Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = sheet and rill erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11219 KiB  
Article
New Paradigms for Geomorphological Mapping: A Multi-Source Approach for Landscape Characterization
by Martina Cignetti, Danilo Godone, Daniele Ferrari Trecate and Marco Baldo
Remote Sens. 2025, 17(4), 581; https://doi.org/10.3390/rs17040581 - 8 Feb 2025
Cited by 3 | Viewed by 1971
Abstract
The advent of geomatic techniques and novel sensors has opened the road to new approaches in mapping, including morphological ones. The evolution of a land portion and its graphical representation constitutes a fundamental aspect for scientific and land planning purposes. In this context, [...] Read more.
The advent of geomatic techniques and novel sensors has opened the road to new approaches in mapping, including morphological ones. The evolution of a land portion and its graphical representation constitutes a fundamental aspect for scientific and land planning purposes. In this context, new paradigms for geomorphological mapping, which are useful for modernizing traditional, geomorphological mapping, become necessary for the creation of scalable digital representation of processes and landforms. A fully remote mapping approach, based on multi-source and multi-sensor applications, was implemented for the recognition of landforms and processes. This methodology was applied to a study site located in central Italy, characterized by the presence of ‘calanchi’ (i.e., badlands). Considering primarily the increasing availability of regional LiDAR products, an automated landform classification, i.e., Geomorphons, was adopted to map landforms at the slope scale. Simultaneously, by collecting and digitizing a time-series of historical orthoimages, a multi-temporal analysis was performed. Finally, surveying the area with an unmanned aerial vehicle, exploiting the high-resolution digital terrain model and orthoimage, a local-scale geomorphological map was produced. The proposed approach has proven to be well capable of identifying the variety of processes acting on the pilot area, identifying various genetic types of geomorphic processes with a nested hierarchy, where runoff-associated landforms coexist with gravitational ones. Large ancient mass movement characterizes the upper part of the basin, forming deep-seated gravity deformation, highly remodeled by a set of widespread runoff features forming rills, gullies, and secondary shallow landslides. The extended badlands areas imposed on Plio-Pleistocene clays are typically affected by sheet wash and rill and gully erosion causing high potential of sediment loss and the occurrence of earth- and mudflows, often interfering and affecting agricultural areas and anthropic elements. This approach guarantees a multi-scale and multi-temporal cartographic model for a full-coverage representation of landforms, representing a useful tool for land planning purposes. Full article
Show Figures

Figure 1

26 pages, 14774 KiB  
Article
Assessing the Global Sensitivity of RUSLE Factors: A Case Study of Southern Bahia, Brazil
by Mathurin François, Camila A. Gordon, Ulisses Costa de Oliveira, Alain N. Rousseau and Eduardo Mariano-Neto
Soil Syst. 2024, 8(4), 125; https://doi.org/10.3390/soilsystems8040125 - 2 Dec 2024
Cited by 1 | Viewed by 2064
Abstract
Global sensitivity analysis (GSA) of the revised universal soil loss equation (RUSLE) factors is in its infancy but is crucial to rank the importance of each factor in terms of its non-linear impact on the soil erosion rate. Hence, the goal of this [...] Read more.
Global sensitivity analysis (GSA) of the revised universal soil loss equation (RUSLE) factors is in its infancy but is crucial to rank the importance of each factor in terms of its non-linear impact on the soil erosion rate. Hence, the goal of this study was to perform a GSA of each factor of RUSLE for a soil erosion assessment in southern Bahia, Brazil. To meet this goal, three non-linear topographic factor (LS factor) equations alternately implemented in RUSLE, coupled with geographic information system (GIS) software and a variogram analysis of the response surfaces (VARSs), were used. The results showed that the average soil erosion rate in the Pardo River basin was 25.02 t/ha/yr. In addition, the GSA analysis showed that the slope angle which is associated with the LS factor was the most sensitive parameter, followed by the cover management factor (C factor) and the support practices factor (P factor) (CP factors), the specific catchment area (SCA), the sheet erosion (m), the erodibility factor (K factor), the rill (n), and the erosivity factor (R factor). The novelty of this work is that the values of parameters m and n of the LS factor can substantially affect this factor and, thus, the soil loss estimation. Full article
Show Figures

