Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = sewer design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1027 KB  
Review
Understanding the Flows of Microplastic Fibres in the Textile Lifecycle: A System Perspective
by Beatrice Dal Pio Luogo and Gaetano Cascini
Sustainability 2025, 17(19), 8726; https://doi.org/10.3390/su17198726 - 28 Sep 2025
Viewed by 451
Abstract
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The [...] Read more.
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The detachment of fibre fragments and their fate in the environment has received attention in the recent literature but lacks a harmonised research methodology and a holistic approach to the topic. This work presents a model to estimate the flows of microplastic fibres and synthetic garments in geographical Europe, expressed in tonnes per year. It was developed through a search of the literature to provide an estimate of synthetic fibres entering the environment and to identify the connections between the stakeholders involved. A first-level multicriteria decision analysis was conducted to recognise relevant pollution flows: the study revealed significant but poorly understood pathways, such as the flow of microplastics in the indoor and outdoor air during garment wear. Also, the flow of microplastics from the combined sewer overflow of untreated water during heavy precipitation and the flow to the agricultural land from the application of sewage sludge result in relevant pathways to water and soil, respectively. By fostering collaboration across multiple actors, the transition toward sustainable textile practices can significantly reduce fibre pollution. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

23 pages, 1282 KB  
Article
An Integrated Water Resources Solution for a Wide Arid to Semi-Arid Urbanized Coastal Tropical Region with Several Topographic Challenges—A Case Study
by António Freire Diogo and António Luís Oliveira
Water 2025, 17(18), 2750; https://doi.org/10.3390/w17182750 - 17 Sep 2025
Viewed by 625
Abstract
Pressure on fresh water resources has been aggravated in recent decades, basically due to population growth, rapid urbanization, and global warming. Integrated engineering solutions and the circular economy, considering the urban water cycle as a whole, are becoming fundamental, particularly in arid and [...] Read more.
Pressure on fresh water resources has been aggravated in recent decades, basically due to population growth, rapid urbanization, and global warming. Integrated engineering solutions and the circular economy, considering the urban water cycle as a whole, are becoming fundamental, particularly in arid and semi-arid regions under permanent or recurrent hydric deficit. This study aims to develop and present an integrated engineering solution for water supply, wastewater collection, and treated wastewater reuse for landscape irrigation in a large, topographically complex, and arid to semi-arid coastal urban region at the south of Santiago Island, Cape Verde. The region is one of the driest and most arid of the Island, with a current average annual precipitation between about 100 and 200 mm, and has very limited underground water resources. The main study area, with about 600 ha, has altitudes ranging from values close to sea level up to about 115 m and has several topographic difficulties, including several relatively rugged zones. The devised water supply system considers four altimetric distribution levels, three main reservoirs connected to each other by a serial system of pipelines with successive pumping, a fourth downstream reservoir for pressure balance in one of the levels, and desalinated water as the source. The sanitary sewer pipes of the urbanizations drain to an interceptor system that operates predominantly in open channel flow in a closed pipe. The long interceptor crosses laterally along the coast several very dug valleys in the path to the Praia Wastewater Treatment Plant in the east, and requires several conduits working under pressure for the crossings, either lifting or governed by gravity. The under-pressure pipeline system of recycled water is partially forced and partially ruled by gravity and transports the treated wastewater from the plant in the opposite direction of the interceptor to a natural reservoir or lake located in the region of urbanizations and the main green spaces to be irrigated. The conceived design of the interceptor and recycled water pipeline minimizes the construction and operation costs, maximizing their hydraulic performance. Full article
Show Figures

