Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = shear–tension tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2145 KiB  
Article
Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand
by Ali Asgari, Mohammad Ali Arjomand, Mohsen Bagheri, Mehdi Ebadi-Jamkhaneh and Yashar Mostafaei
Buildings 2025, 15(15), 2683; https://doi.org/10.3390/buildings15152683 - 30 Jul 2025
Viewed by 216
Abstract
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm [...] Read more.
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm were performed, including six compression tests and seven tension tests with different pitches (Dh =13, 20, and 25 mm). The tested helical piles with a helix diameter of 51 mm were considered, and the interhelix spacing approximately ranged between two and four times the helix diameter. Through laboratory testing techniques, the Shahriyar dense sand properties were identified. Alongside theoretical analyses of helical piles, the tensile and compressive pile load tests outcomes in dense sand with a relative density of 70% are presented. It was found that the maximum capacities of the compressive and tensile helical piles were up to six and eleven times that of the shaft capacity, respectively. With an increasing number of helices, the settlement reduced, and the bearing capacity increased. Consequently, helical piles can be manufactured in smaller sizes compared to steel piles. Overall, the compressive capacities of helical piles were higher than the tensile capacities under similar conditions. Single-helices piles with a pitch of 20 mm and double-helices piles with a pitch of 13 mm were more effective than others. Therefore, placing helices at the shallower depths and using smaller pitches result in better performance. In this study, when compared to values from the L1–L2 method, the theoretical method slightly underestimates the ultimate compression capacity and both overestimates and underestimates the uplift capacity for single- and double-helical piles, respectively, due to the individual bearing mode and cylindrical shear mode. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 14358 KiB  
Article
Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete
by Yupeng Xu, Fei Geng, Haoxiang Luan, Jun Chen, Hangli Yang and Peiwei Gao
Buildings 2025, 15(15), 2655; https://doi.org/10.3390/buildings15152655 - 27 Jul 2025
Viewed by 319
Abstract
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and [...] Read more.
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and pore structure of MRC, or establish a systematic calibration methodology. In this study, PFC 3D was employed to establish a randomly polyhedral RA composite model and an MRC model. A systematic methodology for parameter testing and calibration was proposed, and compressive test simulations were conducted on the MRC model. The model incorporated all components of MRC, including three types of ITZs, achieving an aggregate volume fraction of 57.7%. Errors in simulating compressive strength and elastic modulus were 3.8% and 18.2%, respectively. Compared to conventional concrete, MRC exhibits larger strain and a steeper post-peak descending portion in stress–strain curves. At peak stress, stress is concentrated in the central region and the surrounding arc-shaped zones. After peak stress, significant localized residual stress persists within specimens; both toughness and toughness retention capacity increase with rising porosity and declining compressive strength. Failure of MRC is dominated by tension rather than shear, with critical bonds determining strength accounting for only 1.4% of the total. The influence ranking of components on compressive strength is as follows: ITZ (new paste–old paste) > ITZ (new paste–natural aggregates) > new paste > old paste > ITZ (old paste–natural aggregates). The Poisson’s ratio of MRC (0.12–0.17) demonstrates a negative correlation with porosity. Predictive formulas for peak strain and elastic modulus of MRC were established, with errors of 2.6% and 3.9%, respectively. Full article
(This article belongs to the Special Issue Advances in Modeling and Characterization of Cementitious Composites)
Show Figures

Figure 1

20 pages, 5957 KiB  
Article
Plasticity and Fracture Behavior of High-Strength Bolts Considering Steel Shear Behavior
by Yajun Zhang, Longteng Liang, Jian Zhu and Ruilin Zhang
Buildings 2025, 15(14), 2430; https://doi.org/10.3390/buildings15142430 - 10 Jul 2025
Viewed by 271
Abstract
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon [...] Read more.
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon test into the finite element method cannot properly predict the shear behavior of high-strength bolts. Cylindrical tensile coupons and shear specimens of common and weathering high-strength bolts are tested to obtain the complete tensile and shear responses. The combined S-V model and the modified shear constitutive model are collaboratively used to calibrate and describe the tensile and shear constitutive relations of high-strength bolts, and then the Bao–Wierzbicki model is used to predict the tensile and shear fracture behaviors. Furthermore, the collaborating method is used to discuss the applicable range of tensile and shear constitutive models for high-strength bolts under a tensile–shear coupling load, based on numerical analysis against available experimental data in the literature. The loading angle of 30° along the bolt rod is defined as the cut-off to differentiate high-strength bolts under a tensile- or shear-dominated state, and the corresponding mechanical responses of high-strength bolts can be predicted well based on the tensile and shear constitutive models, respectively. Full article
Show Figures

