Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Materials and Instruments
2.2. Cell Lines and Culture
2.3. Construction of H_PTPN6 Interference Vector
2.4. Packaging of H_PTPN6 Lentivirus and Titer Determination
2.5. Construction of Stable Cell Line by Lentiviral Infection
2.6. qPCR Evaluation of Target Gene Expression Changes
2.7. Western Blot Detection of Gene Silencing Effect
2.8. CCK-8 Assay to Detect the Effect of PTPN6 Knockdown on Cell Line Proliferation Activity
2.9. Flow Cytometry to Detect the Effect of PTPN6 Knockdown on SKM-1 Cell Apoptosis
2.10. Flow Cytometry to Detect the Effect of PTPN6 Knockdown on SKM-1 Cell Erythroid Differentiation
2.11. Flow Cytometry to Detect the Effect of PTPN6 Knockdown on SKM-1 Cell Inflammations
2.12. Statistical Analysis
3. Results
3.1. PCR Expression of Target Gene PTPN6
3.2. Construction Results of H_PTPN6 Interference Vector
3.3. Results of Packaging and Titer Determination of H_PTPN6 Lentivirus
3.4. qPCR Evaluation of PTPN6 Knockdown Relative Expression Changes
3.5. Western Blot Results of PTPN6 Knockdown
3.6. Effect of PTPN6 Knockdown on Proliferative Activity of Cell Lines
3.7. The Effect of PTPN6 Knockdown on Apoptosis and Erythroid Differentiation in SKM-1 Cells
3.8. The Effect of PTPN6 Knockdown on Inflammations in SKM-1 Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasserjian, R.P.; Germing, U.; Malcovati, L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023, 142, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Volpe, V.O.; Garcia-Manero, G.; Komrokji, R.S. SOHO State of the Art & Next Questions: Myelodysplastic Syndromes: A New Decade. Clin. Lymphoma Myeloma Leuk. 2022, 22, 1–16. [Google Scholar] [PubMed]
- Usuki, K. [New treatment for myelodysplastic syndromes: Luspatercept and oral hypomethylating agents]. Rinsho Ketsueki 2022, 63, 1099–1106. [Google Scholar]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Sun, S.; Ma, R.; Hu, X.; Yang, X.; Xu, Y.; Wang, H.; Yang, X. Karyotype and DNA-Methylation Responses in Myelodysplastic Syndromes following Treatment with Traditional Chinese Formula Containing Arsenic. Evid. Based Complement. Altern. Med. 2012, 2012, 969476. [Google Scholar] [CrossRef]
- Tsui, F.W.; Martin, A.; Wang, J.; Tsui, H.W. Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol. Res. 2006, 35, 127–136. [Google Scholar] [CrossRef]
- Speir, M.; Nowell, C.J.; Chen, A.A.; O’Donnell, J.A.; Shamie, I.S.; Lakin, P.R.; D’Cruz, A.A.; Braun, R.O.; Babon, J.J.; Lewis, R.S.; et al. Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation. Nat. Immunol. 2020, 21, 54–64. [Google Scholar] [CrossRef]
- Zhang, T.; Li, S.; Li, J.; Yin, F.; Hua, Y.; Wang, Z.; Wang, H.; Zuo, D.; Xu, J.; Cai, Z. Pectolinarigenin acts as a potential anti-osteosarcoma agent via mediating SHP-1/JAK2/STAT3 signaling. Biomed. Pharmacother. 2022, 153, 113323. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, B.; Luo, H.; Mao, J.; Huang, Y.; Zhang, K.; Mei, C.; Yan, Y.; Jin, H.; Gao, J. ZnAs@SiO2 nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics 2019, 9, 4391–4408. [Google Scholar] [CrossRef]
- Al-Rawashde, F.A.; Al-Sanabra, O.M.; Alqaraleh, M.; Jaradat, A.Q.; Al-Wajeeh, A.S.; Johan, M.F.; Wan Taib, W.R.; Ismail, I.; Al-Jamal, H.A.N. Thymoquinone Enhances Apoptosis of K562 Chronic Myeloid Leukemia Cells through Hypomethylation of SHP-1 and Inhibition of JAK/STAT Signaling Pathway. Pharmaceuticals 2023, 16, 844. [Google Scholar] [CrossRef]
