Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = shape annealing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 174
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

21 pages, 1057 KiB  
Article
Hybrid Sensor Placement Framework Using Criterion-Guided Candidate Selection and Optimization
by Se-Hee Kim, JungHyun Kyung, Jae-Hyoung An and Hee-Chang Eun
Sensors 2025, 25(14), 4513; https://doi.org/10.3390/s25144513 - 21 Jul 2025
Viewed by 226
Abstract
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and [...] Read more.
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and generate candidate pools. These are followed by one of four optimization algorithms—greedy, genetic algorithm (GA), particle swarm optimization (PSO), or simulated annealing (SA)—to identify the optimal subset of sensor locations. A key feature of the proposed approach is the incorporation of constraint dynamics using the Udwadia–Kalaba (U–K) generalized inverse formulation, which enables the accurate expansion of structural responses from sparse sensor data. The framework assumes a noise-free environment during the initial sensor design phase, but robustness is verified through extensive Monte Carlo simulations under multiple noise levels in a numerical experiment. This combined methodology offers an effective and flexible solution for data-driven sensor deployment in structural health monitoring. To clarify the rationale for using the Udwadia–Kalaba (U–K) generalized inverse, we note that unlike conventional pseudo-inverses, the U–K method incorporates physical constraints derived from partial mode shapes. This allows a more accurate and physically consistent reconstruction of unmeasured responses, particularly under sparse sensing. To clarify the benefit of using the U–K generalized inverse over conventional pseudo-inverses, we emphasize that the U–K method allows the incorporation of physical constraints derived from partial mode shapes directly into the reconstruction process. This leads to a constrained dynamic solution that not only reflects the known structural behavior but also improves numerical conditioning, particularly in underdetermined or ill-posed cases. Unlike conventional Moore–Penrose pseudo-inverses, which yield purely algebraic solutions without physical insight, the U–K formulation ensures that reconstructed responses adhere to dynamic compatibility, thereby reducing artifacts caused by sparse measurements or noise. Compared to unconstrained least-squares solutions, the U–K approach improves stability and interpretability in practical SHM scenarios. Full article
Show Figures

Figure 1

20 pages, 6335 KiB  
Article
Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
by Petr Osipov, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev and Konstantin Mit
Materials 2025, 18(12), 2781; https://doi.org/10.3390/ma18122781 - 13 Jun 2025
Viewed by 475
Abstract
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used [...] Read more.
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used to create Ni-MoO3-WO3 electroplating. Such composite samples formed from an aqueous alcohol solution reduced the content of sodium and ammonium chlorides. The annealing and dehydration of samples at a temperature of 725 °C in an air atmosphere made it possible to achieve the highest level of crystallinity. In this case, an isomorphic substitution of W atoms by Mo occurs, which is confirmed by electron paramagnetic resonance (EPR) spectroscopy studies. The invariance of the shape of the EPR spectrum with a sequential increase in microwave radiation power revealed the stability of the bonds between the particles. The surface morphology of Ni-MoO3-WO3 films deposited on an Al substrate is smooth and has low roughness. In this case, an increased degree of wear resistance has been achieved. Thus, a recipe for the formation of an electroplating with stable bonds between the components and increased wear resistance was obtained. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

27 pages, 7536 KiB  
Article
Laser-Patterned and Photodeposition Ag-Functionalized TiO2 Grids on ITO Glass for Enhanced Photocatalytic Degradation
by Bozhidar I. Stefanov
Coatings 2025, 15(6), 709; https://doi.org/10.3390/coatings15060709 - 12 Jun 2025
Viewed by 624
Abstract
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to [...] Read more.
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to pattern TiO2 layers derived from a visible-light-absorbing titanium salicylate sol. Grid-shaped TiO2 patterns (~250 μm line, 500 μm pitch) were fabricated on indium tin oxide (ITO)-coated glass substrates via dip-coating, laser patterning, selective solvent removal, and annealing at 450 °C. Photocatalytic performance was enhanced through Ag photodeposition from a 5 mM Ag+ aqueous electrolyte under UV doses of 5, 10, and 20 J cm−2. Structural and compositional analysis (XRD, SEM-EDS, AFM, UV–Vis, Raman) confirmed the formation of crystalline anatase TiO2 and Ag incorporation proportional to the dose. Methylene blue (MB) photooxidation experiments revealed that Ag-functionalized samples showed up to 20% higher degradation efficiency and improved photocatalytic stability across eight consecutive MB oxidation cycles. Additional photoelectrochemical measurements confirmed the formation of a TiO2/Ag Schottky junction, while surface-enhanced Raman scattering (SERS) signals observed on Ag/TiO2 grids enabled the detection of MB adsorbates. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Figure 1

