Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (795)

Search Parameters:
Keywords = shape memory property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4007 KiB  
Article
Tannic Acid-Enhanced Gelatin-Based Composite Hydrogel as a Candidate for Canine Periodontal Regeneration
by Laura C. Pinho, Marta Ferreira, Angélica Graça, Joana Marto, Bruno Colaço, Maria Helena Fernandes and Catarina Santos
Gels 2025, 11(8), 650; https://doi.org/10.3390/gels11080650 - 15 Aug 2025
Abstract
Periodontal disease in dogs leads to progressive bone loss and adversely impacts overall health. However, cost-effective regenerative strategies are still limited in veterinary practice. This study aimed to develop and evaluate a novel tannic acid (TA)–gelatin-based hydrogel (Gel), incorporating graphene oxide (GO) and [...] Read more.
Periodontal disease in dogs leads to progressive bone loss and adversely impacts overall health. However, cost-effective regenerative strategies are still limited in veterinary practice. This study aimed to develop and evaluate a novel tannic acid (TA)–gelatin-based hydrogel (Gel), incorporating graphene oxide (GO) and hydroxyapatite nanoparticles (HA), as a potential barrier material for guided tissue regeneration (GTR) applications. The hydrogels—Gel, Gel-GO, Gel-HA, and Gel-GO-HA—were characterized for chemical structure, molecular interactions, surface morphology, nanoparticle dispersion, and tensile strength. Cytotoxicity was assessed using L929 fibroblasts (ISO 10993-5), while cell viability/proliferation, morphology, and alkaline phosphatase (ALP) production were evaluated using canine periodontal ligament-derived cells. Results show that crosslinking with tannic acid enhanced the incorporation of graphene oxide and hydroxyapatite nanoparticles via hydrogen bonding into TA–gelatin-based hydrogels. This combination increased surface roughness, reduced degradation rate, and enabled shape memory behavior, critical for guided tissue regeneration (GTR) membranes. The extracts from Gel-HA-GO showed that cytotoxicity was both time- and concentration-dependent in L929 fibroblasts, whereas enhanced cell proliferation and increased ALP production were observed in cultures derived from canine periodontal ligament cells. These findings suggest that TA–gelatin-based hydrogels incorporating GO and HA demonstrated favorable mechanical and physicochemical properties, biocompatibility, and osteogenic potential. These attributes suggest their viability as a promising composite for the development of innovative GTR strategies to address periodontal tissue loss in veterinary medicine. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Graphical abstract