Figure 1

33 pages, 11163 KiB  
Article
3D Modular Construction Made of Precast SFRC-Stiffened Panels
by Sannem Ahmed Salim Landry Sawadogo, Tan-Trung Bui, Abdelkrim Bennani, Dhafar Al Galib, Pascal Reynaud and Ali Limam
Infrastructures 2025, 10(7), 176; https://doi.org/10.3390/infrastructures10070176 - 7 Jul 2025
Viewed by 404
Abstract
A new concept of a 3D volumetric module, made up of six plane stiffened self-compacting fiber-reinforced concrete (SFRC) panels, is here studied. Experimental campaigns are carried out on SFRC material and on the thin-slab structures used for this modular concept. The high volume [...] Read more.
A new concept of a 3D volumetric module, made up of six plane stiffened self-compacting fiber-reinforced concrete (SFRC) panels, is here studied. Experimental campaigns are carried out on SFRC material and on the thin-slab structures used for this modular concept. The high volume of steel fibers (80 kg/m3) used in the formulation of this concrete allow a positive strain hardening to be obtained in the post-cracking regime observed on the bending characterization tests. The high mechanical material characteristics, obtained both in tension and compression, allow a significant decrease in the module slabs’ thickness. The tests carried out on the 7 cm thick slab demonstrate a high load-bearing capacity and ductility under bending loading; this is also the case for shear loading configuration, although without any shear reinforcements. Numerical simulations of the material mechanical tests were conducted using Abaqus code; the results corroborate the experimental findings. Then, simulations were also conducted at the structural level, mainly to evaluate the behavior and the bearing capacity of the thin 3D module stiffened slabs. Finally, knowing that the concrete module truck transport can be a weak point, the decelerations induced during transportation were characterized and the integrity of the largest 3D module was demonstrated. Full article
(This article belongs to the Special Issue Seismic Performance Assessment of Precast Concrete)
Show Figures

Figure 1

21 pages, 565 KiB  
Article
Efficacy of Manual Therapy and Electrophysical Modalities for Treatment of Cubital Tunnel Syndrome: A Randomized Interventional Trial
by Michał Wieczorek and Tomasz Wolny
Life 2025, 15(7), 1059; https://doi.org/10.3390/life15071059 - 2 Jul 2025
Viewed by 500
Abstract
The aim of this study was to evaluate the efficacy of manual therapy based on neurodynamic techniques and electrophysical modalities in the conservative treatment of cubital tunnel syndrome (CuTS). A total of 128 upper limbs affected by CuTS were initially enrolled in this [...] Read more.
The aim of this study was to evaluate the efficacy of manual therapy based on neurodynamic techniques and electrophysical modalities in the conservative treatment of cubital tunnel syndrome (CuTS). A total of 128 upper limbs affected by CuTS were initially enrolled in this study, with 82 completing the full treatment protocol. The participants were divided into the following two intervention arms: the first arm (MT) (42 arms) received therapy based on sliding and tensioning neurodynamic techniques, while the second arm (EM) (40 arms) underwent physiotherapy based on electrophysical modalities, specifically low-level laser therapy (LLLT) and ultrasound therapy (US). Chi2 and Student’s t-test were used to compare the intervention arms, and no statistically significant differences were found. The evaluated outcomes included nerve conduction testing, ultrasound assessments (measuring cross-sectional area and shear modulus), pain levels, two-point discrimination, thresholds for cutaneous sensory perception, symptom severity, functional ability in specific tasks, and overall post-treatment improvement. Baseline comparisons indicated no statistically significant differences in any measured variables between the intervention groups (p > 0.05). Following treatment, each group exhibited significant improvements in their respective parameters (p < 0.01). Comparisons between groups post-intervention revealed statistically significant differences in nerve conduction results, ultrasound measurements (cross-sectional area and shear modulus), two-point discrimination, and sensory perception thresholds. These parameters improved more in the MT intervention arm. The use of neurodynamic techniques, ultrasound, and low-level laser therapy in the conservative treatment of mild to moderate forms of CuTS has a beneficial therapeutic effect. Full article
(This article belongs to the Special Issue Physical Rehabilitation for Musculoskeletal Disorders)
Show Figures