Figure 1

18 pages, 12585 KiB  
Article
Soil Erosion in Taiwan
by Walter Chen, Kieu Anh Nguyen and Yu-Chieh Huang
Agriculture 2023, 13(10), 1945; https://doi.org/10.3390/agriculture13101945 - 5 Oct 2023
Cited by 2 | Viewed by 3865
Abstract
Soil erosion is a complex process involving material detachment, transportation (mainly by water, occasionally by wind), and eventual deposition when energy wanes. Human activities like tillage and construction can exacerbate soil erosion. Various forms of water erosion, such as sheet erosion, pedestal erosion, [...] Read more.
Soil erosion is a complex process involving material detachment, transportation (mainly by water, occasionally by wind), and eventual deposition when energy wanes. Human activities like tillage and construction can exacerbate soil erosion. Various forms of water erosion, such as sheet erosion, pedestal erosion, rills, piping, and gullying, are recognized. This pioneering study aims to comprehensively model water erosion across Taiwan at a 20 m spatial resolution, a departure from previous research focusing on smaller scales. Using the Revised Universal Soil Loss Equation (RUSLE) model, it seeks to examine the significant issue of soil erosion in Taiwan beyond agricultural areas and enable cross-regional comparisons. A large number of stations and the most recent data were used to establish the distributions of the rainfall runoff erosivity factor and the soil erodibility factor. In addition, we used the Google Earth Engine (GEE) to calculate the Normalized Difference Vegetation Index (NDVI) and a locally derived empirical equation to compute the cover-management factor. The topographic factor was determined using the System for Automated Geoscientific Analyses (SAGA). The support practice factor was analyzed using two different methods using datasets on World Urban Areas and Global Urban Boundaries from the literature. The analysis showed that despite the difference in the support practice factor, Taiwan’s resulting average yearly soil erosion rates are very similar (200.7 Mg ha−1 year−1 and 207.4 Mg ha−1 year−1). The amounts were validated against five watersheds that were instrumented with erosion pins. With prediction ratios ranging from 1.04 to 1.82 across four of the five watersheds, our findings provide empirical support for the alignment of our model with soil erosion pin measurements, especially within the Tsengwen reservoir watershed. However, it is noteworthy that these results also exhibit a tendency towards conservative estimations in the remaining watersheds. Our calculated estimate, falling within the range of 201–207 Mg ha−1 year−1, plausibly represents the upper limit of mean soil erosion in Taiwan. This assertion is predicated on the deliberate omission of local soil conservation measures from our study, a decision necessitated by the absence of comprehensive and detailed island-wide data. Despite this limitation, our results instill confidence in the robustness of our methodological approach, thereby suggesting that our estimation of soil erosion in Taiwan provides a reliable approximation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 2538 KiB  
Article
Characteristics of Soil Organic Carbon (SOC) Loss with Water Erosion in Sloping Farmland of Southwestern China during Maize (Zea mays L.) Growth Stages
by Zhouyao He, Hang Xu, Shuqin He, Xinlan Liang, Zicheng Zheng, Ziteng Luo, Yong Wang, Yunqi Zhang and Bo Tan
Agronomy 2023, 13(3), 738; https://doi.org/10.3390/agronomy13030738 - 1 Mar 2023
Cited by 5 | Viewed by 2133
Abstract
Due to frequent human disturbance and the influence of crop growth and development, the migration of soil organic carbon (SOC) in sloping farmland is considerably different to those in other ecosystems. The impacts of maize over its entire growth period on the SOC [...] Read more.
Due to frequent human disturbance and the influence of crop growth and development, the migration of soil organic carbon (SOC) in sloping farmland is considerably different to those in other ecosystems. The impacts of maize over its entire growth period on the SOC loss in sloping farmland on purple soils under different erosion stages were investigated, in 2016. This was undertaken using rainfall simulation tests on 15° slopes with a rainfall intensity of 1.5 mm·min−1, in Sichuan Province, China. In this study, erosion development, fluctuating increasing trends in the surface runoff yield, interflow runoff yield, sediment yield, and dissolved organic carbon (DOC) migration flux were observed. Opposite trends were observed in the DOC mass concentration, total soil organic carbon (TOC) content of the sediment, the SOC content of sediment particle state, the DOC content of the sediment, and the SOC enrichment ratio. The DOC migration flux in the surface runoff and in interflow of the rill erosion stage was 1.39–2.84, 3.22–7.78 times significantly higher than that of the sheet erosion stage at each maize growth stage, respectively (p < 0.05). The average DOC mass concentration in the surface runoff, the total DOC content of the sediment, and the SOC enrichment ratio in the sheet erosion stage increased by 100.58–146.44%, 44.44–126.15%, 141.32–191.26%, respectively, compared with the rill erosion stage. Under the experimental conditions, we found that DOC loss mainly occurred at the seedling and mature stages for maize. We also found that maize growth could promote the production of soil interflow, leading to intense soil loss occurring at the subsurface. Compared with DOC mass concentrations in the surface runoff, there was an increase of 4.90–28.29% in the soil interflow, indicating that soil interflow plays a more important role in DOC loss. The growth of maize could impact formation of surface runoff and interflow, reducing the loss of SOC caused by soil erosion. This study helps to understand the carbon loss process in agricultural production in purple soil areas. Full article
Show Figures