Figure 1

12 pages, 1209 KB  
Article
Variabilities in N2 and E Gene Concentrations in a SARS-CoV-2 Wastewater Multiplex Assay
by Ashley Green, Aiswarya Rani Pappu, Melanie Oakes, Suzanne Sandmeyer, Matthew Hileman and Sunny Jiang
Microorganisms 2025, 13(8), 1862; https://doi.org/10.3390/microorganisms13081862 - 9 Aug 2025
Viewed by 447
Abstract
Wastewater can serve as both a source of pathogens that pose risks to human health and a valuable resource for tracking and predicting disease prevalence through wastewater-based surveillance (WBS). In WBS for SARS-CoV-2, both nucleocapsid-specific (N1 and N2) and the envelope (E) genes [...] Read more.
Wastewater can serve as both a source of pathogens that pose risks to human health and a valuable resource for tracking and predicting disease prevalence through wastewater-based surveillance (WBS). In WBS for SARS-CoV-2, both nucleocapsid-specific (N1 and N2) and the envelope (E) genes are common targets for primer design, but ambiguity remains regarding differences in results depending on the gene target chosen. This study investigated how and why two SARS-CoV-2 gene targets (N2 and E) varied when analyzed in a multiplex RT-ddPCR assay for a COVID-19 wastewater monitoring study. From December 2021 to June 2022, over 700 raw wastewater samples were collected from thirteen manholes in the University of California, Irvine sewer system. Murine hepatitis virus (MHV) was used as a matrix recovery and process control in the triplex RT-ddPCR assay. Water quality tests (TSS, COD, pH, turbidity and NH3-N) were performed on all samples. Analyses showed that in over 10% of samples, the E gene concentration exceeded N2 by more than one order of magnitude. To evaluate matrix effects on amplification efficiency for N2 and E genes, multiple regression analysis was performed to explore whether water quality variables and MHV recovery efficiency could predict variance in gene concentrations, but no clear relationship was identified. However, viral recovery, as indicated by MHV recovery efficiency, was negatively impacted in samples with higher TSS and COD, suggesting PCR inhibition. These findings contribute to methodological standardization efforts in WBS and emphasize the importance of primer selection for large-scale monitoring. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health, 2nd Edition)
Show Figures

Figure 1

22 pages, 4621 KB  
Article
Probabilistic Forecasting and Anomaly Detection in Sewer Systems Using Gaussian Processes
by Mohsen Rezaee, Peter Melville-Shreeve and Hussein Rappel
Water 2025, 17(16), 2357; https://doi.org/10.3390/w17162357 - 8 Aug 2025
Viewed by 628
Abstract
This study investigates the capability of Gaussian process regression (GPR) models in the probabilistic forecasting of water flow and depth in a combined sewer system. Traditionally, deterministic methods have been implemented in sewer flow forecasting and anomaly detection, two crucial techniques for a [...] Read more.
This study investigates the capability of Gaussian process regression (GPR) models in the probabilistic forecasting of water flow and depth in a combined sewer system. Traditionally, deterministic methods have been implemented in sewer flow forecasting and anomaly detection, two crucial techniques for a good wastewater network and treatment plant management. However, with the uncertain nature of the factors impacting on sewer flow and depth, a probabilistic approach which takes uncertainties into account is preferred. This research introduces a novel use of GPR in sewer systems for real-time control and forecasting. To this end, a composite kernel is designed to capture flow and depth patterns in dry- and wet-weather periods by considering the underlying physical characteristics of the system. The multi-input, single-output GPR model is evaluated using root mean square error (RMSE), coverage, and differential entropy. The model demonstrates high predictive accuracy for both treatment plant inflow and manhole water levels across various training durations, with coverage values ranging from 87.5% to 99.4%. Finally, the model is used for anomaly detection by identifying deviations from expected ranges, enabling the estimation of surcharge and overflow probabilities under various conditions. Full article
(This article belongs to the Special Issue Advances in Management and Optimization of Urban Water Networks)
Show Figures

Figure 1

23 pages, 3193 KB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Cited by 1 | Viewed by 2244
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