Figure 1

27 pages, 9778 KiB  
Article
Flexural Behavior of Pre-Tensioned Precast High-Performance Steel-Fiber-Reinforced Concrete Girder Without Conventional Reinforcement: Full-Scale Test and FE Modeling
by Ling Kang, Haiyun Zou, Tingmin Mu, Feifei Pei and Haoyuan Bai
Buildings 2025, 15(13), 2308; https://doi.org/10.3390/buildings15132308 - 1 Jul 2025
Viewed by 360
Abstract
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on [...] Read more.
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on the flexural behavior of a type of pre-tensioned precast HPSFRC girder without longitudinal and shear reinforcement. This type of girder consists of HPSFRC and prestressed steel strands, balancing structural performance, fabrication convenience, and cost-effectiveness. A 30.0 m full-scale girder was randomly selected from the prefabrication factory and tested through a four-point bending test. The failure mode, load–deflection relationship, and strain distribution were investigated. The experimental results demonstrated that the girder exhibited ductile deflection-hardening behavior (47% progressive increase in load after the first crack), extensive cracking patterns, and large total deflection (1/86 of effective span length), meeting both the serviceability and ultimate limit state design requirements. To complement the experimental results, a nonlinear finite element model (FEM) was developed and validated against the test data. The flexural capacity predicted by the FEM had a marginal 0.8% difference from the test result, and the predicted load–deflection curve, crack distribution, and load–strain curve were in adequate agreement with the test outcomes, demonstrating reliability of the FEM in predicting the flexural behavior of the girder. Based on the FEM, parametric analysis was conducted to investigate the effects of key parameters, namely concrete tensile strength, concrete compressive strength, and prestress level, on the flexural responses of the girder. Eventually, design recommendations and future studies were suggested. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Prefabricated Structures)
Show Figures

Figure 1

21 pages, 6854 KiB  
Article
Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models
by Thamer Sami Alhalaybeh, Ashiq Iqbal Chowdhury, Hammad Akhtar and Yanshan Lou
Metals 2025, 15(7), 722; https://doi.org/10.3390/met15070722 - 28 Jun 2025
Viewed by 315
Abstract
Magnesium (Mg) alloys are gaining widespread use in the automotive and construction industries for their potential to enhance performance and lower manufacturing costs, making them ideal for lightweight structural applications. However, despite these advantages, extruding Mg alloys remains technically challenging due to their [...] Read more.
Magnesium (Mg) alloys are gaining widespread use in the automotive and construction industries for their potential to enhance performance and lower manufacturing costs, making them ideal for lightweight structural applications. However, despite these advantages, extruding Mg alloys remains technically challenging due to their inherently limited formability and the strong crystallographic textures that form during deformation. This study aimed to comprehensively characterize the ductile fracture behavior of ZM51M Mg alloy round bars under various stress states and to improve the reliability of ductile failure predictions through the application and calibration of multiple uncoupled damage criteria. Tensile and compressive tests were conducted on specimens of varying geometries (dogbone, notched R5, shear, uniaxial compression, and plane strain compression specimens) and dimensions, meticulously cut along the extrusion direction of the round bar. These tests encompassed a wide spectrum of stress–strain responses and fracture characteristics, including uniaxial tension, uniaxial compression, and shear-dominated states. An inverse analysis approach, involving iterative numerical simulation coupled with experimental data, was employed to precisely determine fracture strains from the test results. The plastic deformation behavior was accurately modeled using the combined Swift–Voce hardening law. Subsequently, three prominent uncoupled ductile fracture criteria—Rice–Tracey, DF2014, and DF2016—were calibrated against the experimental data. The DF2016 criterion demonstrated superior predictive accuracy, consistently yielding the most accurate fracture strain predictions and significantly outperforming the Rice–Tracey and DF2014 criteria across the tested stress states. The findings of this work provide significant insights for improving the assessment of formability and fracture prediction in Mg alloys. This research directly contributes to overcoming the challenges associated with their inherent formability limitations and complex deformation textures, thereby facilitating more reliable design and broader adoption of Mg alloys in advanced lightweight structural solutions. Full article
Show Figures