24 pages, 4152 KiB  
Article
Numerical Study on Shape Recovery Behaviors of Shape Memory Polymer Composite Hinges Considering Hysteresis Effect
by O-Hyun Kwon and Jin-Ho Roh
Aerospace 2025, 12(8), 717; https://doi.org/10.3390/aerospace12080717 - 12 Aug 2025
Viewed by 213
Abstract
Shape memory polymer composite (SMPC) hinges have been researched as deployable structures in space missions due to their stable and controllable shape recovery behaviors. The elastic energy of the fabrics plays a dominant role in predicting the recovered shape of the hinges, as [...] Read more.
Shape memory polymer composite (SMPC) hinges have been researched as deployable structures in space missions due to their stable and controllable shape recovery behaviors. The elastic energy of the fabrics plays a dominant role in predicting the recovered shape of the hinges, as it strongly drives shape restoration. In this research, the shape recovery behaviors of SMPC hinges are numerically investigated by applying an equation that accounts for the hysteresis characteristics of the fabric reinforcement. The constitutive equation integrates the Mooney–Rivlin model, a viscoelastic, stored energy model, to characterize the hyperelastic properties varying with time, temperature, and shape recovery behaviors of the SMP matrix. Additionally, polynomial functions are introduced to represent the hysteresis effects and energy dissipation behavior of the fabrics. Since the elasticity of fabrics significantly affects the shape recovery of SMPCs, the developed constitutive equation enables accurate prediction of the recovered configuration. Finite element method analysis is performed based on this model and validated through comparison with experimental results. Finally, the constitutive equation is applied to investigate the shape memory response of SMPC hinges. The simulations present the significant design factors to increase the shape recovery ratio of the SMPC hinges. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 7118 KiB  
Article
A Novel Natural Chromogenic Visual and Luminescent Sensor Platform for Multi-Target Analysis in Strawberries and Shape Memory Applications
by Hebat-Allah S. Tohamy
Foods 2025, 14(16), 2791; https://doi.org/10.3390/foods14162791 - 11 Aug 2025
Viewed by 234
Abstract
Carboxymethyl cellulose (CMC) films, derived from sugarcane bagasse agricultural waste (SCB) incorporated with Betalains-nitrogen-doped carbon dots (Betalains-N–CQDs), derived from beet root waste (BR), offer a sustainable, smart and naked-eye sensor for strawberry packaging due to their excellent fluorescent and shape memory properties. These [...] Read more.
Carboxymethyl cellulose (CMC) films, derived from sugarcane bagasse agricultural waste (SCB) incorporated with Betalains-nitrogen-doped carbon dots (Betalains-N–CQDs), derived from beet root waste (BR), offer a sustainable, smart and naked-eye sensor for strawberry packaging due to their excellent fluorescent and shape memory properties. These CMC-Betalains-N–CQDs aim to enhance strawberry preservation and safety by enabling visual detection of common food contaminants such as bacteria, fungi and Pb(II). Crucially, the CMC-Betalains-N–CQD film also exhibits excellent shape memory properties, capable of fixing various shapes under alkaline conditions and recovering its original form in acidic environments, thereby offering enhanced physical protection for delicate produce like strawberries. Optical studies reveal the Betalains-N–CQDs’ pH-responsive fluorescence, with distinct emission patterns observed across various pH levels, highlighting their potential for sensing applications. Scanning Electron Microscopy (SEM) confirms the successful incorporation of Betalains-N–CQDs into the CMC matrix, revealing larger pores in the composite film that facilitate better interaction with analytes such as bacteria. Crucially, the CMC-Betalains-N–CQD film demonstrates significant antibacterial activity against common foodborne pathogens like Escherichia coli, Staphylococcus aureus, and Candida albicans, as evidenced by inhibition zones and supported by molecular docking simulations showing strong binding interactions with bacterial proteins. Furthermore, the film functions as a fluorescent sensor, exhibiting distinct color changes upon contact with different microorganisms and Pb(II) heavy metals, enabling rapid, naked-eye detection. The film also acts as a pH sensor, displaying color shifts (brown in alkaline, yellow in acidic) due to the betalains, useful for monitoring food spoilage. This research presents a promising, sustainable, and multifunctional intelligent packaging solution for enhanced food safety and extended shelf life. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

21 pages, 13122 KiB  
Article
A Novel CuAlMnFe/CeO2 Composite Alloy: Investigating the Wear and Corrosion Features
by Fatih Doğan and Erhan Duru
Solids 2025, 6(3), 43; https://doi.org/10.3390/solids6030043 - 11 Aug 2025
Viewed by 230
Abstract
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of [...] Read more.
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of different CeO2 (cerium dioxide) concentrations (0.01 wt.%, 0.1 wt.%, 0.5 wt.%, and 1.0 wt.%) on the properties of CuAlMnFe alloys produced via powder metallurgy (PM). Various analyses were performed, including scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), as well as hardness, wear, and corrosion tests. The increase in wear rate is closely related to the formation of precipitates from CeO2 addition. Improvements in wear resistance and hardness are attributed to the effects of grain refinement and solid solution strengthening due to CeO2. Specifically, the wear rate increased from 1.5 × 10−3 mm3/(Nm) to 3.4 × 10−3 mm3/(Nm) with higher CeO2 content. Additionally, the friction coefficient of the CuAlMnFe alloy was reduced with CeO2 addition, indicating enhanced frictional properties. The optimal CeO2 concentration of 0.5% was found to improve grain uniformity, resulting in better wear resistance. Incorporating CeO2 particles into CuAlMnFe alloy enhances hardness and reduces wear rate when used in appropriate amounts. Additionally, it exhibits superior corrosion resistance, as evidenced by a positive shift in corrosion potential in Tafel measurements in solutions and a decrease in corrosion current density. The C0.5 specimen showed the highest corrosion potential (Ecorr, −588 V) and the lowest corrosion current density (icorr, 6.17 μA/cm2) during electrochemical corrosion in 3.5 wt.% NaCl solution. Full article
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Thermographic Investigation of Elastocaloric Behavior in Ni-Ti Sheet Elements Under Cyclic Bending
by Saeed Danaee Barforooshi, Gianmarco Bizzarri, Girolamo Costanza, Stefano Paoloni, Ilaria Porroni and Maria Elisa Tata
Materials 2025, 18(15), 3546; https://doi.org/10.3390/ma18153546 - 29 Jul 2025
Viewed by 296
Abstract
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior [...] Read more.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading. Testing revealed consistent adiabatic temperature variations (ΔTad) of 4.14 °C and 4.26 °C for the respective deflections during heating cycles, while cooling phases demonstrated efficient thermal homogenization with temperature gradients decreasing from 4.13 °C to 0.13 °C and 4.43 °C to 0.68 °C over 60 s. These findings provide systematic thermal documentation of elastocaloric behavior in bending-loaded Ni-Ti sheet elements and quantitative data on the relationship between mechanical loading parameters and thermal gradients, enhancing the experimental understanding of elastocaloric phenomena in this configuration. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