Figure 1

15 pages, 4592 KiB  
Article
Hydraulic Conditions of Incipient Rill by Raindrop-Induced Overland Flow on Steep Slopes of Sandy Soil
by Seung Sook Shin, Sang Deog Park, Young Ju Sim and Jae Hyeon Ryu
Water 2023, 15(3), 502; https://doi.org/10.3390/w15030502 - 27 Jan 2023
Cited by 2 | Viewed by 2542
Abstract
Hydraulic characteristics of rill incipience on steep slopes with sandy soils are different from those of gentle slopes in the mountainous watersheds. In other to better understand the processes of the incision and expansion of rill, rainfall simulations were conducted in a laboratory [...] Read more.
Hydraulic characteristics of rill incipience on steep slopes with sandy soils are different from those of gentle slopes in the mountainous watersheds. In other to better understand the processes of the incision and expansion of rill, rainfall simulations were conducted in a laboratory soil box with an inflow device installed at the top of the steep slope. The location and shape of the rill incision were tested with respect to different slopes (20, 24, and 28°), rainfall intensity (80 and 100 mm/h), and segment distances with various inflow rates (0.0, 8.8, 17.5, and 26.3 ml/s). The result showed that rills with heatcut were mostly incised on the 2.4 m segments and progressively moved upslope on the 3.2 m segments. The steps of rill evolution with increase of inflow are identified as four stages; (1) sheet flow with impact of raindrops, (2) overland flow with flowpaths, (3) microrill with headcut incision, and (4) rill enhanced by headcut expansion. It appears that incision and headcut of rill is prevalent when the Froude number (Fr) changes from subcritical flow to supercritical flow and the maximum velocity of rill reaches over 0.065 m/s. Unit stream power using the maximum velocity of rill was the best parameter for estimating rill erosion as rill evolution greatly depends on maximum velocity of the local flow enhanced by rill incision and expansion As a result, it was found that critical conditions for rill incipient of sandy soils on steep slope are observed greater than those of loamy soils or gentle slopes. Full article
Show Figures