16 pages, 2150 KiB  
Article
Microwire vs. Micro-Ribbon Magnetoelastic Sensors for Vibration-Based Structural Health Monitoring of Rectangular Concrete Beams
by Christos I. Tapeinos, Dimitris Kouzoudis, Kostantis Varvatsoulis, Manuel Vázquez and Georgios Samourgkanidis
Sensors 2025, 25(12), 3590; https://doi.org/10.3390/s25123590 - 7 Jun 2025
Viewed by 2730
Abstract
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and [...] Read more.
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and a crack was introduced into each beam. The beams were subjected to flexural vibrations, and their deformations were recorded wirelessly by coils, detecting the magnetic signals emitted due to the magnetoelastic nature of the sensors. Fast Fourier Analysis of the received signal revealed the bending mode frequencies of the beams, which serve as a “signature” of their structural health. In these spectra, the ribbon-shaped sensor exhibited a 1.4-times stronger signal than the microwire sensor. However, the extracted mode frequencies were nearly identical, with differences of less than 1% both before and after damage. This indicates that both sensors can be used equivalently to monitor structural damage in concrete beams. The damage-related relative frequency shifts ranged from −0.01 to −0.03, with similar results for both sensors. Thermal annealing was also studied and appeared to significantly enhance the signal by 10–30%, likely due to the relaxation of internal stresses induced during the rapid solidification synthesis of these materials. This enhancement was more pronounced in the ribbon-shaped sensor. This study is the first to utilize a magnetoelastic microwire sensor for damage detection in concrete beams. Full article
Show Figures

Graphical abstract

17 pages, 17692 KiB  
Article
An Exploration of Manufacturing Technology to Refine the Grain Size and Improve the Properties of Welded TA1 Titanium Plates for Cathode Rollers
by Lin Qi, Jing Hu, Dayue Wang, Jingyi Gu, Weiju Jia, Xulong An and Wei Wei
Coatings 2025, 15(6), 687; https://doi.org/10.3390/coatings15060687 - 6 Jun 2025
Viewed by 468
Abstract
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode [...] Read more.
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode roller directly determines the quality of the electrolytic copper foil. There typically exists a longitudinal weld on the surface of the cathode roller’s titanium cylinder sleeve manufactured by the welding method, which leads to the degradation of the quality of the electrolytic copper foil. Refining the grains in the weld zone and the heat-affected zone to close to those of the base material is a key solution for the manufacturing of welded cathode rollers. In order to effectively modify the microstructure and obtain an optimal refining effect in the weld zone of a TA1 cathode roller, a novel composite technology consisting of low-energy and fewer-pass welding combined with multi-pass rolling deformation and vacuum annealing treatment was primarily explored for high-purity TA1 titanium plates in this study. The microstructure of each area of the weld was observed using the DMI-3000M optical microscope, and the hardness was measured using the HVS-30 Vickers hardness tester. The research results show that the microstructure of each area of the weld can be effectively refined by using the novel composite technology of low-energy and fewer-pass welding, multi-pass rolling deformation, and vacuum annealing treatment. Among the explored experimental conditions, the optimal grain refinement effect is obtained with a V-shaped welding groove and four passes of welding with a welding current of 90 A and a voltage of 8–9 V, followed by 11 passes of rolling deformation with a total deformation rate of 45% and, finally, vacuum annealing at 650 °C for 1 h. The grain size grades in the weld zone and the heat-affected zone are close to those of the base material, namely grade 7.5~10, grade 7.5~10, and grade 7.5~10 for the weld zone, heat-affected zone, and base material, respectively. Meanwhile, this technology can also refine the grains of the base material, which is conducive to improving the overall mechanical properties of the titanium plate. Full article
Show Figures

