Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (960)

Search Parameters:
Keywords = sglt1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 397 KiB  
Review
Effects of Blood-Glucose Lowering Therapies on Body Composition and Muscle Outcomes in Type 2 Diabetes: A Narrative Review
by Ioana Bujdei-Tebeică, Doina Andrada Mihai, Anca Mihaela Pantea-Stoian, Simona Diana Ștefan, Claudiu Stoicescu and Cristian Serafinceanu
Medicina 2025, 61(8), 1399; https://doi.org/10.3390/medicina61081399 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. [...] Read more.
Background and Objectives: The management of type 2 diabetes (T2D) extends beyond glycemic control, requiring a more global strategy that includes optimization of body composition, even more so in the context of sarcopenia and visceral adiposity, as they contribute to poor outcomes. Past reviews have typically been focused on weight reduction or glycemic effectiveness, with limited inclusion of new therapies’ effects on muscle and fat distribution. In addition, the emergence of incretin-based therapies and dual agonists such as tirzepatide requires an updated synthesis of their impacts on body composition. This review attempts to bridge the gap by taking a systematic approach to how current blood-glucose lowering therapies affect lean body mass, fat mass, and the risk of sarcopenia in T2D patients. Materials and Methods: Between January 2015 and March 2025, we conducted a narrative review by searching the PubMed, Scopus, and Web of Science databases for English-language articles. The keywords were combinations of the following: “type 2 diabetes,” “lean body mass,” “fat mass,” “body composition,” “sarcopenia,” “GLP-1 receptor agonists,” “SGLT2 inhibitors,” “tirzepatide,” and “antidiabetic pharmacotherapy.” Reference lists were searched manually as well. The highest precedence was assigned to studies that aimed at adult type 2 diabetic subjects and reported body composition results. Inclusion criteria for studies were: (1) type 2 diabetic mellitus adult patients and (2) reporting measures of body composition (e.g., lean body mass, fat mass, or muscle function). We prioritized randomized controlled trials and large observational studies and excluded mixed diabetic populations, non-pharmacological interventions only, and poor reporting of body composition. Results: Metformin was widely found to be weight-neutral with minimal effects on muscle mass. Insulin therapy, being an anabolic hormone, often leads to fat mass accumulation and increases the risk of sarcopenic obesity. Incretin-based therapies induced substantial weight loss, mostly from fat mass. Notable results were observed in studies with tirzepatide, demonstrating superior reduction not only in fat mass, but also in visceral fat. Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) promote fat loss but are associated with a small yet significant decrease in lean muscle mass. Conclusions: Blood-glucose lowering therapies demonstrated clinically relevant effects on body composition. Treatment should be personalized, balancing glycemic control, cardiovascular, and renal benefits, together with optimal impact on muscle mass along with glycemic, cardiovascular, and renal benefits. Full article
(This article belongs to the Section Endocrinology)
11 pages, 245 KiB  
Review
The Impact of Insulin Resistance on Lung Volume Through Right Ventricular Dysfunction in Diabetic Patients—Literature Review
by Daniel Radu, Oana-Andreea Parlițeanu, Andra-Elena Nica, Cristiana Voineag, Octavian-Sabin Alexe, Alexandra Maria Cristea, Livia Georgescu, Roxana Maria Nemeș, Andreea Taisia Tiron and Alexandra Floriana Nemeș
J. Pers. Med. 2025, 15(8), 336; https://doi.org/10.3390/jpm15080336 (registering DOI) - 1 Aug 2025
Abstract
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients [...] Read more.
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity—factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance—highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients. Full article
(This article belongs to the Section Mechanisms of Diseases)
16 pages, 661 KiB  
Article
Comparative Evaluation of ARB Monotherapy and SGLT2/ACE Inhibitor Combination Therapy in the Renal Function of Diabetes Mellitus Patients: A Retrospective, Longitudinal Cohort Study
by Andrew W. Ngai, Aqsa Baig, Muhammad Zia, Karen Arca-Contreras, Nadeem Ul Haque, Veronica Livetsky, Marcelina Rokicki and Shiryn D. Sukhram
Int. J. Mol. Sci. 2025, 26(15), 7412; https://doi.org/10.3390/ijms26157412 (registering DOI) - 1 Aug 2025
Abstract
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for [...] Read more.
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for their renal and cardiovascular benefits. However, comparative real-world data on their long-term renal effectiveness remain limited. We conducted a retrospective, longitudinal study over a 2-year period to compare the impact of ARB monotherapy versus SGLT2i and angiotensin-converting enzyme inhibitor (ACEi) combination therapy on the progression of chronic kidney disease (CKD) in patients with DM. A total of 126 patients were included and grouped based on treatment regimen. Renal biomarkers were analyzed using t-tests and ANOVA (p < 0.01). Albuminuria was qualitatively classified via urinalysis as negative, level 1 (+1), level 2 (+2), or level 3 (+3). The ARB group demonstrated higher estimated glomerular filtration rate (eGFR) and lower serum creatinine (sCr) levels than the combination therapy group, with glycated hemoglobin (HbA1c), potassium (K+), and blood pressure remaining within normal limits in both cohorts. Albuminuria remained stable over time, with 60.8% of ARB users and 73.1% of combination therapy users exhibiting persistently or on-average negative results. Despite the expected additive benefits of SGLT2i/ACEi therapy, ARB monotherapy was associated with slightly more favorable renal function markers and a lower incidence of severe albuminuria. These findings suggest a need for further controlled studies to clarify the comparative long-term renal effects of these treatment regimens. Full article
Show Figures

