMS geometries for optimising heat exchanger design and opens new paths for their implementation in industrial systems. Full article
(This article belongs to the Special Issue Fluid Dynamics and Processes of Heat Transfer Enhancement)
Show Figures

Figure 1

26 pages, 13041 KB  
Article
Carbon-Free H2 Production from Ammonia Decomposition over 3D-Printed Ni-Alloy Structures Activated with a Ru/Al2O3 Catalyst
by Cristina Italiano, Gabriel Marino, Minju Thomas, Benjamin Hary, Steve Nardone, Simon Richard, Assia Saker, Damien Tasso, Nicolas Meynet, Pierre Olivier, Fausto Gallucci and Antonio Vita
Processes 2024, 12(12), 2663; https://doi.org/10.3390/pr12122663 - 26 Nov 2024
Viewed by 2979
Abstract
Hydrogen, with its high energy density and zero greenhouse gas emissions, is an exceptional energy vector, pivotal for a sustainable energy future. Ammonia, serving as a practical and cost-effective hydrogen carrier, offers a secure method for hydrogen storage and transport. The decomposition of [...] Read more.
Hydrogen, with its high energy density and zero greenhouse gas emissions, is an exceptional energy vector, pivotal for a sustainable energy future. Ammonia, serving as a practical and cost-effective hydrogen carrier, offers a secure method for hydrogen storage and transport. The decomposition of ammonia into hydrogen is a crucial process for producing green hydrogen, enabling its use in applications ranging from clean energy generation to fueling hydrogen-powered vehicles, thereby advancing the transition to a carbon-free energy economy. This study investigates the catalytic performance of various 3D-printed porous supports based on periodic open cellular structures (POCS) and triply periodic minimal surface (TPMS) architecture manufactured from IN625 nickel alloy powder using the laser powder bed fusion (LPBF) technique. The POCS and TPMS, featuring geometries including BCC, Kelvin, and Gyroid, were analyzed for cell size, strut/sheet diameter, porosity, and specific surface area. Pressure drop analyses demonstrated correlations between structural parameters and fluid dynamics, with BCC structures exhibiting lower pressure drops due to their higher porosity and the open channel network. The dip/spin coating method was successfully applied to activate the supports with a commercial Ru/Al2O3 catalyst, achieving uniform coverage crucial for catalytic performance. Among the tested geometries, the Gyroid structure showed superior catalytic activity towards ammonia decomposition, attributed to its efficient mass transfer pathways. This study highlights the importance of structural design in optimizing catalytic processes and suggests the Gyroid structure as a promising candidate for improving reactor efficiency and compactness in hydrogen production systems. Full article
Show Figures

Figure 1

21 pages, 35079 KB  
Article
Energy Absorption Properties of 3D-Printed Polymeric Gyroid Structures for an Aircraft Wing Leading Edge
by Mats Overbeck, Sebastian Heimbs, Jan Kube and Christian Hühne
Aerospace 2024, 11(10), 801; https://doi.org/10.3390/aerospace11100801 - 29 Sep 2024
Cited by 4 | Viewed by 2940
Abstract
Laminar flow offers significant potential for increasing the energy efficiency of future transport aircraft. At the Cluster of Excellence SE2A—Sustainable and Energy-Efficient Aviation—the laminarization of the wing by means of hybrid laminar flow control (HLFC) is being investigated. The aim is [...] Read more.
Laminar flow offers significant potential for increasing the energy efficiency of future transport aircraft. At the Cluster of Excellence SE2A—Sustainable and Energy-Efficient Aviation—the laminarization of the wing by means of hybrid laminar flow control (HLFC) is being investigated. The aim is to maintain the boundary layer as laminar for up to 80% of the chord length of the wing. This is achieved by active suction on the leading edge and the rear part of the wing. The suction panels are constructed with a thin micro-perforated skin and a supporting open-cellular core structure. The mechanical requirements for this kind of sandwich structure vary depending on its position of usage. The suction panel on the leading edge must be able to sustain bird strikes, while the suction panel on the rear part must sustain bending loads from the deformation of the wing. The objective of this study was to investigate the energy absorption properties of a triply periodic minimal surface (TPMS) structure that can be used as a bird strike-resistant core in the wing leading edge. To this end, cubic-sheet-based gyroid specimens of different polymeric materials and different geometric dimensions were manufactured using additive manufacturing processes. The specimens were then tested under quasi-static compression and dynamic crushing loading until failure. It was found that the mechanical behavior was dependent on the material, the unit cell size, the relative density, and the loading rate. In general, the weight-specific energy absorption (SEA) at 50% compaction increased with increasing relative density. Polyurethane specimens exhibited an increase in SEA with increasing loading rate, as opposed to the specimens of the other investigated polymers. A smaller unit cell size induced a more consistent energy absorption, due to the higher plateau force. Full article
(This article belongs to the Special Issue Advanced Aerospace Composite Materials and Smart Structures)
Show Figures