16 pages, 5151 KiB  
Article
Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties
by Man Wang, Hongying Liu, Wei Zhao, Huafen Wang, Yuwei Zhuang, Jie Yang, Zhaohui Liu, Jing Zhu, Sichong Chen and Jinghui Cheng
Biomolecules 2025, 15(8), 1070; https://doi.org/10.3390/biom15081070 - 24 Jul 2025
Viewed by 318
Abstract
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft [...] Read more.
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.3% and that the intensities of the diffraction peaks at 2θ = 21.36°, 21.97°, and 23.72° in the XRD pattern gradually diminish. Concomitantly, tensile strength decreased from 35.5 MPa to 19.3 MPa, and Shore A hardness declined from 88 HA to 65 HA. These observations indicate that the sterically hindered benzene ring structure of Cur imposes restrictions on HO-PCL-OH crystallization, leading to lower crystallinity and retarded crystallization kinetics in Cur-PU. As a consequence, the material’s tensile strength and hardness are diminished. Except for the Cur-PU-3 sample, all other variants exhibited exceptional shape-memory functionality, with Rf and Rr exceeding 95%, as determined by three-point bending method. Analogous to pure curcumin solutions, Cur-PU solutions demonstrated pH-responsive chromatic transitions: upon addition of hydroxide ion (OH) solutions at increasing concentrations, the solutions shifted from yellow-green to dark green and finally to orange-yellow, enabling sensitive pH detection across alkaline gradients. Hydrolytic degradation studies conducted over 15 weeks in air, UPW, and pH 6.0/8.0 phosphate buffer solutions revealed mass loss <2% for Cur-PU films. Surface morphological analysis showed progressive etching with the formation of micro-to-nano-scale pores, indicative of a surface-erosion degradation mechanism consistent with pure PCL. Biocompatibility assessments via L929 mouse fibroblast co-culture experiments demonstrated ≥90% cell viability after 72 h, while relative red blood cell hemolysis rates remained below 5%. Collectively, these findings establish Cur-PU as a biocompatible material with tunable mechanical properties, and pH responsiveness, underscoring its translational potential for biomedical applications such as drug delivery systems and tissue engineering scaffolds. Full article
Show Figures

Figure 1

21 pages, 4377 KiB  
Article
Superelasticity in Shape Memory Alloys—Experimental and Numerical Investigations of the Clamping Effect
by Jakub Bryła and Adam Martowicz
Materials 2025, 18(14), 3333; https://doi.org/10.3390/ma18143333 - 15 Jul 2025
Viewed by 465
Abstract
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. [...] Read more.
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. Hysteretic properties were studied to elucidate the superelastic behavior of the tested and modeled samples. The conducted tensile tests considered two configurations of grips, i.e., the standard one, where the jaws transversely clamp a specimen, and the customized bollard grip solution, which the authors developed to reduce local stress concentration in a specimen. The characteristic impact of the boundary conditions on the solid phase transformation in shape memory alloys, present due to the specific clamping scheme, was studied using a thermal camera and extensometer. Martensitic transformation and the plateau region in the nonlinear stress–strain characteristics were observed. The results of the numerical simulation converged to the experimental outcomes. This study explains the complex nature of the phase changes in shape memory alloys under specific boundary conditions induced by a given clamping scheme. In particular, variation in the martensitic transformation course is identified as resulting from the stress distribution observed in the specimen’s clamping area. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 519
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