Figure 1

15 pages, 848 KiB  
Review
Current Treatment of Heart Failure with Preserved Ejection Fraction
by Mauro Riccardi, Emilia D’Elia, Carlo M. Lombardi, Gianluigi Savarese, Mauro Gori, Fabrizio Oliva, Maurizio Volterrani, Michele Senni, Marco Metra and Riccardo M. Inciardi
J. Clin. Med. 2025, 14(15), 5406; https://doi.org/10.3390/jcm14155406 (registering DOI) - 31 Jul 2025
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with increasing prevalence and substantial morbidity and mortality. Recent advances in pharmacotherapy have transformed its management. This review summarizes current evidence supporting the use of sodium–glucose cotransporter 2 inhibitors, non-steroidal mineralocorticoid receptor [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with increasing prevalence and substantial morbidity and mortality. Recent advances in pharmacotherapy have transformed its management. This review summarizes current evidence supporting the use of sodium–glucose cotransporter 2 inhibitors, non-steroidal mineralocorticoid receptor antagonists, and glucagon-like peptide-1 receptor agonists, alongside selected use of angiotensin receptor–neprilysin inhibitors. Emphasis is placed on early initiation of disease-modifying therapies, phenotypic tailoring, and comorbidity-targeted strategies, especially in obese and diabetic patients. Together, these approaches define a new era of guideline-directed, personalized care for patients with HFpEF. Full article
Show Figures