Figure 1

16 pages, 15016 KB  
Article
Deformation and Energy Absorption Performance of Functionally Graded TPMS Structures Fabricated by Selective Laser Melting
by Jian Song, Mengkang Wang, Dongming Li and Jun Zhang
Appl. Sci. 2024, 14(5), 2064; https://doi.org/10.3390/app14052064 - 1 Mar 2024
Cited by 16 | Viewed by 3975
Abstract
Triply periodic minimal surface (TPMS) structures have unique geometries and excellent mechanical properties, which have attracted much attention in many fields. However, the relationship between different filling forms and different directions of functionally graded TPMS structures on energy absorption has not been fully [...] Read more.
Triply periodic minimal surface (TPMS) structures have unique geometries and excellent mechanical properties, which have attracted much attention in many fields. However, the relationship between different filling forms and different directions of functionally graded TPMS structures on energy absorption has not been fully studied. In this study, a functionally graded strategy was proposed to investigate the effect of filling form and direction gradient on the energy absorption of TPMS structures. The design of functionally graded Gyroid and Diamond TPMS cellular structures with multiple forms was characterized, and the structures were fabricated using additive manufacturing technology. The effects of uniformity and different directional gradients on the deformation and energy absorption properties of the structures were studied experimentally and numerically. According to the compression test results, it was found that different filling forms of the TPMS structure behave differently in terms of yield plateau and deformation pattern, and the sheet structures can develop a better deformation pattern to enhance energy absorption capacity. Functionally graded sheet Diamond TPMS cellular structures along the compression direction exhibit a 32% reduction in initial peak force, providing more advantages in structural deformation and energy absorption. More closely, it is possible to further reduce the initial peak force, delay the densification point, and thus increase the energy absorption capacity by designing functionally graded sheet Diamond TPMS based cellular structures. The results of this study provide valuable guidance for the design of high-performance impact-protection components. Full article
(This article belongs to the Collection Additive Manufacturing of Metal Components)
Show Figures

Figure 1

25 pages, 7771 KB  
Article
Mechanical Characterisation and Numerical Modelling of TPMS-Based Gyroid and Diamond Ti6Al4V Scaffolds for Bone Implants: An Integrated Approach for Translational Consideration
by Seyed Ataollah Naghavi, Maryam Tamaddon, Arsalan Marghoub, Katherine Wang, Behzad Bahrami Babamiri, Kavan Hazeli, Wei Xu, Xin Lu, Changning Sun, Liqing Wang, Mehran Moazen, Ling Wang, Dichen Li and Chaozong Liu
Bioengineering 2022, 9(10), 504; https://doi.org/10.3390/bioengineering9100504 - 24 Sep 2022
Cited by 66 | Viewed by 8183
Abstract
Additive manufacturing has been used to develop a variety of scaffold designs for clinical and industrial applications. Mechanical properties (i.e., compression, tension, bending, and torsion response) of these scaffolds are significantly important for load-bearing orthopaedic implants. In this study, we designed and additively [...] Read more.
Additive manufacturing has been used to develop a variety of scaffold designs for clinical and industrial applications. Mechanical properties (i.e., compression, tension, bending, and torsion response) of these scaffolds are significantly important for load-bearing orthopaedic implants. In this study, we designed and additively manufactured porous metallic biomaterials based on two different types of triply periodic minimal surface structures (i.e., gyroid and diamond) that mimic the mechanical properties of bone, such as porosity, stiffness, and strength. Physical and mechanical properties, including compressive, tensile, bending, and torsional stiffness and strength of the developed scaffolds, were then characterised experimentally and numerically using finite element method. Sheet thickness was constant at 300 μm, and the unit cell size was varied to generate different pore sizes and porosities. Gyroid scaffolds had a pore size in the range of 600–1200 μm and a porosity in the range of 54–72%, respectively. Corresponding values for the diamond were 900–1500 μm and 56–70%. Both structure types were validated experimentally, and a wide range of mechanical properties (including stiffness and yield strength) were predicted using the finite element method. The stiffness and strength of both structures are comparable to that of cortical bone, hence reducing the risks of scaffold failure. The results demonstrate that the developed scaffolds mimic the physical and mechanical properties of cortical bone and can be suitable for bone replacement and orthopaedic implants. However, an optimal design should be chosen based on specific performance requirements. Full article
(This article belongs to the Special Issue Scaffolds for Tissue Engineering and Regenerative Medicines)
Show Figures