Figure 1

30 pages, 10002 KiB  
Article
Improving the Modified Universal Soil Loss Equation by Physical Interpretation of Its Factors
by Manaye Getu Tsige, Andreas Malcherek and Yilma Seleshi
Water 2022, 14(9), 1450; https://doi.org/10.3390/w14091450 - 1 May 2022
Cited by 11 | Viewed by 4328
Abstract
A primary objective of this paper is to change the input data requirement of the Modified Universal Soil Loss Equation (MUSLE) for the calculation of its runoff factor for possible application in data-scarce areas. Basically, the MUSLE was developed for a small agricultural [...] Read more.
A primary objective of this paper is to change the input data requirement of the Modified Universal Soil Loss Equation (MUSLE) for the calculation of its runoff factor for possible application in data-scarce areas. Basically, the MUSLE was developed for a small agricultural watershed, where the extent of erosion is from sheet to rill erosion, but we cannot exactly tell whether it considers gully erosion or not. The underlying physical assumption to improve the MUSLE is that the amount of potential energy of runoff is proportional to the shear stress for sediment transport from a slope field and the kinetic energy of the runoff at the bottom of the slope field for gully formation. The improved MUSLE was tested at four watersheds in Ethiopia, and it showed better performance (i.e., the minimum performance is 84%) over the original MUSLE (i.e., the minimum performance was 80%), for all four watersheds under our consideration. We expect the same to be true for other watersheds of Ethiopia. Full article
(This article belongs to the Special Issue Research on Soil Erosion and Sediment Transport in Catchment)
Show Figures

Figure 1

15 pages, 8354 KiB  
Article
Las2DoD: Change Detection Based on Digital Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty
by Gene Bailey, Yingkui Li, Nathan McKinney, Daniel Yoder, Wesley Wright and Robert Washington-Allen
Remote Sens. 2022, 14(7), 1537; https://doi.org/10.3390/rs14071537 - 22 Mar 2022
Cited by 13 | Viewed by 3489
Abstract
The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models [...] Read more.
The advances of remote sensing techniques allow for the generation of dense point clouds to detect detailed surface changes up to centimeter/millimeter levels. However, there is still a need for an easy method to derive such surface changes based on digital elevation models generated from dense point clouds while taking into consideration spatial varied uncertainty. We present a straightforward method, Las2DoD, to quantify surface change directly from point clouds with spatially varied uncertainty. This method uses a cell-based Welch’s t-test to determine whether each cell of a surface experienced a significant elevation change based on the points measured within the cell. Las2DoD is coded in Python with a simple graphic user interface. It was applied in a case study to quantify hillslope erosion on two plots: one dominated by rill erosion, and the other by sheet erosion, in southeastern United States. The results from the rilled plot indicate that Las2DoD can estimate 90% of the total measured sediment, in comparison to 58% and 70% from two other commonly used methods. The Las2DOD-derived result is less accurate (65%) but still outperforms the other two methods (30% and 48%) for the plot dominated by sheet erosion. Las2DoD captures more low-magnitude changes and is particularly useful where surface changes are small but contribute significantly to the total surface change when summed. Full article
Show Figures

Figure 1

17 pages, 17806 KiB  
Article
Soil Erosion and Deposition in a Taiwanese Watershed Using USPED
by Walter Chen, Wu-Hsun Wang and Kieu Anh Nguyen
Sustainability 2022, 14(6), 3397; https://doi.org/10.3390/su14063397 - 14 Mar 2022
Cited by 8 | Viewed by 3379
Abstract
Soil erosion is a global problem that has been exacerbated in recent decades by global warming and the increased frequency of extreme weather events. It is also a global issue addressed by the United Nations’ Sustainable Development Goal #15 that seeks to recover [...] Read more.
Soil erosion is a global problem that has been exacerbated in recent decades by global warming and the increased frequency of extreme weather events. It is also a global issue addressed by the United Nations’ Sustainable Development Goal #15 that seeks to recover degraded land and create a world free of land degradation by 2030. In this study, we used the Unit Stream Power-based Erosion Deposition (USPED) model to investigate the distribution of soil erosion and deposition in an important reservoir watershed in Taiwan, which is known to have a high risk of sediment hazard. We found the average soil erosion rate to be 136.4 Mg/ha/year using the model’s recommended m = 1.3 and n = 1.2 empirical coefficients for a combined occurrence of sheet and rill erosion. Additionally, we selected the Sule sub-watershed and the Kala area as examples to illustrate the pattern of soil erosion and deposition and their relationship to rivers, roadways, and anthropogenic activity, and 3D terrain was employed to further enhance visualization of the model output. It was estimated that 12.6% of eroded soil was deposited with a 200 m buffer of the rivers in the watershed and might be swept into the river system by the next typhoon, torrential rain, landslide, or earthquake. In comparison to previous USLE- and RUSLE-based soil erosion modeling in the same research area, our USPED modeling is unique in that it included the amount and distribution of soil deposition. This successful implementation of USPED in Taiwan establishes a new modeling alternative in addition to the widely used USLE and RUSLE models. The findings can be used to direct future erosion pin placement in the research area, allowing for improved monitoring of sediment movement and avoiding sediment hazards. Full article
Show Figures