Figure 1

24 pages, 2217 KiB  
Review
The Clinical Spectrum of Acquired Hypomagnesemia: From Etiology to Therapeutic Approaches
by Matteo Floris, Andrea Angioi, Nicola Lepori, Doloretta Piras, Gianfranca Cabiddu, Antonello Pani and Mitchell H. Rosner
Biomedicines 2025, 13(8), 1862; https://doi.org/10.3390/biomedicines13081862 - 31 Jul 2025
Viewed by 57
Abstract
Hypomagnesemia is a frequent and often underrecognized electrolyte disturbance with important clinical consequences, especially in hospitalized and critically ill patients. This multifactorial condition arises from impaired intestinal absorption, renal magnesium wasting, and the effects of various medications. Magnesium, the second most abundant intracellular [...] Read more.
Hypomagnesemia is a frequent and often underrecognized electrolyte disturbance with important clinical consequences, especially in hospitalized and critically ill patients. This multifactorial condition arises from impaired intestinal absorption, renal magnesium wasting, and the effects of various medications. Magnesium, the second most abundant intracellular cation, is crucial in enzymatic and physiological processes; its deficiency is associated with neuromuscular, cardiovascular, and metabolic complications. This narrative review focuses on the mechanisms and clinical consequences of drug-induced hypomagnesemia, highlighting the major drug classes involved such as diuretics, antibiotics, antineoplastic agents, and immunosuppressants. Management strategies include magnesium supplementation and adjunctive therapies like amiloride and SGLT2 inhibitors to reduce renal magnesium losses. Recognizing and addressing drug-induced hypomagnesemia is essential to improve patient outcomes and prevent long-term complications. Full article
(This article belongs to the Special Issue Advances in Magnesium and Zinc’s Effects on Health and Disease)
Show Figures

Figure 1

35 pages, 902 KiB  
Review
Human Glucose Transporters in Health and Selected Neurodegenerative Diseases
by Leszek Szablewski
Int. J. Mol. Sci. 2025, 26(15), 7392; https://doi.org/10.3390/ijms26157392 (registering DOI) - 31 Jul 2025
Viewed by 83
Abstract
Glucose is the main source of energy and the source of carbon for the biosynthesis of several molecules, such as neurotransmitters, for most mammalian cells. Therefore, the transport of glucose into cells is very important. There are described three distinct families of glucose [...] Read more.
Glucose is the main source of energy and the source of carbon for the biosynthesis of several molecules, such as neurotransmitters, for most mammalian cells. Therefore, the transport of glucose into cells is very important. There are described three distinct families of glucose transporters: facilitative glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and a uniporter, the SWEET protein. Impaired function and/or expression of these transporters due to, for example, mutations in their genes, may cause severe diseases. Associations with the impaired function of glucose transporters have been described in the case of neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, GLUT1-deficiency syndrome, stroke, and traumatic brain injury. Changes in the presence of glucose transporters may be a cause of NDs, and they may be the effect of NDs. On the other hand, in many cases of neurodegenerative diseases, changes in the expression of glucose transporters may be a targeted therapy in the treatment of patients with these diseases. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

17 pages, 1682 KiB  
Review
High-Fructose-Induced Salt-Sensitive Hypertension: The Potential Benefit of SGLT4 or SGLT5 Modulation
by Sharif Hasan Siddiqui and Noreen F. Rossi
Nutrients 2025, 17(15), 2511; https://doi.org/10.3390/nu17152511 - 30 Jul 2025
Viewed by 162
Abstract
Hypertension is an important risk factor for cardiovascular diseases. High salt intake when consumed with excess fructose enhances hypertension and resultant cardiovascular disease. Usually, the small intestine absorbs dietary fructose, and the proximal tubule of kidney reabsorbs filtered fructose into the circulation with [...] Read more.
Hypertension is an important risk factor for cardiovascular diseases. High salt intake when consumed with excess fructose enhances hypertension and resultant cardiovascular disease. Usually, the small intestine absorbs dietary fructose, and the proximal tubule of kidney reabsorbs filtered fructose into the circulation with the help of different transporters including SGLT4 and SGLT5. Very recently, SGLT5 mRNA has also been found to be expressed in the heart. High-fructose diet stimulates the sympathetic nervous system and renin–angiotensin–aldosterone (RAAS) activity, of which both are responsible for endothelial dysfunction and are associated with salt-sensitive hypertension. Few studies exist regarding the effects of SGLT4 and SGLT5 on cardiovascular function and blood pressure. However, SGLT4 gene knockout does not alter fructose-associated impact on blood pressure. In contrast, blood pressure does not increase in SGLT5 knockout rats even during fructose consumption. Given that limiting fructose and salt consumption as a public health strategy has proven challenging, we hope that studies into SGLT4 and SGLT5 transporters will open new research initiatives to address salt-sensitive hypertension and cardiovascular disease. This review highlights current information about SGLT4 and SGLT5 on fructose absorption, salt-sensitive hypertension, cardiovascular disease and points the way for the development of therapeutic fructose inhibitors that limit adverse effects. Full article
(This article belongs to the Special Issue Effects of Nutrient Intake on Cardiovascular Disease)
Show Figures