21 pages, 4997 KiB  
Article
3D-Printed Multi-Stimulus-Responsive Hydrogels: Fabrication and Characterization
by Jinzhe Wu, Zhiyuan Ma, Qianqian Tang and Runhuai Yang
Micromachines 2025, 16(7), 788; https://doi.org/10.3390/mi16070788 - 1 Jul 2025
Viewed by 490
Abstract
Stimulus-responsive hydrogels have broad applications in the biomedical, sensing, and actuation fields. However, conventional fabrication methods are often limited to 2D structures, hindering the creation of complex, personalized 3D hydrogel architectures. Furthermore, hydrogels responding to only a single stimulus and delays in fabrication [...] Read more.
Stimulus-responsive hydrogels have broad applications in the biomedical, sensing, and actuation fields. However, conventional fabrication methods are often limited to 2D structures, hindering the creation of complex, personalized 3D hydrogel architectures. Furthermore, hydrogels responding to only a single stimulus and delays in fabrication techniques restrict their practical utility in biomedicine. In this study, we developed two novel multi-stimuli-responsive hydrogels (based on Gelatin/Sodium Alginate and Tannic Acid/EDTA-FeNa complexes) specifically designed for direct ink writing (DIW) 3D printing. We systematically characterized the printed properties and optimized component ratio, revealing sufficient mechanical strength (e.g., tensile modulus: Gel/SA-TA ≥ 0.22854 ± 0.021 MPa and Gel/SA-TA@Fe3+ ≥ 0.35881 ± 0.021 MPa), high water content (e.g., water absorption rate Gel/SA-TA ≥ 70.21% ± 1.5% and Gel/SA-TA@Fe3+ ≥ 64.86% ± 1.28%), excellent biocompatibility (e.g., cell viability: Gel/SA-TA and Gel/SA-TA@Fe3+ ≥ 90%) and good shape memory performance (e.g., the highest shape recovery rate of Gel/SA-TA reaches 74.85% ± 4.776%). Furthermore, we explored electrical characteristics, showing that the impedance value of Gel/SA-TA@Fe3+ hydrogel changes significantly under finger bending and NIR irradiation. This investigation demonstrates the potential of these 3D-printed multi-stimuli hydrogels for applications such as wearable flexible strain sensors. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

39 pages, 7348 KiB  
Review
Artificial Intelligence Control Methodologies for Shape Memory Alloy Actuators: A Systematic Review and Performance Analysis
by Stefano Rodinò, Giuseppe Rota, Matteo Chiodo, Antonio Corigliano and Carmine Maletta
Micromachines 2025, 16(7), 780; https://doi.org/10.3390/mi16070780 - 30 Jun 2025
Viewed by 582
Abstract
Shape Memory Alloy (SMA) actuators are pivotal in modern engineering due to their unique thermomechanical properties, but their inherent non-linearities, hysteresis, and temperature sensitivity pose significant control challenges. This systematic review evaluates artificial intelligence (AI)-based control methodologies to address these limitations, analyzing their [...] Read more.
Shape Memory Alloy (SMA) actuators are pivotal in modern engineering due to their unique thermomechanical properties, but their inherent non-linearities, hysteresis, and temperature sensitivity pose significant control challenges. This systematic review evaluates artificial intelligence (AI)-based control methodologies to address these limitations, analyzing their efficacy in enhancing precision, adaptability, and reliability for SMA and Magnetic SMA (MSMA) systems. A PRISMA-guided literature review (2003–2025) identified 24 studies, which were categorized by control architectures (hybrid AI-linear, pure AI, adaptive, and model predictive control) and evaluated through quantitative metrics, including Root Mean Square Error (RMSE%) and a weighted scoring system for experimental rigor. Results revealed hybrid AI-linear controllers as the dominant approach (36%), with online-trained neural networks achieving superior accuracy (+2.4%) over offline methods. Feedforward neural networks outperformed recurrent architectures (+3.1%), while Model Predictive Control (MPC) excelled for SMA actuators (+5.8% accuracy) but underperformed for MSMAs (−7.7%). Sensorless strategies proved advantageous for MSMAs (+5.0%), leveraging intrinsic material properties like electrical resistance for state estimation. The analysis underscores AI’s capacity to mitigate hysteresis and non-linear dynamics, though material-specific optimization is critical: SMA systems favor dynamic control and MPC, whereas MSMAs benefit from sensorless AI and pure neural networks. Challenges persist in computational demands for online training and reinforcement learning’s exploration–exploitation trade-offs. Future research should prioritize adaptive algorithms for fatigue compensation, lightweight AI models for embedded deployment, and standardized benchmarking to bridge material-specific performance gaps. This synthesis establishes AI as a transformative paradigm for SMA actuation, enabling precise control in aerospace, biomedical, and soft robotics applications. Full article
Show Figures