Figure 1

21 pages, 7410 KiB  
Article
SMODERP2D—Sheet and Rill Runoff Routine Validation at Three Scale Levels
by Petr Kavka, Jakub Jeřábek and Martin Landa
Water 2022, 14(3), 327; https://doi.org/10.3390/w14030327 - 23 Jan 2022
Cited by 9 | Viewed by 3325
Abstract
Water erosion is the main cause of soil degradation in agricultural areas. Rill erosion can contribute vastly to the overall erosion rate. It is therefore crucial to identify areas prone to rill erosion in order to protect soil quality. Research on rainfall-runoff and [...] Read more.
Water erosion is the main cause of soil degradation in agricultural areas. Rill erosion can contribute vastly to the overall erosion rate. It is therefore crucial to identify areas prone to rill erosion in order to protect soil quality. Research on rainfall-runoff and subsequent sediment transport processes is often based on observing these processes at several scales, followed by a mathematical description of the observations. This paper presents the use of a combination of data obtained by different approaches at multiple scales to validate the SMODERP2D episodic hydrological-erosion model. This model describes infiltration, surface retention, surface runoff, and rill flow processes. In the model, the surface runoff generation is based on a water balance equation and is described by two separate processes: (a) for sheet flow, the model uses the kinematic wave approximation, which has been parameterized for individual soil textural classes using laboratory rainfall simulations, and (b) for rill flow, the Manning formula is used. Rill flow occurs if the critical water level of sheet flow is exceeded. The concept of model validation presented here uses datasets at different scales to study the surface runoff and erosion processes on the Býkovice agricultural catchment. The first dataset consisted of runoff generated by simulated rainfall on plots with dimensions of 2 × 8 m. The second dataset consisted of the runoff response to natural rainfall events obtained from long-term monitoring of 50 m2 plots. These two datasets were used to validate and calibrate the sheet flow and infiltration parameters. The third dataset consisted of occurrence maps of rills formed during heavy rainfalls obtained using remote sensing methods on a field plot with an area of 36.6 ha. This last dataset was used to validate the threshold critical water level that is responsible in the model for rill flow initiation in the SMODERP2D model. The validation and the calibration of the surface runoff are performed well according to the Nash–Sutcliffe efficiency coefficient. The scale effect was evident in the 50 m2 plots where parameters lower than the mean best fit the measured data. At the field plot scale, pixels with measured rills covered 5% of the total area. The best model solution achieved a similar rill cover for a vegetated soil surface. The model tended to overestimate the occurrence of rills in the case of simulations with bare soil. Although rills occurred both in the model and in the monitored data in many model runs, a spatial mismatch was often observed. This mismatch was caused by flow routing algorithm displacement of the runoff path. The suitability of the validation and calibration process at various spatial scales has been demonstrated. In a future study, data will be obtained from various localities with various land uses and meteorological conditions to confirm the transferability of the procedure. Full article
(This article belongs to the Special Issue Modelling of Soil Conservation, Soil Erosion and Sediment Transport)
Show Figures