Figure 1

13 pages, 762 KiB  
Article
Implementation of Medical Therapy in Different Stages of Heart Failure with Reduced Ejection Fraction: An Analysis of the VIENNA-HF Registry
by Noel G. Panagiotides, Annika Weidenhammer, Suriya Prausmüller, Marc Stadler, Georg Spinka, Gregor Heitzinger, Henrike Arfsten, Guido Strunk, Philipp E. Bartko, Georg Goliasch, Christian Hengstenberg, Martin Hülsmann and Noemi Pavo
Biomedicines 2025, 13(8), 1846; https://doi.org/10.3390/biomedicines13081846 - 30 Jul 2025
Viewed by 247
Abstract
Background/Objectives: Real-world evidence shows alarmingly suboptimal utilization of guideline directed medical therapy (GDMT) in heart failure with reduced ejection fraction (HFrEF). One of the barriers of GDMT implementation appears to be concerns about the potential development of drug-related adverse events (AEs), particularly in [...] Read more.
Background/Objectives: Real-world evidence shows alarmingly suboptimal utilization of guideline directed medical therapy (GDMT) in heart failure with reduced ejection fraction (HFrEF). One of the barriers of GDMT implementation appears to be concerns about the potential development of drug-related adverse events (AEs), particularly in high-risk patients. This study aimed to evaluate whether advanced HFrEF (AHF) patients can be up-titrated safely and whether AHF predisposes individuals to the occurrence of putatively drug-related AEs. Methods: A total of 373 HFrEF patients with documented baseline, 2 months, and 12 months visits were analyzed for utilization and target dosages (TDs) of HF drugs. Successful up-titration and AEs were evaluated for different stages of HF reflected by N-terminal pro-B type natriuretic peptide (NT-proBNP) (<1000 pg/mL, 1000–2000 pg/mL, >2000 pg/mL). Results: A stepwise increase in HF medications was observed for all drug classes during follow-up. At 12 months, 73%, 75%, 62%, 86%, and 45% of patients received ≥90% of TDs of beta-blockers (BBs), renin–angiotensin system inhibitors (RASis), mineralocorticoid receptor antagonists (MRAs), sodium–glucose cotransporter-2 inhibitors (SGLT2 i), and triple-therapy, respectively. Predictors of successful up-titration in logistic regression were baseline HF drug TDs, estimated glomerular filtration rate (eGFR), and potassium, but not NT-proBNP or age. The development of AEs was rare, with hyperkalemia as the most common event (34% at 12 months). AEs were comparable in all stages of HF. However, the development of hyperkalemia was more frequent in patients with higher NT-proBNP and also accounted for most cases of incomplete up-titration. Conclusions: This study suggests that with dedicated protocols and frequent visits, GDMT can be successfully implemented across all stages of HFrEF, including patients with AHF. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
Show Figures