15 pages, 2953 KB  
Article
Water Retention Measures as a Remediation Technique for CSO-Affected Watercourses
by Michaela Červeňanská, Jakub Mydla, Andrej Šoltész, Martin Orfánus, Peter Šulek, Jaroslav Hrudka, Réka Wittmanová and Richard Honti
Sustainability 2025, 17(14), 6280; https://doi.org/10.3390/su17146280 - 9 Jul 2025
Viewed by 464
Abstract
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can [...] Read more.
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can contribute to the ‘flushing’ of the riverbed. During heavy rainfalls, the Trnávka River is polluted by solid, non-soluble materials, which produce unpleasant odors and are the subject of numerous complaints by citizens, particularly during low water levels. Three inflatable rubber weirs were designed, and their design was verified using a 1D numerical model of the Trnávka River. The simulations of the proposed measures performed in the HEC-RAS 5.0 software excluded the adverse effect of the backwater on the functioning of the CSO chambers in the city of Trnava during normal flow rates and confirmed that, even after installation of the weirs, the transition of the flood wave will pass in the riverbed, not causing the flooding of the adjacent area. The chemical–physical study of the Trnávka River confirmed our assumption that higher flow rates, which can be secured by the regulation of the proposed weirs, can contribute to the purity of the watercourse in the city of Trnava. Full article
Show Figures

Figure 1

16 pages, 3808 KB  
Article
Impact of Data Quality on CNN-Based Sewer Defect Detection
by Seokwoo Jang and Dooil Kim
Water 2025, 17(13), 2028; https://doi.org/10.3390/w17132028 - 6 Jul 2025
Viewed by 839
Abstract
Sewer pipelines are essential urban infrastructure that play a key role in sanitation and disaster prevention. Regular condition assessments are necessary to detect defects early and determine optimal maintenance timing. However, traditional visual inspection using closed-circuit television (CCTV) footage is time-consuming, labor-intensive, and [...] Read more.
Sewer pipelines are essential urban infrastructure that play a key role in sanitation and disaster prevention. Regular condition assessments are necessary to detect defects early and determine optimal maintenance timing. However, traditional visual inspection using closed-circuit television (CCTV) footage is time-consuming, labor-intensive, and dependent on subjective human judgment. To address these limitations, this study develops a convolutional neural network (CNN)-based sewer defect classification model and analyzes how data quality—such as mislabeled or redundant images—affects model accuracy. A large-scale public dataset of approximately 470,000 sewer images was used for training. The model was designed to classify non-defect and three major defect categories. Based on the ResNet50 architecture, the model incorporated dropout and L2 regularization to prevent overfitting. Experimental results showed the highest accuracy of 92.75% at a dropout rate of 0.2 and a regularization coefficient of 0.01. Further analysis revealed that mislabeled, redundant, or obscured images within the dataset negatively impacted model performance. Additional experiments quantified the impact of data quality on accuracy, emphasizing the importance of proper dataset curation. This study provides practical insights into optimizing data-driven approaches for automated sewer defect detection and high-performance model development. Full article
(This article belongs to the Special Issue Urban Sewer Systems: Monitoring, Modeling and Management)
Show Figures

Figure 1

12 pages, 1675 KB  
Project Report
Tree Infiltration Trenches in the City of Leipzig—Experiences from Four Years of Operation
by Lucie Moeller, Katy Bernhard, Sabine Kruckow, Sabine Wolf, Anett Georgi, Jan Friesen, Katrin Mackenzie and Roland A. Müller
Land 2025, 14(7), 1315; https://doi.org/10.3390/land14071315 - 20 Jun 2025
Viewed by 620
Abstract
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot [...] Read more.
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot project was implemented in Leipzig in 2020, in which infiltration tree trench systems with three different designs were installed and equipped with measuring technology during a road renovation project. The catchment areas of these three tree trenches are between 215 and 300 m² each. In two of the systems, water retention was included to supply the tree with water during drought periods. The retention elements are sealed with clay in tree trench TT1 and bentonite in tree trench TT3. For tree trench TT2, no retention capacity was provided. This article presents the design, construction, and scientific monitoring of the three tree infiltration trenches. The conclusions after four years of operation from the perspective of two departments of the City of Leipzig are summarized. The tree trench TT1 with the clay pan for water storage shows the best performance in terms of water retention and tree fitness. For the next generation of such infiltration systems, improvements in the design of the street runoff inlets and the surface of the tree trench system’s interior are discussed. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Graphical abstract