Figure 1

15 pages, 3790 KiB  
Article
A Smart Rehabilitation Glove Based on Shape-Memory Alloys for Stroke Recovery
by Yutong Xie, Songrhon Sun, Yiwen Liu, Fei Xiao, Weijie Li, Shukun Wu, Xiaorong Cai, Xifan Ding and Xuejun Jin
Appl. Sci. 2025, 15(13), 7266; https://doi.org/10.3390/app15137266 - 27 Jun 2025
Viewed by 439
Abstract
Stroke-induced hand dysfunction substantially impairs patients’ quality of life, creating an urgent need for portable, adaptive rehabilitation devices. This study introduces a smart rehabilitation glove actuated by shape-memory alloy (SMA) wires, leveraging their high power-to-weight ratio, controllable strain recovery, and reversible phase transformation [...] Read more.
Stroke-induced hand dysfunction substantially impairs patients’ quality of life, creating an urgent need for portable, adaptive rehabilitation devices. This study introduces a smart rehabilitation glove actuated by shape-memory alloy (SMA) wires, leveraging their high power-to-weight ratio, controllable strain recovery, and reversible phase transformation to overcome the limitations of conventional motor-driven or pneumatic gloves. The glove incorporates SMA-based actuation units achieving 50 mm contraction (5% strain) within 7 s, enabling finger flexion to ~34° for personalized rehabilitation protocols. A mobile application provides wireless regulation of SMA actuation modes and facilitates real-time telemedicine consultations. The prototype demonstrates an ultra-lightweight, compact design enabled by SMA’s intrinsic properties, offering a promising solution for home-based post-stroke rehabilitation. This work establishes the transformative potential of SMAs in wearable biomedical technologies. Full article
(This article belongs to the Special Issue Smart Materials and Multifunctional Mechanical Metamaterials)
Show Figures

Figure 1

18 pages, 6724 KiB  
Article
Taxus baccata L. Under Changing Climate Conditions in the Steppe Zone of the East European Plain
by Vladimir Kornienko, Alyona Shkirenko, Valeriya Reuckaya, Besarion Meskhi, Dmitry Dzhedirov, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko, Dzhuletta Mangasarian and Natalia Kulikova
Plants 2025, 14(13), 1970; https://doi.org/10.3390/plants14131970 - 27 Jun 2025
Viewed by 461
Abstract
The aim of the work is to analyze the survival strategy of Taxus baccata L., one of the promising plants for landscaping and the creation of woodlands, in the changing ecological conditions of the steppe zone of the Donetsk ridge. In order to [...] Read more.
The aim of the work is to analyze the survival strategy of Taxus baccata L., one of the promising plants for landscaping and the creation of woodlands, in the changing ecological conditions of the steppe zone of the Donetsk ridge. In order to achieve this goal, we used biomechanics methods, which help to understand the relationship between the physical and mechanical properties of living tissues and the overall stability of trees during interactions with environmental factors such as temperature, snow and ice storms, cyclic freeze–thaw processes, wind loads, and others. The work was based both on experimental studies on the estimation of the tissue elasticity modulus in response to temperature changes, the mechanical stability of plants, the field collection of materials, and studies on the modeling of forest stand conditions of English yew. As a result of the conducted experiments, it was established for the first time that at the absolute wood moisture content of 77 ± 5.1%, the density of wood tissues in the conditions of Donetsk is 907 ± 43 kg m−3. The modulus of elasticity of living tissues depending on the temperature factor varied in the following range: 8.8 ± 0.31 GN m−2 (T = 288 K), 11.5 ± 0.55 GN m−2 (T = 255 K) and 6.9 ± 0.47 GN m−2 (t = 308 K). It was revealed that during the local thawing of skeletal branches and tables, the mechanical resistance of T. baccata is reduced by 20–22% and this critically affects the overall plant resistance. It was established for the first time that T. baccata in the conditions of the steppe zone has an adaptive strategy of preserving the integrity of the organism under the action of environmental factors with limited loads. The secret lies in the formation of the shape memory effect, under the influence of critical loads. The plant, thus, chooses not migration, not death, but adaptation to changes in environmental conditions, which can become a serious factor in the use of T. baccata in the landscaping of urban areas and the creation of artificial forests. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