Figure 1

41 pages, 3039 KiB  
Review
Repurposing Diabetes Therapies in CKD: Mechanistic Insights, Clinical Outcomes and Safety of SGLT2i and GLP-1 RAs
by Syed Arman Rabbani, Mohamed El-Tanani, Rakesh Kumar, Manita Saini, Yahia El-Tanani, Shrestha Sharma, Alaa A. A. Aljabali, Eman Hajeer and Manfredi Rizzo
Pharmaceuticals 2025, 18(8), 1130; https://doi.org/10.3390/ph18081130 - 28 Jul 2025
Viewed by 312
Abstract
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise [...] Read more.
Background: Chronic Kidney Disease (CKD) is a major global health issue, with diabetes being its primary cause and cardiovascular disease contributing significantly to patient mortality. Recently, two classes of medications—sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs)—have shown promise in protecting both kidney and heart health beyond their effects on blood sugar control. Methods: We conducted a narrative review summarizing the findings of different clinical trials and mechanistic studies evaluating the effect of SGLT2i and GLP-1 RAs on kidney function, cardiovascular outcomes, and overall disease progression in patients with CKD and DKD. Results: SGLT2i significantly mitigate kidney injury by restoring tubuloglomerular feedback, reducing intraglomerular hypertension, and attenuating inflammation, fibrosis, and oxidative stress. GLP-1 RAs complement these effects by enhancing endothelial function, promoting weight and blood pressure control, and exerting direct anti-inflammatory and anti-fibrotic actions on renal tissues. Landmark trials—CREDENCE, DAPA-CKD, and EMPA-KIDNEY—demonstrate that SGLT2i reduce the risk of kidney failure and renal or cardiovascular death by 25–40% in both diabetic and non-diabetic CKD populations. Likewise, trials such as LEADER, SUSTAIN, and AWARD-7 confirm that GLP-1 RAs slow renal function decline and improve cardiovascular outcomes. Early evidence suggests that using both drugs together may offer even greater benefits through multiple mechanisms. Conclusions: SGLT2i and GLP-1 RAs have redefined the therapeutic landscape of CKD by offering organ-protective benefits that extend beyond glycemic control. Whether used individually or in combination, these agents represent a paradigm shift toward integrated cardiorenal-metabolic care. A deeper understanding of their mechanisms and clinical utility in both diabetic and non-diabetic populations can inform evidence-based strategies to slow disease progression, reduce cardiovascular risk, and improve long-term patient outcomes in CKD. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

16 pages, 3646 KiB  
Systematic Review
SGLT2 Inhibitors and the Risk of Arrhythmias in Heart Failure: A Network Meta-Analysis
by Suchith Boodgere Suresh, Aishwarya Prasad, Muhammad Furqan Ubaid, Saad Farooq, Adrija Hajra, Vikash Jaiswal, Aaqib Malik, Gregg C. Fonarow and Dhrubajyoti Bandyopadhyay
J. Clin. Med. 2025, 14(15), 5306; https://doi.org/10.3390/jcm14155306 - 27 Jul 2025
Viewed by 505
Abstract
Background/Objectives: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have revolutionized heart failure (HF) therapies and are an essential component of guideline-directed medical therapy (GDMT); however, their significance in arrhythmia prevention is still uncertain. This meta-analysis evaluates the benefits of SGLT2i on arrhythmias in HF. Methods: A [...] Read more.
Background/Objectives: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have revolutionized heart failure (HF) therapies and are an essential component of guideline-directed medical therapy (GDMT); however, their significance in arrhythmia prevention is still uncertain. This meta-analysis evaluates the benefits of SGLT2i on arrhythmias in HF. Methods: A comprehensive examination was performed with PubMed, ScienceDirect, PLOS One, Cochrane, Google Scholar, and ClinicalTrials.gov from January 2014 to March 2025, complying with PRISMA guidelines. Randomized controlled trials (RCTs) comparing SGLT2i with placebo were incorporated. Primary results included ventricular arrhythmias (VA), sudden cardiac death (SCD), atrial arrhythmias, and conduction disorders. Subgroup analyses investigated the effects on arrhythmias in HF with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Results: A total of 11 RCTs involving 23,701 patients, 11,848 on SGLT2i (mean age: 68.26 ± 10 yrs, 53.5% males) and 11,853 on placebo (mean age: 67.91 ± 10 yrs, 53% males), were analyzed with a mean follow-up of 2.71 yrs. No significant differences were reported between SGLT2i and placebo for VA [relative risk (RR): 1.02, 95% confidence interval (CI): 0.83–1.25], I2 =0%), atrial arrhythmias (RR: 0.92 [CI: 0.67–1.27], I2 = 65.3%), or conduction disorders (RR:1.22 [CI: 0.86–1.73], I2 = 10.4%). Notably, significant reductions in risk of SCD (RR: 0.68 [CI: 0.49–0.93], I2 = 0%) and in the risk of atrial arrhythmias in HFrEF (RR: 0.66 [CI: 0.49–0.89], I2 = 10.3%) were witnessed, although no such reduction was seen in HFpEF (RR: 1.14 [CI: 0.94–1.40], I2 = 33.8%). Conclusions: SGLT2i do not reduce overall arrhythmia or conduction disorder risk in HF but significantly reduce the risk of SCD and atrial arrhythmias in HFrEF patients. These results highlight potential arrhythmia prevention benefits in HFrEF, warranting further targeted studies. Full article
Show Figures