- Sharma, Y.; Ahmad, A.; Bashir, S.; Elahi, A.; Khan, F. Implication of protein tyrosine phosphatase SHP-1 in cancer-related signaling pathways. Future Oncol. 2016, 12, 1287–1298. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Pang, Y.; Wang, Y.; Zhang, X.; Zhang, H. The role of Src homology region 2 domain-containing phosphatase-1 hypermethylation in the classification of patients with myelodysplastic syndromes and its association with signal transducer and activator of transcription 3 phosphorylation in skm-1 cells. J. Int. Med. Res. 2021, 49, 1221799102. [Google Scholar] [CrossRef]
- Xu, X.; Yu, Y.; Zhang, W.; Ma, W.; He, C.; Qiu, G.; Wang, X.; Liu, Q.; Zhao, M.; Xie, J.; et al. SHP-1 inhibition targets leukaemia stem cells to restore immunosurveillance and enhance chemosensitivity by metabolic reprogramming. Nat. Cell Biol. 2024, 26, 464–477. [Google Scholar] [CrossRef]
- Mazgaeen, L.; Yorek, M.; Saini, S.; Vogel, P.; Meyerholz, D.K.; Kanneganti, T.D.; Gurung, P. CD47 halts Ptpn6-deficient neutrophils from provoking lethal inflammation. Sci. Adv. 2023, 9, e3942. [Google Scholar] [CrossRef]
- Dempke, W.C.M.; Uciechowski, P.; Fenchel, K.; Chevassut, T. Targeting SHP-1, 2 and SHIP Pathways: A Novel Strategy for Cancer Treatment? Oncology 2018, 95, 257–269. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Liu, X.; Nie, Z.; Wang, X.; Pan, Y.; Luo, J. Research on the epigenetic regulation mechanism of the PTPN6 gene in advanced chronic myeloid leukaemia. Br. J. Haematol. 2017, 178, 728–738. [Google Scholar] [CrossRef]
- Luo, M.; Xu, X.; Liu, X.; Shen, W.; Yang, L.; Zhu, Z.; Weng, S.; He, J.; Zuo, H. The Non-Receptor Protein Tyrosine Phosphatase PTPN6 Mediates a Positive Regulatory Approach From the Interferon Regulatory Factor to the JAK/STAT Pathway in Litopenaeus vannamei. Front. Immunol. 2022, 13, 913955. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Zhao, H.; Wu, X.; Zhao, W.; Wang, Y.; Xia, B.; Da, W. Hypermethylation of SHP-1 promoter in patient with high-risk myelodysplastic syndrome and it predicts poor prognosis. Med. Oncol. 2012, 29, 2359–2363. [Google Scholar] [CrossRef]
- Tsekoura, G.; Agathangelidis, A.; Kontandreopoulou, C.N.; Taliouraki, A.; Mporonikola, G.; Stavropoulou, M.; Diamantopoulos, P.T.; Viniou, N.A.; Aleporou, V.; Papassideri, I.; et al. Deregulation of Autophagy and Apoptosis in Patients with Myelodysplastic Syndromes: Implications for Disease Development and Progression. Curr. Issues Mol. Biol. 2023, 45, 4135–4150. [Google Scholar] [CrossRef]
- Baek, S.H.; Lee, J.H.; Ko, J.H.; Lee, H.; Nam, D.; Lee, S.G.; Yang, W.M.; Um, J.Y.; Lee, J.; Kim, S.H.; et al. Ginkgetin Blocks Constitutive STAT3 Activation and Induces Apoptosis through Induction of SHP-1 and PTEN Tyrosine Phosphatases. Phytother. Res. 2016, 30, 567–576. [Google Scholar] [CrossRef]
- Geraldes, P.; Hiraoka-Yamamoto, J.; Matsumoto, M.; Clermont, A.; Leitges, M.; Marette, A.; Aiello, L.P.; Kern, T.S.; King, G.L. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 2009, 15, 1298–1306. [Google Scholar] [CrossRef]