Graphical abstract

20 pages, 37489 KB  
Article
Numerical Investigation on the Effect of Residual Stresses on the Effective Mechanical Properties of 3D-Printed TPMS Lattices
by Nissar Ahmed, Imad Barsoum and Rashid K. Abu Al-Rub
Metals 2022, 12(8), 1344; https://doi.org/10.3390/met12081344 - 12 Aug 2022
Cited by 35 | Viewed by 4912
Abstract
The layer-by-layer process of additive manufacturing (AM) is known to give rise to high thermal gradients in the built body resulting in the accumulation of high residual stresses. In the current study, a numerical investigation is conducted on the effect of residual stresses [...] Read more.
The layer-by-layer process of additive manufacturing (AM) is known to give rise to high thermal gradients in the built body resulting in the accumulation of high residual stresses. In the current study, a numerical investigation is conducted on the effect of residual stresses on the mechanical properties of IN718 triply periodic minimal surface (TPMS) lattices fabricated using the selective laser melting (SLM) process for different relative densities. The AM simulation of four different sheet- and ligament-based TPMS topologies, namely, Schwarz Primitive, Schoen Gyroid, Schoen IWP-S, and IWP-L, are performed using a sequentially coupled thermomechanical finite element model to evaluate the thermal histories and residual stress evolution throughout the SLM process. The finite element results are utilized to obtain the effective mechanical properties, such as elastic modulus, yield strength, and specific energy absorption (SEA), of the TPMS lattices while accounting for the residual stress field arising from the SLM process. The mechanical properties are correlated to relative density using the Gibson–Ashby power laws and reveal that the effect of the residual stresses on the elastic modulus of the as-built TPMS samples can be significant, especially for the Schwarz Primitive and Schoen-IWP-L TPMS topologies, when compared to the results without accounting for residual stresses. However, the effect of the residual stresses is less significant on yield strength and SEA of the TPMS samples. The work demonstrates a methodology for numerical simulations of the SLM process to quantify the influence of inherited residual stresses on the effective mechanical properties of complex TPMS topologies. Full article
(This article belongs to the Special Issue 3D Printing of Metal)
Show Figures

Figure 1

13 pages, 4660 KB  
Article
Computational Design and Characterisation of Gyroid Structures with Different Gradient Functions for Porosity Adjustment
by Leonie Wallat, Patrick Altschuh, Martin Reder, Britta Nestler and Frank Poehler
Materials 2022, 15(10), 3730; https://doi.org/10.3390/ma15103730 - 23 May 2022
Cited by 26 | Viewed by 5330
Abstract
Triply periodic minimal surface (TPMS) structures have a very good lightweight potential, due to their surface-to-volume ratio, and thus are contents of various applications and research areas, such as tissue engineering, crash structures, or heat exchangers. While TPMS structures with a uniform porosity [...] Read more.
Triply periodic minimal surface (TPMS) structures have a very good lightweight potential, due to their surface-to-volume ratio, and thus are contents of various applications and research areas, such as tissue engineering, crash structures, or heat exchangers. While TPMS structures with a uniform porosity or a linear gradient have been considered in the literature, this paper focuses on the investigation of the mechanical properties of gyroid structures with non-linear porosity gradients. For the realisation of the different porosity gradients, an algorithm is introduced that allows the porosity to be adjusted by definable functions. A parametric study is performed on the resulting gyroid structures by performing mechanical simulations in the linear deformation regime. The transformation into dimensionless parameters enables material-independent statements, which is possible due to linearity. Thus, the effective elastic behaviour depends only on the structure geometry. As a result, by introducing non-linear gradient functions and varying the density of the structure over the entire volume, specific strengths can be generated in certain areas of interest. A computational design of porosity enables an accelerated application-specific structure development in the field of engineering. Full article
(This article belongs to the Topic Numerical Modelling on Metallic Materials)
Show Figures

Figure 1

21 pages, 8357 KB  
Article
Different Approaches for Manufacturing Ti-6Al-4V Alloy with Triply Periodic Minimal Surface Sheet-Based Structures by Electron Beam Melting
by Dmitriy Khrapov, Maria Kozadayeva, Kayrat Manabaev, Alexey Panin, William Sjöström, Andrey Koptyug, Tatiana Mishurova, Sergei Evsevleev, Dietmar Meinel, Giovanni Bruno, David Cheneler, Roman Surmenev and Maria Surmeneva
Materials 2021, 14(17), 4912; https://doi.org/10.3390/ma14174912 - 29 Aug 2021
Cited by 35 | Viewed by 4059
Abstract
Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption [...] Read more.
Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. Full article
(This article belongs to the Special Issue Micro Non-destructive Testing and Evaluation)
Show Figures