Figure 1

22 pages, 4595 KiB  
Article
Dynamic Stability Enhancement of Columns Through Material Distribution Optimization Strategies
by Janusz Szmidla, Anna Jurczyńska and Robert Ulewicz
Materials 2025, 18(10), 2167; https://doi.org/10.3390/ma18102167 - 8 May 2025
Cited by 1 | Viewed by 368
Abstract
This study focuses on optimizing the shape of columns, particularly considering advanced material distributions that respond to specific load cases. Utilizing a variational method, equations describing movement and boundary conditions are established. This research, while adhering to a static and kinetic criterion for [...] Read more.
This study focuses on optimizing the shape of columns, particularly considering advanced material distributions that respond to specific load cases. Utilizing a variational method, equations describing movement and boundary conditions are established. This research, while adhering to a static and kinetic criterion for stability loss, identifies the optimal geometric parameters for the columns constructed from specific materials to achieve maximum critical load capacity. It is assumed that the total volume of the system does not change. The innovation of the presented research is the use of a simulated annealing algorithm to optimally shape the column outline in terms of the maximum critical force value, which depends on many material variables. This method was adapted to the calculations of slender rod systems by introducing a number of modifications. The obtained increases in the critical load reach up to 40% compared to the prismatic system. The results also show that it is possible to control the dynamic properties in column structures while increasing the stability of the system. This study underscores the significant role of material selection and optimization in enhancing the dynamic stability and load-bearing capacity of column structures. Full article
Show Figures

Figure 1

14 pages, 4123 KiB  
Article
Research on the Impact Toughness of 3D-Printed CoCrMo Alloy Components Based on Fractal Theory
by Guoqing Zhang, Junxin Li, Han Wang, Congcong Shangguan, Juanjuan Xie and Yongsheng Zhou
Biomimetics 2025, 10(5), 292; https://doi.org/10.3390/biomimetics10050292 - 6 May 2025
Viewed by 389
Abstract
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South [...] Read more.
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South China University of Technology, is used to manufacture impact specimens. Subsequently, the CoCrMo alloy parts were annealed using an MXQ1600-40 box-type atmosphere furnace and subjected to impact testing using a cantilever beam impact testing machine XJV-22. Fractal theory was applied to analyze the fractal behavior of the resulting impact fracture surfaces. The research results indicate that the 3D-printed impact specimens exhibited excellent surface quality, characterized by brightness, low roughness, and the absence of significant defects such as warping or deformation. In terms of annealing treatment, lower annealing temperatures did not improve the impact performance of SLM-formed CoCrMo alloy parts but instead led to a decrease in toughness. While increasing the annealing temperature can improve toughness to some extent, the effect is limited. Furthermore, the relationship between impact energy and heat treatment temperature exhibits a U-shaped trend. The fractal dimension analysis shows that the parts annealed in a 1200 °C furnace have the highest fractal dimension and better toughness performance. This study introduces a novel approach by comprehensively integrating advanced 3D printing technology, annealing processes, and fractal theory analysis to systematically investigate the influence of annealing temperature on the impact properties of 3D-printed CoCrMo alloy parts, thereby establishing a solid foundation for the application of high-performance 3D printed parts. Full article
Show Figures