Figure 1

22 pages, 2667 KiB  
Article
Sediment Budgets for Small Salinized Agricultural Catchments in Southwest Australia and Implications for Phosphorus Transport
by Robert J. Wasson and David M. Weaver
Water 2021, 13(24), 3564; https://doi.org/10.3390/w13243564 - 13 Dec 2021
Cited by 1 | Viewed by 2434
Abstract
Examples of sediment budgets are needed to document the range of budget types and their controls. Sediment budgets for three small agricultural catchments (7.6 to 15.6 km2) in southwestern Australia are dominated by channel and gully erosion, with sheet and rill [...] Read more.
Examples of sediment budgets are needed to document the range of budget types and their controls. Sediment budgets for three small agricultural catchments (7.6 to 15.6 km2) in southwestern Australia are dominated by channel and gully erosion, with sheet and rill erosion playing a subordinate role. Erosion was increased by clearing naturally swampy valley floors and hillslopes for agriculture and grazing, and episodic intense rainstorms. The proportion of sediment from channel and gully erosion in the sediment budget appears to be determined by the depth of alluvial fills. Dryland salinization caused by clearing native vegetation has connected hillslopes to channels across narrow floodplains, increasing the Sediment Delivery Ratio (SDR). Yield and SDR are found to be insensitive to major in-catchment changes of vegetation cover after initial clearing, the ratio of sheet and rill erosion/channel and gully erosion, and sediment storage masses. This supports the idea that yield alone is often a poor indicator of the impact of land use and land management change. Riparian vegetation would reduce sediment yield but not phosphorus yield. This study demonstrates the value of mixed methods where field observations and chemical analysis are combined with information from local people. Full article
(This article belongs to the Special Issue Effect of Soil Erosion on the Water Environment)
Show Figures

Figure 1

17 pages, 7655 KiB  
Article
Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya
by Benjamin Kipkemboi Kogo, Lalit Kumar and Richard Koech
Sustainability 2020, 12(22), 9740; https://doi.org/10.3390/su12229740 - 22 Nov 2020
Cited by 42 | Viewed by 6443
Abstract
This study examined the impact of land use/cover changes on soil erosion in western Kenya in the years 1995 and 2017. The study used the GIS-based Revised Universal Soil Loss Equation (RUSLE) modelling approach and remote sensing assessment. The results showed that the [...] Read more.
This study examined the impact of land use/cover changes on soil erosion in western Kenya in the years 1995 and 2017. The study used the GIS-based Revised Universal Soil Loss Equation (RUSLE) modelling approach and remote sensing assessment. The results showed that the average soil loss through sheet, rill and inter-rill soil erosion processes was 0.3 t/ha/y and 0.5 t/ha/y, in the years 1995 and 2017, respectively. Of the total soil loss, farms contributed more than 50%, both in 1995 and 2017 followed by grass/shrub (7.9% in 1995 and 11.9% in 2017), forest (16% in 1995 and 11.4% in 2017), and the least in built-up areas. The highest soil erosion rates were observed in farms cleared from forests (0.84 tons/ha) followed by those converted from grass/shrub areas (0.52 tons/ha). The rate of soil erosion was observed to increase with slope due to high velocity and erosivity of the runoff. Areas with high erodibility in the region are found primarily in slopes of more than 30 degrees, especially in Mt. Elgon, Chereng’anyi hills and Elgeyo escarpments. This study forms the first multi-temporal assessment to explore the extent of soil erosion and seeks to provide a useful knowledge base to support decision-makers in developing strategies to mitigate soil erosion for sustainable crop production. Full article
(This article belongs to the Special Issue Impacts of Land Tenure Systems on Land Use Sustainability)
Show Figures