13 pages, 2181 KiB  
Article
Mechanical Properties of Dual-Layer Electrospun Fiber Mats
by Ioana Caloian, Jocelyn Trapp, Bhalaji Yadav Kantepalle, Patrick Latimer, Timothy J. Lawton and Christina Tang
Polymers 2025, 17(13), 1777; https://doi.org/10.3390/polym17131777 - 26 Jun 2025
Viewed by 404
Abstract
Electrospinning with sequential layer deposition has been reported for various applications such as tissue scaffolds, shape memory materials, and separations. However, the effect of layering on the mechanical properties is not fully understood. In this work, layered structures of thermoplastic polyurethane (TPU) and [...] Read more.
Electrospinning with sequential layer deposition has been reported for various applications such as tissue scaffolds, shape memory materials, and separations. However, the effect of layering on the mechanical properties is not fully understood. In this work, layered structures of thermoplastic polyurethane (TPU) and nylon were selected as a model system to investigate the effect of sequential layer deposition on mechanical properties. Evidence of the layered structure was indicated by scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) experiments. Layering TPU with nylon resulted in a 60-fold increase in the Young’s modulus. The Young’s modulus of the layered structure was reasonably predicted by the Voigt rule of mixtures. Furthermore, the Young’s modulus changes without any statistically significant change in elongation at break compared to a single layer of nylon. Thus, the elongation at break was dictated by the stiffer material, despite being present at a lower volume fraction. Overall, electrospinning with sequential layer deposition electrospinning is an effective approach for tuning the mechanical properties and surface chemistry of electrospun materials independently, which may be of interest for applications in tissue engineering and separations. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2403 KiB  
Article
Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
by Ivo Yotov, Georgi Todorov, Todor Gavrilov and Todor Todorov
Energies 2025, 18(13), 3341; https://doi.org/10.3390/en18133341 - 25 Jun 2025
Viewed by 283
Abstract
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. [...] Read more.
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. The oscillation frequency is modified by two magnetic weights that are positioned symmetrically on the SMA thread and interact with stationary NdFeB permanent magnets. The SMA thread shifts laterally due to longitudinal thermal contraction and expansion induced by a constant-temperature heater. Temperature gradients above the heater trigger cyclical variations in the length of the SMA thread, leading to autonomous vibrations of the masses in both the vertical and horizontal planes. An experimental apparatus was constructed to analyze the harvester by tracking the motions of the masses and the voltages produced by the piezoelectric beams. Information was gathered regarding the correlation between output voltage and power with the consumer’s load resistance. These outcomes were confirmed using a multiphysics dynamic simulation that incorporated the interconnections among mechanical, thermal, magnetic, and electrical systems. The findings indicate that the use of permanent magnets increases the bending vibration frequency from 8.3 Hz to 9.2 Hz. For a heater maintained at 70 °C, this boosts the output power from 1.9 µW to 8.18 µW. A notable property of the considered energy harvester configuration is its ability to operate at cryogenic temperatures. Full article
Show Figures

Figure 1

19 pages, 997 KiB  
Review
A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control
by Vikram Mittal, Michael Lotwin and Rajesh Shah
Actuators 2025, 14(7), 303; https://doi.org/10.3390/act14070303 - 20 Jun 2025
Viewed by 2763
Abstract
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. [...] Read more.
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. Bio-inspired actuators, which mimic natural mechanisms such as muscle movement and plant tropism, offer unique advantages, including flexibility, adaptability, and energy efficiency. This paper categorizes these actuators based on their mechanisms, focusing on shape memory alloys, dielectric elastomers, ionic polymer–metal composites, polyvinylidene fluoride-based electrostrictive actuators, and soft pneumatic actuators. The review highlights the properties, operating principles, and potential applications for each mechanism in automotive systems. Additionally, it investigates the current uses of these actuators in adaptive suspension, active steering, braking systems, and human–machine interfaces for autonomous vehicles. The review further outlines the advantages of bio-inspired actuators, including their energy efficiency and adaptability to road conditions, while addressing key challenges like material limitations, response times, and integration with existing automotive control systems. Finally, this paper discusses future directions, including the integration of bio-inspired actuators with machine learning and advancements in material science, to enable more efficient and responsive adaptive vehicle control systems. Full article
Show Figures

Figure 1

Back to TopTop