Figure 1

16 pages, 7782 KiB  
Article
Microstructural Evolution and Internal Hydrogen Content of Ultra-High-Strength Automotive Steels During Two Typical Industrial Production Flows
by Zhiyuan Chang, Jingjing Yin, Long Li, Xingzhao Chen, Xinyi Ruan and Liangyun Lan
Materials 2025, 18(9), 2034; https://doi.org/10.3390/ma18092034 - 29 Apr 2025
Viewed by 411
Abstract
Hot stamping is a promising method to manufacture ultra-high-strength automotive steel components with high dimension accuracy. In this work, two actual industrial production flows (with and without Al-Si hot dipping) were investigated to reveal their microstructural evolution and hydrogen content at different production [...] Read more.
Hot stamping is a promising method to manufacture ultra-high-strength automotive steel components with high dimension accuracy. In this work, two actual industrial production flows (with and without Al-Si hot dipping) were investigated to reveal their microstructural evolution and hydrogen content at different production steps. Meanwhile, the variations in composition and phase structures of the Al-Si coating layer were studied in terms of energy-dispersive spectrometry and electron backscattering diffraction techniques. The results showed that the microstructure at the steel substrate changed from the pancake-shaped pearlite and ferrite, degenerated pearlite and annealed ferrite, lath martensite, and then tempered martensite with the progress of the production steps, which was not affected by the Al-Si hot dipping. The final coating layer exhibited a multi-sublayer structure with the alternative distribution of FeAl and Fe2Al5, which contained many microcracks on the brittle phase Fe2Al5. The Al-Si-coated specimens always had higher hydrogen content than the bare steel specimens because of the hydrogen generation at the hot stamping stage and hydrogen absorption during the hot-dip aluminizing stage. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 5381 KiB  
Article
Optimal Water Level Prediction and Control of Great Lakes Based on Multi-Objective Planning and Fuzzy Control Algorithm
by Ruizhi Ouyang, Yang Wang, Qin Gao, Xinlu Li, Qihang Li and Kaiye Gao
Sustainability 2025, 17(8), 3690; https://doi.org/10.3390/su17083690 - 18 Apr 2025
Viewed by 541
Abstract
The optimal water level prediction and control of the Great Lakes is critical for balancing ecological, economic, and societal demands. This study proposes a multi-objective planning model integrated with a fuzzy control algorithm to address the conflicting interests of stakeholders and dynamic hydrological [...] Read more.
The optimal water level prediction and control of the Great Lakes is critical for balancing ecological, economic, and societal demands. This study proposes a multi-objective planning model integrated with a fuzzy control algorithm to address the conflicting interests of stakeholders and dynamic hydrological complexities. First, a network flow model is established to capture the interconnected flow dynamics among the five Great Lakes, incorporating lake volume equations derived from paraboloid-shaped bed assumptions. Multi-objective optimization aims to maximize hydropower flow while minimizing water level fluctuations, solved via a hybrid Ford–Fulkerson and simulated annealing approach. A fuzzy controller is designed to regulate dam gate openings based on water level deviations and seasonal variations, ensuring stability within ±0.6096 m of target levels. Simulations demonstrate rapid convergence (T = 5 time units) and robustness under environmental disturbances, with sensitivity analysis confirming effectiveness in stable conditions (parameter ≥ 0.2). The results highlight the framework’s capability to harmonize stakeholder needs and ecological sustainability, offering a scalable solution for large-scale hydrological systems. Full article
Show Figures

Figure 1

14 pages, 3953 KiB  
Article
Numerical Simulation of Temperature Field Distribution During Directional Annealing of TiAl Alloy with Different Parameters
by Feng Huang, Yeyu Hu, Jiaguo Xu, Zhili Hu, Yanxiong Liu and Lin Hua
Materials 2025, 18(7), 1537; https://doi.org/10.3390/ma18071537 - 28 Mar 2025
Viewed by 419
Abstract
In this paper, a bidirectional temperature gradient directional annealing process for growing TiAl columnar crystals was proposed, and the influences of structural parameters and process parameters on the temperature distributions of TiAl rods were discussed through numerical simulation. The results indicate that the [...] Read more.
In this paper, a bidirectional temperature gradient directional annealing process for growing TiAl columnar crystals was proposed, and the influences of structural parameters and process parameters on the temperature distributions of TiAl rods were discussed through numerical simulation. The results indicate that the α phase zone is expanded and its boundary becomes planar as the thickness of graphite ring (b) and gap width (d) decrease. Increasing the graphite rod length (l) and the height of the graphite ring from the Ga-In coolant surface (h) results in an expanded α phase zone with flattened boundaries, but the temperature gradient decreases. Taking all the α phase zone height, its boundary shape, and the temperature gradient into consideration, the optimal b, d, l, and h are 10 mm, 5 mm, 50 mm, and 50 mm, respectively. The higher heating temperature within the α phase temperature range, such as 1375 °C, is favorable for the establishment of the required temperature field during directional annealing. The effect of drawing speed is more complicated. Although its effect on the temperature field of the TiAl rod is almost negligible, it will seriously affect the microstructure of the annealed alloy, and it needs to be optimized by subsequent experiments. Full article
Show Figures