Figure 1

18 pages, 8142 KiB  
Article
Influence of Principal Stress Orientation on Cyclic Degradation of Soft Clay Under Storm Wave Loading
by Chengcong Hu, Feng Gao, Biao Huang, Peipei Li, Zheng Hu and Kun Pan
J. Mar. Sci. Eng. 2025, 13(7), 1227; https://doi.org/10.3390/jmse13071227 - 26 Jun 2025
Viewed by 294
Abstract
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. [...] Read more.
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. This study employs hollow cylinder apparatus testing to investigate the undrained cyclic loading behavior of reconstituted soft clay under controlled α0 and PSR conditions, simulating storm wave-induced stress paths. Results demonstrate that α0 governs permanent pore pressure and vertical strain accumulation with distinct mechanisms, e.g., a tension-dominated response with gradual pore pressure rise at α0 < 45° transitions to a compression-driven rapid strain accumulation at α0 > 45°. Rotational loading with PSR significantly intensifies permanent strain accumulation and stiffness degradation rates, exacerbating soil’s anisotropic behavior. Furthermore, the stiffness degradation index tends to uniquely correlate with the permanent axial or shear strain, which can be quantified by an exponential relationship that is independent of α0 and PSR, providing a unified framework for normalizing stiffness evolution across diverse loading paths. These findings advance the understanding of storm wave-induced degradation behavior of soft clay and establish predictive tools for optimizing marine foundation design under cyclic loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 9724 KiB  
Article
Study on the Mechanical Properties and Degradation Mechanisms of Damaged Rock Under the Influence of Liquid Saturation
by Bowen Wu, Jucai Chang, Jianbiao Bai, Chao Qi and Dingchao Chen
Appl. Sci. 2025, 15(13), 7054; https://doi.org/10.3390/app15137054 - 23 Jun 2025
Viewed by 278
Abstract
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical [...] Read more.
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical properties under the coupled effects of oil–water soaking and initial damage. The results indicate that oil–water soaking induces the loss of silicon elements and the deterioration of microstructure, leading to surface peeling, crack propagation, and increased porosity of the sample. The compressive strength decreases linearly with the soaking time. Acoustic emission (AE) monitoring showed that after 24 h of soaking, the maximum ringing count rate and cumulative count decreased by 81.7% and 80.4%, respectively, compared to the dry state. As the liquid saturation increases, the failure mode transitions from tension dominated to shear failure. The synergistic effect of initial damage and oil–water erosion weakens the rock’s energy storage capacity, with the energy storage limit decreasing by 45.6%, leading to reduced resistance to external forces. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

22 pages, 9093 KiB  
Article
Numerical Investigation of the Pull-Out and Shear Mechanical Characteristics and Support Effectiveness of Yielding Bolt in a Soft Rock Tunnel
by Yan Zhu, Mingbo Chi, Yanyan Tan, Ersheng Zha and Yuwei Zhang
Appl. Sci. 2025, 15(12), 6933; https://doi.org/10.3390/app15126933 - 19 Jun 2025
Viewed by 333
Abstract
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, [...] Read more.
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, evaluating their support effectiveness in soft rock tunnels. Three-dimensional finite difference models incorporating nonlinear coupling springs and the Mohr–Coulomb criterion were developed to simulate bolt–rock interactions under multifactorial loading. Validation against experimental pull-out tests and field measurements confirmed the model accuracy. Under pull-out loading, the axial forces in yielding bolts decreased more rapidly along the bolt length, reducing stress concentration at the head. The central position of the maximum load-bearing capacity in conventional bolts fractured under tension, resulting in an hourglass-shaped axial force distribution. Conversely, the yielding bolts maintained yield strength for an extended period after reaching it, exhibiting a spindle-shaped axial force distribution. Parametric analyses reveal that bolt spacing exerts a greater influence on support effectiveness than length. This study bridges critical gaps in understanding yielding bolt behavior under combined loading and provides a validated framework for optimizing energy-absorbing support systems in soft rock tunnels. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