Graphical abstract

25 pages, 17935 KB  
Article
Mechanical Properties of Porous Structures for Dental Implants: Experimental Study and Computational Homogenization
by Aleš Jíra, Michal Šejnoha, Tomáš Krejčí, Jan Vorel, Luboš Řehounek and Guido Marseglia
Materials 2021, 14(16), 4592; https://doi.org/10.3390/ma14164592 - 16 Aug 2021
Cited by 11 | Viewed by 3172
Abstract
A combined experimental and numerical study on titanium porous microstructures intended to interface the bone tissue and the solid homogeneous part of a modern dental implant is presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations associated with [...] Read more.
A combined experimental and numerical study on titanium porous microstructures intended to interface the bone tissue and the solid homogeneous part of a modern dental implant is presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations associated with the application of the adopted selective laser melting technology to small microstructures with a pore size of 500 μm are first examined experimentally. The measured effective elastic properties of trabecular structures made of Ti6Al4V material support the computational framework based on homogenization with the difference between the measured and predicted Young’s moduli of the Dode Thick structure being less than 5%. In this regard, the extended finite element method is promoted, particularly in light of the complex sheet gyroid studied next. While for plastic material-based structures a close match between experiments and simulations was observed, an order of magnitude difference was encountered for titanium specimens. This calls for further study and we expect to reconcile this inconsistency with the help of computational microtomography. Full article
Show Figures

Figure 1

15 pages, 5580 KB  
Article
Design and Characterization of Sheet-Based Gyroid Porous Structures with Bioinspired Functional Gradients
by Yuan Jin, Haoyu Kong, Xueyong Zhou, Guangyong Li and Jianke Du
Materials 2020, 13(17), 3844; https://doi.org/10.3390/ma13173844 - 31 Aug 2020
Cited by 60 | Viewed by 6262
Abstract
A new type of sheet porous structures with functionally gradients based on triply periodic minimal surfaces (TPMS) is proposed for designing bone scaffolds. The graded structures were generated by constructing branched features with different number of sheets. The design of the structure was [...] Read more.
A new type of sheet porous structures with functionally gradients based on triply periodic minimal surfaces (TPMS) is proposed for designing bone scaffolds. The graded structures were generated by constructing branched features with different number of sheets. The design of the structure was formulated mathematically and five types of porous structure with different structural features were used for investigation. The relative density (RD) and surface area to volume (SA/V) ratio of the samples were analyzed using a slice-based approach to confirm their relationships with design parameters. All samples were additively manufactured using selective laser melting (SLM), and their physical morphologies were observed and compared with the designed models. Compression tests were adopted to study the mechanical properties of the proposed structure from the obtained stress–strain curves. The results reveal that the proposed branched-sheet structures could enhance and diversify the physical and mechanical properties, indicating that it is a potential method to tune the biomechanical properties of porous scaffolds for bone tissue engineering (TE). Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 10232 KB  
Article
Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures with Graded Densities
by Dawei Li, Wenhe Liao, Ning Dai and Yi Min Xie
Materials 2019, 12(13), 2183; https://doi.org/10.3390/ma12132183 - 7 Jul 2019
Cited by 173 | Viewed by 10952
Abstract
Bio-inspired functionally graded cellular materials (FGCM) have improved performance in energy absorption compared with a uniform cellular material (UCM). In this work, sheet-based and strut-based gyroid cellular structures with graded densities are designed and manufactured by stereo-lithography (SLA). For comparison, uniform structures are [...] Read more.
Bio-inspired functionally graded cellular materials (FGCM) have improved performance in energy absorption compared with a uniform cellular material (UCM). In this work, sheet-based and strut-based gyroid cellular structures with graded densities are designed and manufactured by stereo-lithography (SLA). For comparison, uniform structures are also designed and manufactured, and the graded structures are generated with different gradients. The mechanical behaviors of these structures under compressive loads are investigated. Furthermore, the anisotropy and effective elastic modulus of sheet-based and strut-based unit gyroid cellular structures are estimated by a numerical homogenization method. On the one hand, it is found from the numerical results that the sheet-based gyroid tends to be isotropic, and the elastic modulus of sheet-based gyroid is larger than the strut-based gyroid at the same volume fraction. On the other hand, the graded cellular structure has novel deformation and mechanical behavior. The uniform structure exhibits overall deformation and collapse behavior, whereas the graded cellular structure shows layer-by-layer deformation and collapse behavior. Furthermore, the uniform sheet-based gyroid is not only stiffer but also better in energy absorption capacity than the uniform strut-based gyroid structure. Moreover, the graded cellular structures have better energy absorption capacity than the uniform structures. These significant findings indicate that sheet-based gyroid cellular structure with graded densities have potential applications in various industrial applications, such as in crashworthiness. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop