Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = shRNA lentivirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1560 KiB  
Article
Knockdown of the snoRNA-Jouvence Blocks the Proliferation and Leads to the Death of Human Primary Glioblastoma Cells
by Lola Jaque-Cabrera, Julia Buggiani, Jérôme Bignon, Patricia Daira, Nathalie Bernoud-Hubac and Jean-René Martin
Non-Coding RNA 2025, 11(4), 54; https://doi.org/10.3390/ncrna11040054 - 18 Jul 2025
Viewed by 393
Abstract
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small [...] Read more.
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small nucleolar RNAs (snoRNAs) in many physiological and pathological cellular processes, including cancers. SnoRNAs are a group of non-coding RNAs involved in different post-transcriptional modifications of ribosomal RNAs. Recently, we identified a new snoRNA (jouvence), first in Drosophila, and thereafter, by homology, in humans. Methods: Here, we characterize the effect of the knockdown of jouvence by a sh-lentivirus on human primary patient-derived glioblastoma cells. Results: The sh-lentivirus anti-jouvence induces a significant decrease in cell proliferation and leads to cell death. EdU staining confirmed this decrease, while TUNEL also showed the presence of apoptotic cells. An RNA-Seq analysis revealed a decrease, in particular, in the level of BAALC, a gene known to potentiate the oncogenic ERK pathway and deregulating p21, leading to cell cycle blockage. Conclusions: Altogether, these results allow the hypothesis that the knockdown of jouvence could potentially be used as a new anti-cancer treatment (sno-Therapy), especially against glioblastoma and also, potentially, against acute myeloid leukemia (AML) due to the BAALC deregulation. Full article
(This article belongs to the Section Small Non-Coding RNA)
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Inhibition of Matrix Metalloproteinase-7 Attenuates Subpleural Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease
by Li Xiong, Li-Mei Liang, Shu-Yi Ye, Xiao-Lin Cui, Shi-He Hu, Chen-Yue Lian, Wen-Jia Sun, Yang-Ping Lv, He-De Zhang, Meng Wang, Fei Xiang, Liang Xiong, Hong Ye, Wan-Li Ma and Lin-Jie Song
Biomedicines 2025, 13(7), 1581; https://doi.org/10.3390/biomedicines13071581 - 27 Jun 2025
Viewed by 640
Abstract
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD [...] Read more.
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD patients, a bioinformatics analysis was performed. A protein–protein interaction (PPI) network focusing on MMP-7 was simulated. Pleural mesothelial cells (PMCs) were treated with RA-ILD patients’ serum or RA-ILD-related inflammatory factors, and the protein expressions of collagen-I and MMP-7 were examined. An arthritis model was established using complete Freund’s adjuvant (CFA). Changes in the weight and joints of mice were recorded, and lung tissues were evaluated by Masson staining and Sirius red stain techniques. MMP-7 inhibitor, MMP-7 siRNA and MMP shRNA lentivirus were used to inhibit MMP-7 and investigate changes in collagen-I and fibrosis in vivo and in vitro. Results: MMP-7 was found to be significantly expressed in RA-ILD lung tissue by bioinformatics analysis, and MMP-7 to maybe interact with collagen-I. In vitro experiments indicated cytokines IL-1β, IL-6 and TNF-α promoted MMP-7 and collagen-I expression in PMCs. Serum obtained from patients with RA-ILD also upregulated MMP-7 and collagen-I expression in PMCs. Inhibition of MMP-7 with MMP-7 siRNA or MMP inhibitor prevented collagen-I synthesis in PMCs. In vivo, CFA induced arthritis and subpleural lung inflammation in rats, but the MMP-7 inhibitor and MMP-7 siRNA attenuated CFA-induced lung inflammation and subpleural lung fibrosis. Conclusions: MMP-7 mediated subpleural lung inflammation as well as fibrosis in RA-ILD. It provided theoretical and experimental support for MMP-7 being a therapeutic target in RA-ILD. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

15 pages, 2177 KiB  
Article
Knockdown of POLG Mimics the Neuronal Pathology of Polymerase-γ Spectrum Disorders in Human Neurons
by Çağla Çakmak Durmaz, Felix Langerscheidt, Imra Mantey, Xinyu Xia and Hans Zempel
Cells 2025, 14(7), 480; https://doi.org/10.3390/cells14070480 - 22 Mar 2025
Viewed by 661
Abstract
Impaired function of Polymerase-γ (Pol-γ) results in impaired replication of the mitochondrial genome (mtDNA). Pathogenic mutations in the POLG gene cause dysfunctional Pol-γ and dysfunctional mitochondria and are associated with a spectrum of neurogenetic disorders referred to as POLG spectrum disorders (POLG-SDs), which [...] Read more.
Impaired function of Polymerase-γ (Pol-γ) results in impaired replication of the mitochondrial genome (mtDNA). Pathogenic mutations in the POLG gene cause dysfunctional Pol-γ and dysfunctional mitochondria and are associated with a spectrum of neurogenetic disorders referred to as POLG spectrum disorders (POLG-SDs), which are characterized by neurologic dysfunction and premature death. Pathomechanistic studies and human cell models of these diseases are scarce. SH-SY5Y cells (SHC) are an easy-to-handle and low-cost human-derived neuronal cell model commonly used in neuroscientific research. Here, we aimed to study the effect of reduced Pol-γ function using stable lentivirus-based shRNA-mediated knockdown of POLG in SHC, in both the proliferating cells and SHC-derived neurons. POLG knockdown resulted in approximately 50% reductions in POLG mRNA and protein levels in naïve SHC, mimicking the residual Pol-γ activity observed in patients with common pathogenic POLG mutations. Knockdown cells exhibited decreased mtDNA content, reduced levels of mitochondrial-encoded proteins, and altered mitochondrial morphology and distribution. Notably, while chemical induction of mtDNA depletion via ddC could be rescued by the mitochondrial biosynthesis stimulators AICAR, cilostazol and resveratrol (but not MitoQ and formoterol) in control cells, POLG-knockdown cells were resistant to mitochondrial biosynthesis-mediated induction of mtDNA increase, highlighting the specificity of the model, and pathomechanistically hinting towards inefficiency of mitochondrial stimulation without sufficient Pol-γ activity. In differentiated SHC-derived human neurons, POLG-knockdown cells showed impaired neuronal differentiation capacity, disrupted cytoskeletal organization, and abnormal perinuclear clustering of mitochondria. In sum, our model not only recapitulates key features of POLG-SDs such as impaired mtDNA content, which cannot be rescued by mitochondrial biosynthesis stimulation, but also reduced ATP production, perinuclear clustering of mitochondria and impaired neuronal differentiation. It also offers a simple, cost-effective and human (and, as such, disease-relevant) platform for investigating disease mechanisms, one with screening potential for therapeutic approaches for POLG-related mitochondrial dysfunction in human neurons. Full article
Show Figures

Figure 1

14 pages, 3093 KiB  
Article
DDX21 Promotes PCV3 Replication by Binding to Cap Protein and Inhibiting Interferon Responses
by Haoyu Sun, Qianhong Dai, Beiyi Zhou, Xiaoyuan Lan, Yonghui Qiu, Qianqian Zhang, Dedong Wang, Yongqiu Cui, Jinshuo Guo, Lei Hou, Jue Liu and Jianwei Zhou
Viruses 2025, 17(2), 166; https://doi.org/10.3390/v17020166 - 24 Jan 2025
Viewed by 984
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 [...] Read more.
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 and PCV3 Cap regulates viral replication remains unknown. In the present study, upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV3 proliferation via a lentivirus-delivered system, as indicated by reduced replicase (Rep) protein levels and viral titers. Furthermore, DDX21 negatively regulated IFN-β and interferon-stimulated gene (ISG) levels, promoting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX21, and the nuclear localization signal (NLS) of PCV3 Cap and 763GSRSNRFQNK772 at the C-terminal domain (CTD) of DDX21 were indispensable to the interaction. Moreover, PCV3 infection prevented the repression of DDX21 to facilitate its pro-viral activity. Taken together, these results show that DDX21 promotes PCV3 replication by binding to the PCV3 Cap protein and prohibiting IFN-β response, which provides important insight on the prevention and control of PCV3 infection. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations
by Li Yu, Xiaoli Gu, Pengjie Chen, Rui Yang, Yonggang Xu and Xiupeng Yang
Curr. Issues Mol. Biol. 2024, 46(11), 12061-12074; https://doi.org/10.3390/cimb46110715 - 28 Oct 2024
Viewed by 1166
Abstract
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), [...] Read more.
Objective: Protein tyrosine phosphatase non-receptor type 6 (PTPN6) is a cytoplasmic phosphatase that acts as a key regulatory protein in cell signaling to control inflammation and cell death. In order to investigate the role of PTPN6 in hematologic tumor myelodysplastic syndrome (MDS), this study infected SKM-1 cell line (MDS cell line) with packaged H_PTPN6-shRNA lentivirus to obtain H_PTPN6-shRNA SKM-1 stable strain. The effect of PTPN6 knockdown on apoptosis, erythroid differentiation, and inflammations in SKM-1 cell line was examined. Methods: The stable knockdown SKM-1 cell line was validated using qPCR and Western blot assays. The proliferation activity, apoptosi, erythroid differentiation, and inflammatory cytokines in SKM-1 cells were assessed before and after transfection. Results: qPCR confirmed that the expression level of H_PTPN6-shRNA in SKM-1 cells was significantly reduced, and Western blot showed that the protein expression level of H_PTPN6-shRNA in SKM-1 cells was also significantly reduced. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell viability. Flow cytometry revealed that the apoptosis rate of cells in the PTPN6 knockdown group was 0.8%, lower than the 2.7% observed in the empty plasmid group; the expression rate of the erythroid differentiation marker CD235a was 13.2%, lower than the 25.0% observed in the empty plasmid group. The expression levels of the proinflammatory factors IL-6 and IL-8 increased, and the expression levels of the inhibitor factor IL-4 decreased. Conclusions: The PTPN6 gene was successfully knocked down using lentivirus-mediated transduction, and the constructed cell line was validated using PCR and Western blot. The CCK-8 cell viability assay confirmed that stable gene knockdown did not affect cell proliferation viability. Flow cytometry analysis of apoptosis and erythroid differentiation indicated that PTPN6 knockdown inhibits apoptosis and erythroid differentiation in SKM-1 cells and also alters the level of inflammations in the bone marrow microenvironment. It suggests that the PTPN6 gene acts as a tumor suppressor in myelodysplastic syndrome cells, influencing hematopoietic cell apoptosis, erythroid differentiation, and inflammations. This provides a reliable experimental basis for further in-depth studies on the mechanism of PTPN6 in MDS and related pharmacological research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 11125 KiB  
Article
QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo
by Reetika Dutt, Colin Thorpe and Deni S. Galileo
Cancers 2024, 16(21), 3620; https://doi.org/10.3390/cancers16213620 - 26 Oct 2024
Viewed by 2002
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number [...] Read more.
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion. Full article
(This article belongs to the Special Issue Invasion in Glioblastoma)
Show Figures

Figure 1

12 pages, 1498 KiB  
Article
Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content
by Theresa L. Powell, Kenneth Barentsen, Owen Vaughan, Charis Uhlson, Karin Zemski Berry, Kathryn Erickson, Kelsey Faer, Stephanie S. Chassen and Thomas Jansson
Nutrients 2023, 15(23), 4956; https://doi.org/10.3390/nu15234956 - 29 Nov 2023
Cited by 6 | Viewed by 2073
Abstract
Introduction: Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized [...] Read more.
Introduction: Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. Methods: Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. Results: MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. Conclusions: Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal–fetal transfer of LPC-DHA, which is critical for brain growth. Full article
Show Figures

Figure 1

12 pages, 17406 KiB  
Article
Dissecting the Impact of Vascular Smooth Muscle Cell ABCA1 versus ABCG1 Expression on Cholesterol Efflux and Macrophage-like Cell Transdifferentiation: The Role of SR-BI
by Olanrewaju Oladosu, Ikechukwu C. Esobi, Rhonda R. Powell, Terri Bruce and Alexis Stamatikos
J. Cardiovasc. Dev. Dis. 2023, 10(10), 416; https://doi.org/10.3390/jcdd10100416 - 2 Oct 2023
Cited by 8 | Viewed by 2701
Abstract
Cholesterol-laden macrophages are recognized as a major contributor to atherosclerosis. However, recent evidence indicates that vascular smooth muscle cells (VSMC) that accumulate cholesterol and transdifferentiate into a macrophage-like cell (MLC) phenotype also play a role in atherosclerosis. Therefore, removing cholesterol from MLC may [...] Read more.
Cholesterol-laden macrophages are recognized as a major contributor to atherosclerosis. However, recent evidence indicates that vascular smooth muscle cells (VSMC) that accumulate cholesterol and transdifferentiate into a macrophage-like cell (MLC) phenotype also play a role in atherosclerosis. Therefore, removing cholesterol from MLC may be a potential atheroprotective strategy. The two transporters which remove cholesterol from cells are ABCA1 and ABCG1, as they efflux cholesterol to apoAI and HDL, respectively. In this study, the well-characterized immortalized VSMC line MOVAS cells were edited to generate ABCA1- and ABCG1-knockout (KO) MOVAS cell lines. We cholesterol-loaded ABCA1-KO MOVAS cells, ABCG1-KO MOVAS cells, and wild-type MOVAS cells to convert cells into a MLC phenotype. When we measured apoAI- and HDL-mediated cholesterol efflux in these cells, we observed a drastic decrease in apoAI-mediated cholesterol efflux within ABCA1-KO MOVAS MLC, but HDL-mediated cholesterol efflux was only partially reduced in ABCG1-KO MOVAS cells. Since SR-BI also participates in HDL-mediated cholesterol efflux, we assessed SR-BI protein expression in ABCG1-KO MOVAS MLC and observed SR-BI upregulation, which offered a possible mechanism explaining why HDL-mediated cholesterol efflux remains maintained in ABCG1-KO MOVAS MLC. When we used lentivirus for shRNA-mediated knockdown of SR-BI in ABCG1-KO MOVAS MLC, this decreased HDL-mediated cholesterol efflux when compared to ABCG1-KO MOVAS MLC with unmanipulated SR-BI expression. Taken together, these major findings suggest that SR-BI expression in MLC of a VSMC origin plays a compensatory role in HDL-mediated cholesterol efflux when ABCG1 expression becomes impaired and provides insight on SR-BI demonstrating anti-atherogenic properties within VSMC/MLC. Full article
Show Figures

Figure 1

18 pages, 1295 KiB  
Article
Impact of Chorionic Somatomammotropin In Vivo RNA Interference Phenotype on Uteroplacental Expression of the IGF Axis
by Taylor K. Hord, Amelia R. Tanner, Victoria C. Kennedy, Cameron S. Lynch, Quinton A. Winger, Paul J. Rozance and Russell V. Anthony
Life 2023, 13(6), 1261; https://doi.org/10.3390/life13061261 - 26 May 2023
Cited by 3 | Viewed by 2115
Abstract
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental [...] Read more.
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies. Full article
(This article belongs to the Special Issue Placentology)
Show Figures

Graphical abstract

11 pages, 1958 KiB  
Article
NGFR Gene and Single Nucleotide Polymorphisms, rs2072446 and rs11466162, Playing Roles in Psychiatric Disorders
by Longyou Zhao, Binyin Hou, Lei Ji, Decheng Ren, Fan Yuan, Liangjie Liu, Yan Bi, Fengping Yang, Shunying Yu, Zhenghui Yi, Chuanxin Liu, Bo Bai, Tao Yu, Changqun Cai, Lin He, Guang He, Yi Shi, Xingwang Li and Shaochang Wu
Brain Sci. 2022, 12(10), 1372; https://doi.org/10.3390/brainsci12101372 - 9 Oct 2022
Cited by 11 | Viewed by 3442
Abstract
Psychiatric disorders are a class of complex disorders characterized by brain dysfunction with varying degrees of impairment in cognition, emotion, consciousness and behavior, which has become a serious public health issue. The NGFR gene encodes the p75 neurotrophin receptor, which regulates neuronal growth, [...] Read more.
Psychiatric disorders are a class of complex disorders characterized by brain dysfunction with varying degrees of impairment in cognition, emotion, consciousness and behavior, which has become a serious public health issue. The NGFR gene encodes the p75 neurotrophin receptor, which regulates neuronal growth, survival and plasticity, and was reported to be associated with depression, schizophrenia and antidepressant efficacy in human patient and animal studies. In this study, we investigated its association with schizophrenia and major depression and its role in the behavioral phenotype of adult mice. Four NGFR SNPs were detected based on a study among 1010 schizophrenia patients, 610 patients with major depressive disorders (MDD) and 1034 normal controls, respectively. We then knocked down the expression of NGFR protein in the hippocampal dentate gyrus of the mouse brain by injection of shRNA lentivirus to further investigate its behavioral effect in mice. We found significant associations of s2072446 and rs11466162 for schizophrenia. Ngfr knockdown mice showed social and behavioral abnormalities, suggesting that it is linked to the etiology of neuropsychiatric disorders. We found significant associations between NGFR and schizophrenia and that Ngfr may contribute to the social behavior of adult mice in the functional study, which provided meaningful clues to the pathogenesis of psychiatric disorders. Full article
Show Figures

Graphical abstract

19 pages, 4271 KiB  
Article
Silencing the Adipocytokine NOV: A Novel Approach to Reversing Oxidative Stress-Induced Cardiometabolic Dysfunction
by Maayan Waldman, Shailendra P. Singh, Hsin-Hsueh Shen, Ragin Alex, Rita Rezzani, Gaia Favero, Edith Hochhauser, Ran Kornowski, Michael Arad and Stephen J. Peterson
Cells 2022, 11(19), 3060; https://doi.org/10.3390/cells11193060 - 29 Sep 2022
Cited by 9 | Viewed by 2999
Abstract
Objective: NOV/CCN3 is an adipocytokine recently linked to obesity, insulin resistance, and cardiometabolic dysfunction. NOV is manufactured and secreted from adipose tissue, with blood levels highly correlated with BMI. NOV levels are increased in obesity and a myriad of inflammatory diseases. Elevated NOV [...] Read more.
Objective: NOV/CCN3 is an adipocytokine recently linked to obesity, insulin resistance, and cardiometabolic dysfunction. NOV is manufactured and secreted from adipose tissue, with blood levels highly correlated with BMI. NOV levels are increased in obesity and a myriad of inflammatory diseases. Elevated NOV levels cause oxidative stress by increasing free radicals, decreasing antioxidants, and decreasing heme oxygenase (HO-1) levels, resulting in decreased vascular function. Silencing NOV in NOV knockout mice improved insulin sensitivity. We wanted to study how suppressing NOV expression in an obese animal model affected pathways and processes related to obesity, inflammation, and cardiometabolic function. This is the first study to investigate the interaction of adipose tissue-specific NOV/CCN3 and cardiometabolic function. Methods: We constructed a lentivirus containing the adiponectin-promoter-driven shNOV to examine the effect of NOV inhibition (shNOV) in adipose tissue on the heart of mice fed a high-fat diet. Mice were randomly divided into three groups (five per group): (1) lean (normal diet), (2) high-fat diet (HFD)+ sham virus, and (3) HFD + shNOV lentivirus. Blood pressure, tissue inflammation, and oxygen consumption were measured. Metabolic and mitochondrial markers were studied in fat and heart tissues. Results: Mice fed an HFD developed adipocyte hypertrophy, fibrosis, inflammation, and decreased mitochondrial respiration. Inhibiting NOV expression in the adipose tissue of obese mice by shNOV increased mitochondrial markers for biogenesis (PGC-1α, the nuclear co-activator of HO-1) and functional integrity (FIS1) and insulin signaling (AKT). The upregulation of metabolic and mitochondrial markers was also evident in the hearts of the shNOV mice with the activation of mitophagy. Using RNA arrays, we identified a subgroup of genes that highly correlated with increased adipocyte mitochondrial autophagy in shNOV-treated mice. A heat map analysis in obese mice confirmed that the suppression of NOV overrides the genetic susceptibility of adiposity and the associated detrimental metabolic changes and correlates with the restoration of anti-inflammatory, thermogenic, and mitochondrial genes. Conclusion: Our novel findings demonstrate that inhibiting NOV expression improves adipose tissue function in a positive way in cardiometabolic function by inducing mitophagy and improving mitochondrial function by the upregulation of PGC-1α, the insulin sensitivity signaling protein. Inhibiting NOV expression increases PGC-1, a key component of cardiac bioenergetics, as well as key signaling components of metabolic change, resulting in improved glucose tolerance, improved mitochondrial function, and decreased inflammation. These metabolic changes resulted in increased oxygen consumption, decreased adipocyte size, and improved cardiac metabolism and vascular function at the structural level. The crosstalk of the adipose tissue-specific deletion of NOV/CCN3 improved cardiovascular function, representing a novel therapeutic strategy for obesity-related cardiometabolic dysfunction. Full article
(This article belongs to the Special Issue Recent Advances of Oxidative Stress and Inflammation in Diabetes)
Show Figures

Figure 1

13 pages, 2838 KiB  
Article
NGF-Induced Upregulation of CGRP in Orofacial Pain Induced by Tooth Movement Is Dependent on Atp6v0a1 and Vesicle Release
by Tianjin Tao, Yi Liu, Jingqi Zhang, Wenli Lai and Hu Long
Int. J. Mol. Sci. 2022, 23(19), 11440; https://doi.org/10.3390/ijms231911440 - 28 Sep 2022
Cited by 3 | Viewed by 2610
Abstract
The nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) play a crucial role in the regulation of orofacial pain. It has been demonstrated that CGRP increases orofacial pain induced by NGF. V-type proton ATPase subunit an isoform 1 (Atp6v0a1) is involved in [...] Read more.
The nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) play a crucial role in the regulation of orofacial pain. It has been demonstrated that CGRP increases orofacial pain induced by NGF. V-type proton ATPase subunit an isoform 1 (Atp6v0a1) is involved in the exocytosis pathway, especially in vesicular transport in neurons. The objective was to examine the role of Atp6v0a1 in NGF-induced upregulation of CGRP in orofacial pain induced by experimental tooth movement. Orofacial pain was elicited by ligating closed-coil springs between incisors and molars in Sprague–Dawley rats. Gene and protein expression levels were determined through real-time polymerase chain reaction, immunostaining, and fluorescence in situ hybridization. Lentivirus vectors carrying Atp6v0a1 shRNA were used to knockdown the expression of Atp6v0a1 in TG and SH-SY5Y neurons. The release of vesicles in SH-SY5Y neurons was observed by using fluorescence dye FM1-43, and the release of CGRP was detected by Enzyme-Linked Immunosorbent Assy. Orofacial pain was evaluated through the rat grimace scale. Our results revealed that intraganglionic administration of NGF and Atp6v0a1 shRNA upregulated and downregulated CGRP in trigeminal ganglia (TG) and trigeminal subnucleus caudalis (Vc), respectively, and the orofacial pain was also exacerbated and alleviated, respectively, following administration of NGF and Atp6v0a1 shRNA. Besides, intraganglionic administration of NGF simultaneously caused the downregulation of Atp6v0a1 in TG. Moreover, the release of vesicles and CGRP in SH-SY5Y neurons was interfered by NGF and Atp6v0a1 shRNA. In conclusion, in the orofacial pain induced by experimental tooth movement, NGF induced the upregulation of CGRP in TG and Vc, and this process is dependent on Atp6v0a1 and vesicle release, suggesting that they are involved in the transmission of nociceptive information in orofacial pain. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 16369 KiB  
Article
Disparate Roles of Oxidative Stress in Rostral Ventrolateral Medulla in Age-Dependent Susceptibility to Hypertension Induced by Systemic l-NAME Treatment in Rats
by Yung-Mei Chao, Hana Rauchová and Julie Y. H. Chan
Biomedicines 2022, 10(9), 2232; https://doi.org/10.3390/biomedicines10092232 - 8 Sep 2022
Cited by 2 | Viewed by 2664
Abstract
This study aims to investigate whether tissue oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, plays an active role in age-dependent susceptibility to hypertension in response to nitric oxide (NO) deficiency induced by systemic l-NAME treatment, and [...] Read more.
This study aims to investigate whether tissue oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, plays an active role in age-dependent susceptibility to hypertension in response to nitric oxide (NO) deficiency induced by systemic l-NAME treatment, and to decipher the underlying molecular mechanisms. Systolic blood pressure (SBP) and heart rate (HR) in conscious rats were recorded, along with measurements of plasma and RVLM level of NO and reactive oxygen species (ROS), and expression of mRNA and protein involved in ROS production and clearance, in both young and adult rats subjected to intraperitoneal (i.p.) infusion of l-NAME. Pharmacological treatments were administered by oral gavage or intracisternal infusion. Gene silencing of target mRNA was made by bilateral microinjection into RVLM of lentivirus that encodes a short hairpin RNA (shRNA) to knock down gene expression of NADPH oxidase activator 1 (Noxa1). We found that i.p. infusion of l-NAME resulted in increases in SBP, sympathetic neurogenic vasomotor activity, and plasma norepinephrine levels in an age-dependent manner. Systemic l-NAME also evoked oxidative stress in RVLM of adult, but not young rats, accompanied by augmented enzyme activity of NADPH oxidase and reduced mitochondrial electron transport enzyme activities. Treatment with L-arginine via oral gavage or infusion into the cistern magna (i.c.), but not i.c. tempol or mitoQ10, significantly offset the l-NAME-induced hypertension in young rats. On the other hand, all treatments appreciably reduced l-NAME-induced hypertension in adult rats. The mRNA microarray analysis revealed that four genes involved in ROS production and clearance were differentially expressed in RVLM in an age-related manner. Of them, Noxa1, and GPx2 were upregulated and Duox2 and Ucp3 were downregulated. Systemic l-NAME treatment caused greater upregulation of Noxa1, but not Ucp3, mRNA expression in RVLM of adult rats. Gene silencing of Noxa1 in RVLM effectively alleviated oxidative stress and protected adult rats against l-NAME-induced hypertension. These data together suggest that hypertension induced by systemic l-NAME treatment in young rats is mediated primarily by NO deficiency that occurs both in vascular smooth muscle cells and RVLM. On the other hand, enhanced augmentation of oxidative stress in RVLM may contribute to the heightened susceptibility of adult rats to hypertension induced by systemic l-NAME treatment. Full article
Show Figures