- Jung, J.H.; Yun, M.; Choo, E.J.; Kim, S.H.; Jeong, M.S.; Jung, D.B.; Lee, H.; Kim, E.O.; Kato, N.; Kim, B.; et al. A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia. Br. J. Pharmacol. 2015, 172, 3565–3578. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Chu, P.Y.; Huang, C.T.; Huang, T.T.; Wang, W.L.; Lee, Y.H.; Chang, Y.Y.; Dai, M.S.; Shiau, C.W.; Liu, C.Y. Interfering B cell receptor signaling via SHP-1/p-Lyn axis shows therapeutic potential in diffuse large B-cell lymphoma. Mol. Med. 2022, 28, 93. [Google Scholar] [CrossRef] [PubMed]
- Ventura, P.M.O.; Gakovic, M.; Fischer, B.A.; Spinelli, L.; Rota, G.; Pathak, S.; Khameneh, H.J.; Zenobi, A.; Thomson, S.; Birchmeier, W.; et al. Concomitant deletion of Ptpn6 and Ptpn11 in T cells fails to improve anticancer responses. EMBO Rep. 2022, 23, e55399. [Google Scholar] [CrossRef] [PubMed]
- Yam-Puc, J.C.; Zhang, L.; Maqueda-Alfaro, R.A.; Garcia-Ibanez, L.; Zhang, Y.; Davies, J.; Senis, Y.A.; Snaith, M.; Toellner, K.M. Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. iScience 2021, 24, 102038. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, K.Y.; Park, B. Crocin Suppresses Constitutively Active STAT3 Through Induction of Protein Tyrosine Phosphatase SHP-1. J. Cell. Biochem. 2017, 118, 3290–3298. [Google Scholar] [CrossRef]
- McBride, A.; Houtmann, S.; Wilde, L.; Vigil, C.; Eischen, C.M.; Kasner, M.; Palmisiano, N. The Role of Inhibition of Apoptosis in Acute Leukemias and Myelodysplastic Syndrome. Front. Oncol. 2019, 9, 192. [Google Scholar] [CrossRef]
- Platzbecker, U.; Della Porta, M.G.; Santini, V.; Zeidan, A.M.; Komrokji, R.S.; Shortt, J.; Valcarcel, D.; Jonasova, A.; Dimicoli-Salazar, S.; Tiong, I.S.; et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): Interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 2023, 402, 373–385. [Google Scholar] [CrossRef]
- Forester, C.M.; Oses-Prieto, J.A.; Phillips, N.J.; Miglani, S.; Pang, X.; Byeon, G.W.; DeMarco, R.; Burlingame, A.; Barna, M.; Ruggero, D. Regulation of eIF4E guides a unique translational program to control erythroid maturation. Sci. Adv. 2022, 8, d3942. [Google Scholar] [CrossRef]
- Cokic, V.P.; Bhattacharya, B.; Beleslin-Cokic, B.B.; Noguchi, C.T.; Puri, R.K.; Schechter, A.N. JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny. J. Transl. Med. 2012, 10, 116. [Google Scholar] [CrossRef]
- Cokic, V.P.; Bhattacharya, B.; Beleslin-Cokic, B.B.; Noguchi, C.T.; Puri, R.K.; Schechter, A.N. SHP1 protein tyrosine phosphatase negatively modulates erythroid differentiation and suppression of apoptosis in J2E erythroleukemic cells. Biol. Chem. 1999, 380, 1201–1209. [Google Scholar]
- Bittorf, T.; Seiler, J.; Zhang, Z.; Jaster, R.; Brock, J. Inflammatory Cytokine Profiles Do Not Differ Between Patients With Idiopathic Cytopenias of Undetermined Significance and Myelodysplastic Syndromes. Hemasphere 2022, 6, e713. [Google Scholar]
- Nielsen, A.B.; Hansen, J.W.; Ørskov, A.D.; Dimopoulos, K.; Salem, M.; Grigorian, M.; Bruunsgaard, H.; Grønbæk, K. Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia. J. Clin. Investig. 2022, 132, e152673. [Google Scholar]
- Liu, Z.; Xu, X.; Zheng, L.; Ding, K.; Yang, C.; Huang, J.; Fu, R. The value of serum IL-4 to predict the survival of MDS patients. Eur. J. Med. Res. 2023, 28, 7. [Google Scholar] [CrossRef] [PubMed]
- Kaniyattu, S.M.; Meenakshi, A.; Kumar, M.B.; Kumar, K.R.; Rao, S.; Shetty, P.D.; Shetty, V.; Shetty, J.K.; Shetty, P.K. Cytogenetic and cytokine profile in elderly patients with cytopenia. Exp. Hematol. 2020, 89, 80–86. [Google Scholar] [CrossRef]