Figure 1

31 pages, 5462 KiB  
Article
Optimization of Line Planning by Integrating Ticket Pricing and Seat Allocation Decisions for High-Speed Railway
by Xin Shi, Wenliang Zhou and Xiang Li
Mathematics 2025, 13(7), 1073; https://doi.org/10.3390/math13071073 - 25 Mar 2025
Viewed by 360
Abstract
In the transportation organization optimization of high-speed railway (HSR), optimizations such as line planning, ticket pricing, and seat allocation are generally studied separately. However, in reality, when passengers choose trains, they need to consider multiple factors such as train routes, stop plans, seat [...] Read more.
In the transportation organization optimization of high-speed railway (HSR), optimizations such as line planning, ticket pricing, and seat allocation are generally studied separately. However, in reality, when passengers choose trains, they need to consider multiple factors such as train routes, stop plans, seat prices, seat availability, and departure times. Therefore, there is an urgent need for an integrated optimization method to simultaneously make decisions regarding these multiple factors. This study constructs a nonlinear optimization model of line planning integrating differentiated pricing and seat allocation decisions for HSR under elastic demand. To efficiently solve the model, an improved heuristic algorithm based on the simulated annealing framework combined with a linear passenger flow allocation method is proposed. Finally, case analysis proves that the improved algorithm can effectively solve the model under the input conditions of an actual Y-shaped HSR network composed of 13 stations, with a potential for a 106.54% improvement from the initial solution to the final solution. The uniqueness of our study lies in the joint optimization of three critical HSR operations, which has not been comprehensively explored in prior studies and is of great significance for improving the level of HSR train operations and passenger services. Full article
Show Figures

Figure 1

12 pages, 9084 KiB  
Article
Preparation of Laminated Titanium Matrix Composites with High Strength and Plasticity via Regulating Heat Treatment Processes
by Xiong Zou, Yu Yang, Junliang Liu, Tingting Sun and Fuqin Zhang
Materials 2025, 18(7), 1429; https://doi.org/10.3390/ma18071429 - 24 Mar 2025
Viewed by 468
Abstract
In order to achieve a balance between the strength and ductility of titanium matrix composites (TMCs), a spray deposition method was employed to deposit carbon nanotubes (CNTs) onto the surface of Ti foil. Subsequently, spark plasma sintering (SPS) at 850 °C and an [...] Read more.
In order to achieve a balance between the strength and ductility of titanium matrix composites (TMCs), a spray deposition method was employed to deposit carbon nanotubes (CNTs) onto the surface of Ti foil. Subsequently, spark plasma sintering (SPS) at 850 °C and an additional 1 h heat treatment at 880 °C were utilized to fabricate two laminated composites of different composition, namely, CNTs/Ti (SPS) and in situ TiC/Ti (SPS+HT). The microstructure evolution, mechanical properties, and strengthening and fracture mechanisms of laminated composites were systematically studied. The results revealed that after sintering at 850 °C, the reaction between CNTs and the titanium matrix was limited. However, after a 1 h heat treatment at 880 °C, CNTs were completely transformed into TiC, while the titanium matrix remained α phase without undergoing phase transformation. Through rolling and annealing, TiC particles were refined to 500 nm and exhibited a flattened shape. The in situ TiC/Ti layered composite material exhibited a tensile strength (UTS) of 491.51 MPa, which was a 29.63% improvement compared to pure titanium (379.16 MPa), and significantly higher than the UTS of CNTs/Ti samples (419.65 MPa). The primary strengthening mechanism was load transfer strengthening. The elongation (EL) remained at 26.59%, slightly lower than pure titanium (29.15%) and CNTs/Ti samples (27.51%). This can be attributed to the increased connectivity of the matrix achieved through rolling, which enhanced the ability to passivate cracks and prolonged the crack propagation path. This study presents a method for preparing laminated titanium matrix composites with both strength and ductility by controlling the heat treatment process. Full article
(This article belongs to the Special Issue Advances in Titanium Matrix Composites)
Show Figures