11 pages, 3736 KiB  
Article
Shear Force–Displacement Curve of a Steel Shear Wall Considering Compression
by Yi Liu, Yan He and Yang Lv
Buildings 2025, 15(12), 2112; https://doi.org/10.3390/buildings15122112 - 18 Jun 2025
Viewed by 326
Abstract
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors [...] Read more.
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors are critical for accurately assessing the shear capacity of SSWs during seismic events. In the current study, a method to calculate the shear force–displacement curve of a steel shear wall while considering the compression effect is presented, which incorporates both steel hardening and gravity effects. The analysis derives strains in tensile strips undergoing shear deformation using a strip model. Corresponding stresses are then determined using the stress–strain relationships obtained from tensile tests of the steel. Furthermore, the vertical stress induced by gravity loads is modeled using a three-segment distribution proposed before. For each tensile strip, the tension field stress is calculated by accounting for reductions due to vertical stress and the influence of steel hardening through the von Mises yield criterion. This approach enables the development of a shear force–displacement curve, which is subsequently validated against results from an experimentally verified finite element model. The findings demonstrate that the pushover curves predicted by this method closely align with those obtained from finite element analysis. Notably, the results indicate that the shear strength provided by the CAN/CSA-S16-01 equation may be overestimated by approximately 4%, 9%, and 18% when the vertical compression stresses are 50, 100, and 150 MPa for a wall with a slenderness of 150, respectively. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

12 pages, 3074 KiB  
Article
Formability Limits in Square Tubes and L-Section Profiles
by Inês M. Almeida, João P. G. Magrinho and Maria Beatriz Silva
Materials 2025, 18(12), 2852; https://doi.org/10.3390/ma18122852 - 17 Jun 2025
Viewed by 211
Abstract
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present [...] Read more.
Understanding the formability limits of thin-walled tubes with square cross-sections and L-section profiles is crucial for improving manufacturing efficiency and ensuring structural reliability in industries such as automotive and aerospace. Unlike the usually studied circular tubes, square tubes and L-section profiles geometries present unique deformation and fracture behaviours that require specific analysis. To address this gap, this research establishes a novel methodology combining digital image correlation (DIC) with a time-dependent approach and precise thickness measurements, enabling accurate strain measurements essential to the onset of necking and fracture strain identification. Two experimental tests under different forming conditions allowed capturing a distinct range of strain paths leading to failure. This approach allowed the determination of the forming limit points associated with necking and the fracture forming lines associated with crack opening by tension (mode I) and by in-plane shear (mode II). The findings highlight the strong influence of geometry on the fracture mechanisms and provide valuable data for optimizing tube-forming processes for square tubes and L-section profiles, ultimately enhancing the design and performance of lightweight structural components. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 2284 KiB  
Article
Experimental Evaluation of the Tribological Properties of Rigid Gas-Permeable Contact Lens Under Different Lubricants
by Chen-Ying Su, Hsu-Wei Fang, Mousa Nimatallah, Zain Qatmera and Haytam Kasem
Lubricants 2025, 13(6), 256; https://doi.org/10.3390/lubricants13060256 - 11 Jun 2025
Viewed by 1076
Abstract
Myopia patients wear rigid gas-permeable contact lenses during the day to achieve normal vision, but they might feel uncomfortable, since they are made of hard materials that can cause inappropriate friction and adhesion. These forces affect the biological tissues of the cornea and [...] Read more.
Myopia patients wear rigid gas-permeable contact lenses during the day to achieve normal vision, but they might feel uncomfortable, since they are made of hard materials that can cause inappropriate friction and adhesion. These forces affect the biological tissues of the cornea and eyelid. In this study, an in vitro rigid gas-permeable contact lens friction testing method was established to mimic the friction between the eyelid and the rigid contact lens. The lens was rubbed against a gelatin membrane to investigate the tribological properties of artificial tear, saline, and two kinds of care solutions using a dedicated experimental setup. The viscosity, pH value, and surface tension of each lubricant was also analyzed. The friction coefficient of the artificial tear solution was the highest: 0.18 for its static friction and 0.09 for its dynamic friction. In contrast, polysaccharide-containing care solution demonstrated the lowest friction coefficient. The viscosity of artificial tear solutions ranged from 0.97 ± 00 to 1.15 ± 0.16 mPa·s, when the shear rate was increased from 19.2 to 192 1/s, while it ranged from 2.26 ± 1.12 to 2.91 ± 0.00 for polysaccharide-containing care solution. Although the physical–chemical properties of various lubricants could not explain the distinct tribological outcomes, the in vitro tribological testing method for rigid gas-permeable lenses was successfully established in this study. Full article
(This article belongs to the Special Issue Biomaterials and Tribology)
Show Figures