Figure 1

17 pages, 4910 KiB  
Article
Spatial-Temporal Dynamics of the Ephemeral Gully Belt on the Plowed Slopes of River Basins in Natural and Anthropogenic Landscapes of the East of the Russian Plain
by Oleg Yermolayev, Evgeniya Platoncheva and Benedict Essuman-Quainoo
Geosciences 2020, 10(5), 167; https://doi.org/10.3390/geosciences10050167 - 6 May 2020
Cited by 10 | Viewed by 2906
Abstract
Erosion is the leading process of soil degradation on agricultural land. In the spectrum of erosion processes, the most unfavorable for soil degradation are the processes of linear (ephemeral and gully) erosion. An assessment of the dynamics of linear erosion in the intensive [...] Read more.
Erosion is the leading process of soil degradation on agricultural land. In the spectrum of erosion processes, the most unfavorable for soil degradation are the processes of linear (ephemeral and gully) erosion. An assessment of the dynamics of linear erosion in the intensive farming zone of the European part of Russia (EPR) is relevant due to the lack of generalized data on the development of this type of erosion in the post-Soviet period and also, due to the highest intensity of soil erosion in the ephemeral gully erosion. The development of information technologies and the availability of high-resolution and ultra-high-resolution satellite images make it possible to solve the problems of ephemeral gully erosion belts identification, and also makes it possible to trace the dynamics of development of stream erosion on arable lands over a period characterized by the greatest changes in the climate system and economic conditions in the post-Soviet period (1980s–2010s). The study was conducted on the eastern wing of the boreal ecotone of the Russian Plain within the southern border of these zones of mixed and broad-leaved forests, forest-steppe, and steppe landscapes using the basin approach. For the initial material, satellite images of medium (30 m) and high resolution (0.5–1.5 m) were used in the work. The study used methods of image interpretation such as remote sensing of the earth and geoinformation mapping. For 70 key areas (interfluve spaces of river basins), the study developed a method of geoinformation mapping of the ephemeral gully erosion belt dynamics on arable lands. In the same way, the research developed a system of quantitative indicators characterizing its development on arable slopes. The dynamics of ephemeral gully erosion was evaluated over three-time intervals: the 1980s, 2000s, and 2010s by determining the horizontal dissection (density) and density of ephemeral gully erosion. Over the past 30 years, in the direction from the south of the forest sub-zone to the forest-steppe and steppe landscapes, there was a sharp increase in the horizontal dissection and density of the ephemeral gully network: an average of 4.6 and 10 times, respectively. The ephemeral gully erosion belt advances toward the watershed because of the formation of new erosion in the upper parts of the ephemeral gully networks and its extension, while there is a noticeable reduction in the width of the erosion-weakly active belt-sheet and rill erosion. Full article
(This article belongs to the Special Issue Geography and Geoecology of Rivers and River Basins)
Show Figures

Figure 1

17 pages, 4792 KiB  
Article
Towards an Assessment of the Ephemeral Gully Erosion Potential in Greece Using Google Earth
by Christos Karydas and Panos Panagos
Water 2020, 12(2), 603; https://doi.org/10.3390/w12020603 - 23 Feb 2020
Cited by 37 | Viewed by 6226
Abstract
Gully erosion may cause considerable soil losses and produce large volumes of sediment. The aim of this study was to perform a preliminary assessment on the presence of ephemeral gullies in Greece by sampling representative cultivated fields in 100 sites randomly distributed throughout [...] Read more.
Gully erosion may cause considerable soil losses and produce large volumes of sediment. The aim of this study was to perform a preliminary assessment on the presence of ephemeral gullies in Greece by sampling representative cultivated fields in 100 sites randomly distributed throughout the country. The almost 30-ha sampling surfaces were examined with visual interpretation of multi-temporal imagery from the online Google Earth for the period 2002–2019. In parallel, rill and sheet erosion signs, land uses, and presence of terraces and other anti-erosion features, were recorded within every sample. One hundred fifty-three ephemeral gullies were identified in total, inside 22 examined agricultural surfaces. The mean length of the gullies was 55.6 m, with an average slope degree of 9.7%. Vineyards showed the largest proportion of gullies followed by olive groves and arable land, while pastures exhibited limited presence of gullies. Spatial clusters of high gully severity were observed in the north and east of the country. In 77% of the surfaces with gullies, there were no terraces, although most of these surfaces were situated in slopes higher than 8%. It was the first time to use visual interpretation with Google Earth image time-series on a country scale producing a gully erosion inventory. Soil conservation practices such as contour farming and terraces could mitigate the risk of gully erosion in agricultural areas. Full article
(This article belongs to the Special Issue The Effect of Hydrology on Soil Erosion)
Show Figures