Figure 1

15 pages, 2590 KiB  
Article
Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice
by Sijie Li, Yong Yang, Ning Li, Haiyan Li, Jiali Xu, Wenbo Zhao, Xiaojie Wang, Linqing Ma, Chen Gao, Yuchuan Ding, Xunming Ji and Changhong Ren
Biomolecules 2022, 12(8), 1137; https://doi.org/10.3390/biom12081137 - 18 Aug 2022
Cited by 11 | Viewed by 2835
Abstract
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate [...] Read more.
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22–25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway. Full article
Show Figures

Figure 1

18 pages, 5262 KiB  
Article
CysLT2R Antagonist HAMI 3379 Ameliorates Post-Stroke Depression through NLRP3 Inflammasome/Pyroptosis Pathway in Gerbils
by Li Zhou, Jiajia Zhang, Xue Han, Jie Fang, Shasang Zhou, Lingqun Lu, Qiaojuan Shi and Huazhong Ying
Brain Sci. 2022, 12(8), 976; https://doi.org/10.3390/brainsci12080976 - 24 Jul 2022
Cited by 13 | Viewed by 3511
Abstract
Post-stroke depression (PSD) is a kind of prevalent emotional disorder following stroke that usually results in slow functional recovery and even increased mortality. We had reported that the cysteinyl leukotriene receptor 2 (CysLT2R) antagonist HAMI3379 (HM3379) contributes to the improvement of [...] Read more.
Post-stroke depression (PSD) is a kind of prevalent emotional disorder following stroke that usually results in slow functional recovery and even increased mortality. We had reported that the cysteinyl leukotriene receptor 2 (CysLT2R) antagonist HAMI3379 (HM3379) contributes to the improvement of neurological injury. The present study was designed to investigate the role of HM3379 in PSD-induced chronic neuroinflammation and related mechanisms in gerbils. The gerbils were subjected to transient global cerebral ischemia (tGCI) and spatial restraint stress to induce the PSD model. They were randomized to receive the vehicle or HM3379 (0.1 mg/kg, i.p.) for a consecutive 14 days. In the PSD-treated gerbils, HM3379 had noteworthy efficacy in improving the modified neurological severity score (mNSS) and depression-like behaviors, including the sucrose preference test and the forced swim test. HM3379 administration significantly mitigated neuron loss, lessened TUNEL-positive neurons, and reduced the activation of microglia in the cerebral cortex. Importantly, HM3379 downregulated protein expressions of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis including NLRP3, cleaved caspase-1, interleukin-1β (IL-1β), IL-18, cleaved gasdermin-N domain (GSDMD-N), and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC). Mechanistically, HM3379 could repress pyroptosis via inhibiting NLRP3 inflammasome activation under oxygen-glucose deprivation (OGD) stimulation. Knockdown of CysLT2R by short hairpin RNA (shRNA) or overexpression of CysLT2R by lentivirus (LV)-CysLT2R could abolish or restore the anti-depression effect of HM3379. Our results demonstrated that the selective CysLT2R antagonist HM3379 has beneficial effects on PSD, partially by suppressing the NLRP3 inflammasome/pyroptosis pathway. Full article
(This article belongs to the Special Issue Neuropharmacological Research in Psychiatry)
Show Figures

Figure 1

Back to TopTop