Figure 1

18 pages, 1599 KiB  
Article
SGLT2 Inhibitors in MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) Associated with Sustained Hepatic Benefits, Besides the Cardiometabolic
by Mohamad Suki, Ashraf Imam, Johnny Amer, Yael Milgrom, Muhammad Massarwa, Wadi Hazou, Yariv Tiram, Ofer Perzon, Yousra Sharif, Joseph Sackran, Revital Alon, Nachum Lourie, Anat Hershko Klement, Safa Shibli, Tamer Safadi, Itamar Raz, Abed Khalaileh and Rifaat Safadi
Pharmaceuticals 2025, 18(8), 1118; https://doi.org/10.3390/ph18081118 - 26 Jul 2025
Viewed by 494
Abstract
Background and Aims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown promise in metabolic dysfunction-associated steatotic liver disease (MASLD). This large real-world study aimed to evaluate the effects of SGLT2 inhibitors on MASLD patients’ clinical outcomes and liver-related complications over extended follow-up. Patients and [...] Read more.
Background and Aims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown promise in metabolic dysfunction-associated steatotic liver disease (MASLD). This large real-world study aimed to evaluate the effects of SGLT2 inhibitors on MASLD patients’ clinical outcomes and liver-related complications over extended follow-up. Patients and Method: Data were sourced from TriNetX, a global health research platform with de-identified electronic medical records spanning 135 million patients across 112 healthcare organizations worldwide. We included MASLD adults diagnosed according to ICD9/10 criteria. Following propensity score matching based on 34 variables (demographics, comorbidities, laboratory tests and medication history), SGLT2 inhibitor-treated (n = 19,922) patients were compared with non-SGLT2 inhibitor (n = 19,922) cases. Exclusion criteria included baseline improved alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels > 4 upper normal limit (UNL), baseline advanced liver disease, liver transplant and cancer, past anticoagulation and non-MASLD etiologies. Assessed outcomes included survival, biochemical, hematologic, AFP, metabolic and cardiovascular parameters, progression to advanced liver disease (ALD), synthetic function, and metabolic markers over 1, 5, and 10 years. Results: Following matching, both cohorts were well-balanced across baseline characteristics. After one year, the SGLT2 inhibitor group demonstrated significantly reduced BMI (33.2 ± 6.2 vs. 34.1 ± 6.5 kg/m2, p < 0.001), improved ALT (40.3 ± 31.5 vs. 48.3 ± 41.2 U/L, p < 0.001), and better glycemic control (HbA1c 7.35 ± 1.51% vs. 7.93 ± 1.72%, p < 0.001). The SGLT2 inhibitor group showed higher 10-year survival rates (95.00% vs. 88.69%, p < 0.001), fewer cardiovascular events (10.19% vs. 11.80%, p < 0.001), and markedly reduced progression to advanced liver disease (6.90% vs. 14.15%, p < 0.001). These benefits were consistent across clinical, laboratory, and medication-defined ALD categories. Notably, rates of hepatic decompensation events were significantly lower with SGLT2 inhibitor therapy. Conclusions: In this large real-world cohort, SGLT2 inhibitor use in MASLD patients was associated with significantly improved long-term survival, cardiovascular, and liver-related outcomes over 10 years of follow-up. These benefits likely result from combined metabolic improvements, anti-inflammatory effects, and direct hepatoprotective mechanisms. SGLT2 inhibitors represent a promising therapeutic strategy for improving outcomes in MASLD. Full article
Show Figures