Figure 1

24 pages, 6467 KiB  
Article
Time-Impact Optimal Trajectory Planning for Wafer-Handling Robotic Arms Based on the Improved Snake Optimization Algorithm
by Yujie Ji and Jiale Yu
Sensors 2025, 25(6), 1872; https://doi.org/10.3390/s25061872 - 18 Mar 2025
Viewed by 730
Abstract
To enhance the working efficiency of a wafer-handling robotic arm and simultaneously alleviate the impact and vibration during the motion process, a trajectory planning approach based on an improved snake optimization (ISO) algorithm is proposed. The following improvements have been made to the [...] Read more.
To enhance the working efficiency of a wafer-handling robotic arm and simultaneously alleviate the impact and vibration during the motion process, a trajectory planning approach based on an improved snake optimization (ISO) algorithm is proposed. The following improvements have been made to the snake optimization (SO) algorithm: the introduction of a Chaotic Tent Map for initializing the swarm, the use of randomly perturbed dynamic learning factors to replace fixed values, the application of a cosine annealing learning rate for self-adaptively updating individual positions, and the incorporation of Bayesian optimization for parameterization and fine-tuning of the system’s selection process. Furthermore, the ISO algorithm is applied in the Cartesian space of the robotic arm to effectively address the trajectory planning challenge of the single-segment start–stop S-shaped speed curve with arc transitions. The simulation results indicate that the improved S-shaped speed curve has increased by 24.1% compared with the original plan, and the mean and variance rankings of ISO algorithm have, respectively, improved by 60.8% and 63.4%, compared with the SO algorithm. Meanwhile, this study has successfully achieved the Pareto optimal solution with time and impact as the targets based on the established MATLAB experimental simulation platform. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 3089 KiB  
Article
Changes in Mechanical Properties of Medium Manganese Steel After Forming, Press Hardening, and Heat Treatment
by Radek Leták, Ludmila Kučerová, Hana Jirková, Štěpán Jeníček and Filip Votava
Materials 2025, 18(6), 1196; https://doi.org/10.3390/ma18061196 - 7 Mar 2025
Viewed by 925
Abstract
Solutions and new processes are continually being developed to produce components demonstrating high strength and elongation. This paper focuses on medium manganese steel with a composition of 0.2% carbon, 3% manganese, and 2.15% aluminium (by weight percent). The mechanical properties of the steel [...] Read more.
Solutions and new processes are continually being developed to produce components demonstrating high strength and elongation. This paper focuses on medium manganese steel with a composition of 0.2% carbon, 3% manganese, and 2.15% aluminium (by weight percent). The mechanical properties of the steel and the effect of aluminium and manganese on the microstructure are investigated. The steel sheets are shaped into omega profiles using a press tool, followed by the intercritical annealing of the samples to enhance their ductility. Before the experiment, the anticipated values were a tensile strength (UTS) of approximately 1100 MPa and elongation within 30–35%. A key objective was to achieve a microstructure that incorporates residual austenite. The experimental parameters were carefully derived from an extensive exploration to identify potential weaknesses in the experiment. The main parameters selected were the intercritical annealing (IA) temperature and IA dwell time. The results revealed that the highest recorded UTS was 1262 ± 6 MPa, while the maximum elongation achieved was 16 ± 1%. Full article
Show Figures

Figure 1

Back to TopTop