Figure 1

19 pages, 3753 KiB  
Article
Dynamic Response of EPS Foam in Packaging: Experimental Tests and Constitutive Modeling
by Pei Li, Heng Zhang and Leilei Chen
Polymers 2025, 17(12), 1606; https://doi.org/10.3390/polym17121606 - 9 Jun 2025
Viewed by 527
Abstract
Expanded polystyrene (EPS) foam is widely used in energy-absorbing structures for packaging applications; however, its mechanical behavior under dynamic loading conditions remains insufficiently characterized. To address this, the dynamic responses of EPS foam used in television packaging were first examined experimentally through drop [...] Read more.
Expanded polystyrene (EPS) foam is widely used in energy-absorbing structures for packaging applications; however, its mechanical behavior under dynamic loading conditions remains insufficiently characterized. To address this, the dynamic responses of EPS foam used in television packaging were first examined experimentally through drop tests. Building on these findings, a rate-sensitive constitutive model was developed to incorporate tensile damage mechanisms and tension–compression asymmetry, enabling unified modeling of both tensile and compressive deformation in complex structural applications. The proposed model was calibrated using standardized tension, compression, and shear tests, and subsequently employed to simulate three-point bending and dynamic compression scenarios involving EPS foam components. The simulation results demonstrated favorable agreement with experimental observations, confirming the accuracy and robustness of the proposed constitutive model in predicting the dynamic mechanical behavior of EPS foam. Full article
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Experimental Study on Shear Failure of 30 m Pre-Tensioned Concrete T-Beams Under Small Shear Span Ratio
by Qianyi Zhang, Hai Yan, Chunlei Zhang, Ding-Hao Yu, Jiaolei Zhang, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(11), 1946; https://doi.org/10.3390/buildings15111946 - 4 Jun 2025
Viewed by 349
Abstract
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation [...] Read more.
Pre-tensioned concrete T-beams with draped strands have been gradually promoted and used in bridge construction in recent years due to their advantages such as simple structure, efficient force distribution, and few defects. However, the current design codes exhibit conservative provisions for the calculation of the shear capacity of such beams under a small shear span ratio, which may lead to a large design value of beam web thickness. This is primarily due to insufficient experimental data. This paper details a full-scale experimental investigation on the shear failure mechanisms of two 30 m pre-tensioned concrete T-beams with draped strands, under a shear span ratio of 1, at which the shear capacity of the beams represents their upper limit. The specimens were tested to analyze their mechanical behavior, including load-deflection response, crack distribution, stirrup strain, and strand slip. The ultimate shear capacities of the test beams were 7107 kN and 6742 kN. To evaluate the applicability of current design codes, the experimental results were compared with theoretical predictions from five international design codes. The analysis revealed that the AASHTO code provided the highest upper limit of shear capacity for pre-tensioned concrete T-beams with draped strands, whereas the Chinese code (JTG 3362-2018) exhibited a significantly high safety factor of 4.09. These findings provide a basis for the optimized design of pre-tensioned concrete T-beams with draped strands and the determination of the upper limit of shear capacity. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

Back to TopTop