Figure 1

1 pages, 135 KiB  
Abstract
Use of Air-Based Photogrammetry for Soil Erosion Assessment
by Marx L. N. Silva, Bernardo M. Cândido, John N. Quinton and Michael R. James
Proceedings 2019, 30(1), 5; https://doi.org/10.3390/proceedings2019030005 - 1 Nov 2019
Viewed by 1854
Abstract
Water erosion affects all types of soils around the world at different intensities. However, in the tropics, water-based processes are the most important of the erosion processes and have received much attention in the last decades. Understanding and quantifying the processes involved in [...] Read more.
Water erosion affects all types of soils around the world at different intensities. However, in the tropics, water-based processes are the most important of the erosion processes and have received much attention in the last decades. Understanding and quantifying the processes involved in each type of water erosion (sheet, rill and gully erosion) is key to developing and managing soil conservation and erosion mitigation strategies. This study aims to investigate the efficiency of unmanned aerial vehicle (UAV) structure-from-motion (SfM) photogrammetry for soil erosion assessment, as well as to address some gaps in our understanding of the evolution of erosive processes. For the first time, we used a UAV-SfM technique to evaluate the relative contribution of different types of erosion (sheet, rill and gully sidewall) in gully development. This was possible due to the millimetric level of precision of the point clouds produced, which allowed us to evaluate the contribution of laminar erosion as a new component to gullies studies. As a result, it was possible to quantify sediment volumes stored in the channels and lost from the gully system, as well as to determine the main sediment sources. The UAV-SfM proved to be effective for detailed gully monitoring, with the results suggesting that the main source of sediments in the gully was mass movement, followed by rills and sheet erosion. Our findings support the use of UAV-based photogrammetry as a sufficiently precise tool for detecting soil surface change, which can be used to assess water erosion in its various forms. In addition, UAV-SfM has proven to be a very useful technique for monitoring soil erosion over time, especially in hard-to-reach areas. Full article
(This article belongs to the Proceedings of TERRAenVISION 2019)
27 pages, 15087 KiB  
Article
Identification and Mapping of Soil Erosion Processes Using the Visual Interpretation of LiDAR Imagery
by Petra Đomlija, Sanja Bernat Gazibara, Željko Arbanas and Snježana Mihalić Arbanas
ISPRS Int. J. Geo-Inf. 2019, 8(10), 438; https://doi.org/10.3390/ijgi8100438 - 5 Oct 2019
Cited by 25 | Viewed by 6319
Abstract
Soil erosion processes are a type of geological hazard. They cause soil loss and sediment production, landscape dissection, and economic damage, which can, in the long term, result in land abandonment. Thus, identification of soil erosion processes is necessary for sustainable land management [...] Read more.
Soil erosion processes are a type of geological hazard. They cause soil loss and sediment production, landscape dissection, and economic damage, which can, in the long term, result in land abandonment. Thus, identification of soil erosion processes is necessary for sustainable land management in an area. This study presents the potential of visual interpretation of high resolution LiDAR (light detection and ranging) imagery for direct and unambiguous identification and mapping of soil erosion processes, which was tested in the study area of the Vinodol Valley (64.57 km2), in Croatia. Eight LiDAR images were derived from the 1 m airborne LiDAR DTM (Digital Terrain Model) and were used to identify and map gully erosion, sheet erosion, and the combined effect of rill and sheet erosion, with the ultimate purpose to create a historical erosion inventory. The two-step procedure in a visual interpretation of LiDAR imagery was performed: preliminary and detailed. In the preliminary step, possibilities and limitations for unambiguous identification of the soil erosion processes were determined for representative portions of the study area, and the exclusive criteria for the accurate and precise manual delineation of different types of erosion phenomena were established. In the detailed step, the findings from the preliminary step were used to map the soil erosion phenomena in the entire studied area. Results determined the highest potential for direct identification and mapping of the gully erosion phenomena. A total of 236 gullies were identified and precisely delineated, although most of them were previously unknown, due to the lack of previous investigations on soil erosion processes in the study area. On the other hand, the used method was proven to be inapplicable for direct identification and accurate mapping of the sheet erosion. Sheet erosion, however, could have been indirectly identified on certain LiDAR imagery, based on recognition of colluvial deposits accumulated at the foot of the eroded slopes. Furthermore, the findings of this study present which of the used LiDAR imagery, and what features of the imagery used, are most effective for identification and mapping of different types of erosion processes. Full article
Show Figures

Graphical abstract

Back to TopTop