- Kordasti, S.Y.; Afzali, B.; Lim, Z.; Ingram, W.; Hayden, J.; Barber, L.; Matthews, K.; Chelliah, R.; Guinn, B.; Lombardi, G.; et al. IL-17-producing CD4+ T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br. J. Haematol. 2009, 145, 64–72. [Google Scholar] [CrossRef]
- Gonzalez-Lugo, J.D.; Verma, A. Targeting inflammation in lower-risk MDS. Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 382–387. [Google Scholar] [CrossRef]
Sequencing Result | H_PTPN6-shRNA174(PGMLV-ZsGreen1-Puro) |
GAAAGGACGAGGATCCGGATTTCTATGACCTGTATGGCTCGAGCCATACAGGTCATAGAAATCCTTTTTTAATTCTAGTTATTAATAGTAATCAATTACGGTTTCCACAAGATATATAAAGCCAAGA | |
Figure Legend | shRNA Primers shRNA Target Sites |
Sequencing Primer | Hu6-F: GAGGGCCTATTTCCCATGATT |
Sequencing Result | 0087_32723022500596_(71004GP-251)_[hU6-F] |
Sequencing Result | H_PTPN6-shRNA651(PGMLV-ZsGreen1-Puro) |
TTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAGGATCCGGTGAATGCGGCTGACATTGACTCGAGTCAATGTCAGCCGCATTCACCTTTTTTAA | |
Figure Legend | shRNA Primers shRNA Target Sites |
Sequencing Primer | Hu6-F: GAGGGCCTATTTCCCATGATT CMV-R: GGGAACATACGTCATTATTG |
Sequencing Result | 71005GQ_hU6-F_TSS20230304-021-01952_A11 71005GQ_CMV-R_TSS20230304-021-01952_B11 (The final result is a splicing of the above two sequences) |
Sequencing Result | H_PTPN6-shRNA1149(PGMLV-ZsGreen1-Puro) |
AGAGGGACTCGTAGTATGTACGCGGACTCCATATATGGGCTATGAACTAATGACCCCGTAATTGATTACTATTAATAACTAGAATTAAAAAAGGAGCATGACACAACCGAATACTCGAGTATTCGGTTGTGTCATGCTCCGGATCCTCGTCCTTTCCACAAGATATATAAAGCCAAGA | |
Figure Legend | shRNA Primers shRNA Target Sites |
Sequencing Primer | CMV-R: GGGAACATACGTCATTATTG |
Sequencing Result | 0076_32723030100745_(71006GR-13) [CMV-R] |
Sequencing Result | H_PTPN6-shRNA1215(PGMLV-ZsGreen1-Puro) |
TTTCTTGGCTTTATATATCTTGTGGAAAGGACGAGGATCCGATTCGGGAGATCTGGCATTACTCGAGTAATGCCAGATCTCCCGAATCTTTTTTAATTCTATTTCCACAAGATATATAAAGCCAAGA | |
Figure Legend | shRNA Primers shRNA Target Sites |
Sequencing Primer | Hu6-F: GAGGGCCTATTTCCCATGATT CMV-R: GGGAACATACGTCATTATTG |
Sequencing Result | 0099_32723022500602_(71007GS-251)_[hU6-F] 0100_32723022500602_(71007GS-251)_[CMV-R] (The final result is a splicing of the above two sequences) |
Lentivirus Name | Titer (TU/mL) |
---|---|
H_PTPN6-shRNA174 (PGMLV-ZsGreen1-Puro) | 5 × 108 |
H_PTPN6-shRNA651 (PGMLV-ZsGreen1-Puro) | 5 × 108 |
H_PTPN6-shRNA1149 (PGMLV-ZsGreen1-Puro) | 5 × 108 |
H_PTPN6-shRNA1215 (PGMLV-ZsGreen1-Puro) | 5 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Gu, X.; Chen, P.; Yang, R.; Xu, Y.; Yang, X. Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations. Curr. Issues Mol. Biol. 2024, 46, 12061-12074. https://doi.org/10.3390/cimb46110715
Yu L, Gu X, Chen P, Yang R, Xu Y, Yang X. Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations. Current Issues in Molecular Biology. 2024; 46(11):12061-12074. https://doi.org/10.3390/cimb46110715
Chicago/Turabian StyleYu, Li, Xiaoli Gu, Pengjie Chen, Rui Yang, Yonggang Xu, and Xiupeng Yang. 2024. "Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations" Current Issues in Molecular Biology 46, no. 11: 12061-12074. https://doi.org/10.3390/cimb46110715
APA StyleYu, L., Gu, X., Chen, P., Yang, R., Xu, Y., & Yang, X. (2024). Effects of PTPN6 Gene Knockdown in SKM-1 Cells on Apoptosis, Erythroid Differentiation and Inflammations. Current Issues in Molecular Biology, 46(11), 12061-12074. https://doi.org/10.3390/cimb46110715