Figure 1

24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 412
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

20 pages, 2027 KiB  
Review
SGLT2 Inhibitors: From Molecular Mechanisms to Clinical Outcomes in Cardiology and Diabetology
by Marlena Stielow, Łukasz Fijałkowski, Aidas Alaburda, Grzegorz Grześk, Elżbieta Grześk, Jacek Nowaczyk and Alicja Nowaczyk
Molecules 2025, 30(15), 3112; https://doi.org/10.3390/molecules30153112 - 25 Jul 2025
Viewed by 779
Abstract
Studies have shown that sodium-glucose cotransporter type 2 (SGLT2) inhibitors not only help lower blood glucose levels but also offer cardioprotective effects, reduce the progression of heart failure, and may even slow the progression of aortic stenosis. The mechanisms of these beneficial properties [...] Read more.
Studies have shown that sodium-glucose cotransporter type 2 (SGLT2) inhibitors not only help lower blood glucose levels but also offer cardioprotective effects, reduce the progression of heart failure, and may even slow the progression of aortic stenosis. The mechanisms of these beneficial properties are thought to involve multiple pathways, including reducing inflammation, oxidative stress, and improving cellular energy metabolism. Advancing knowledge about the mechanisms of action of these drugs and their effects on the course of the aforementioned diseases has become the subject of intensive clinical and scientific research. This publication aims to provide insight into the role of SGLT2 inhibitors in the context of diabetes mellitus, heart failure and acute coronary syndrome, through clinical analysis, mechanistic insights and comparison of the effects of these drugs. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
by Neven Sarhan, Mona F. Schaalan, Azza A. K. El-Sheikh and Bassem Zarif
Pharmaceutics 2025, 17(8), 959; https://doi.org/10.3390/pharmaceutics17080959 - 24 Jul 2025
Viewed by 313
Abstract
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability [...] Read more.
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability in response to dapagliflozin underscores the role of pharmacogenetics in optimizing treatment efficacy. This study investigates the influence of genetic polymorphisms on renal outcomes in HFrEF patients treated with dapagliflozin, focusing on variations in genes such as SLC5A2, UMOD, KCNJ11, and ACE. Methods: This prospective, observational cohort study was conducted at the National Heart Institute, Cairo, Egypt, enrolling 200 patients with HFrEF. Genotyping of selected single nucleotide polymorphisms (SNPs) was performed using TaqMan™ assays. Renal function, including estimated glomerular filtration rate (eGFR), Kidney Injury Molecule-1 (KIM-1), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels, was assessed at baseline and after six months of dapagliflozin therapy. Results: Significant associations were found between genetic variants and renal outcomes. Patients with AA genotype of rs3813008 (SLC5A2) exhibited the greatest improvement in eGFR (+7.2 mL ± 6.5, p = 0.004) and reductions in KIM-1 (−0.13 pg/mL ± 0.49, p < 0.0001) and NGAL (−6.1 pg/mL ± 15.4, p < 0.0001). Similarly, rs12917707 (UMOD) TT genotypes showed improved renal function. However, rs5219 (KCNJ11) showed no significant impact on renal outcomes. Conclusions: Pharmacogenetic variations influenced renal response to dapagliflozin in HFrEF patients, particularly in SLC5A2 and UMOD genes. These findings highlighted the potential of personalized medicine in optimizing therapy for HFrEF patients with renal complications. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 403
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

Back to TopTop