19 pages, 6883 KB  
Article
Autonomous, Collaborative, and Confined Infrastructure Assessment with Purpose-Built Mega-Joey Robots
by Hitesh Bhardwaj, Nabil Shaukat, Andrew Barber, Andy Blight, George Jackson-Mills, Andrew Pickering, Manman Yang, Muhammad Azam Mohd Sharif, Linyan Han, Songyan Xin and Robert Richardson
Robotics 2025, 14(6), 80; https://doi.org/10.3390/robotics14060080 - 10 Jun 2025
Viewed by 1224
Abstract
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, [...] Read more.
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, such as small-diameter underground pipelines. This paper also discusses a novel decentralized event-based-broadcasting autonomous exploration algorithm designed for exploring such pipe networks collaboratively. The designed robot is able to operate in pipes with an inclination of up to 20 degrees in dry and up to 10 degrees in wet conditions. A team of Mega-Joeys was used to explore a test network using the proposed algorithm. The experimental results show that the team of robots was able to explore a 3850 mm long test network within a faster period (36% faster) and in a more energy-efficient manner (approximately 54% more efficient) than a single robot could achieve. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

16 pages, 4392 KB  
Article
Evaluating Design Rainstorm Durations for Urban Flood Control
by Kwan Tun Lee, Ta-Chun Chien, Wang-Sheng Yu, Nai-Kuang Chen, Pin-Chun Huang, Yi-Ting Lin, Yu-Han Hsu, Yu-Hsun Liao, Huan-Yuan Chen, Ching-Wen Hsu, Jing Zong Yang, Ciao-Ru Li and Cho-Min Yang
Earth 2025, 6(2), 53; https://doi.org/10.3390/earth6020053 - 5 Jun 2025
Viewed by 986
Abstract
In conventional hydrology, a short-duration design rainstorm is typically used to estimate the design discharge in urban sewer systems. The reason for using a short duration is that engineers believe the time of concentration in urban watersheds is relatively small. The short-duration hyetograph [...] Read more.
In conventional hydrology, a short-duration design rainstorm is typically used to estimate the design discharge in urban sewer systems. The reason for using a short duration is that engineers believe the time of concentration in urban watersheds is relatively small. The short-duration hyetograph is supposed to generate a flow hydrograph that accurately reflects the rainfall-runoff processes. In this study, we developed a street-sewer runoff model for an urban district of 2470 hectares. Detailed field flooding records were utilized to verify the stormwater model’s capability for inundation simulations. Subsequently, different rainfall series extracted from the recorded rainstorm data were used to investigate the causes of flooding corresponding to different durations of rainstorms. The results indicate that a 90 min main concentrated rainstorm causes small-scale flooding only; however, a 24 h rainfall series results in an extensive range of inundations. We further conducted similar short- and long-duration hyetograph tests in 16 urban drainage partitions (ranging from 2.3 to 193.5 hectares) to confirm the above findings. The results indicate that the maximum discharge in most partitions can only be found when the hyetograph duration exceeds 1080 min, which essentially contradicts previous engineering designs in urban watersheds in Taiwan. Full article
Show Figures

Figure 1

21 pages, 6403 KB  
Article
Autonomous Sewer Robot: A Laser Marker-Based Detection System
by Vygantas Ušinskis, Andrius Dzedzickis, Justas Nekrašas and Vytautas Bučinskas
Machines 2025, 13(5), 438; https://doi.org/10.3390/machines13050438 - 21 May 2025
Viewed by 581
Abstract
Navigation technologies are becoming more advanced, helping to solve complicated problems in various fields. Navigation can be classified as global, in which predefined data and reference points from the working environment are used to generate a path, and local, where the map is [...] Read more.
Navigation technologies are becoming more advanced, helping to solve complicated problems in various fields. Navigation can be classified as global, in which predefined data and reference points from the working environment are used to generate a path, and local, where the map is generated momentarily by acquiring data from outside using sensors. As navigation tasks become more demanding, working environments can become very complicated with an increasing number of dynamic obstacles or, in some cases, a lack of global references, which may have particularly notable impacts on communication. Inspection robots that are required to work in underground sewers are often required to work completely locally, relying on sensor data. For this reason, in this study, a cost-efficient laser marker-based obstacle detection and measurement system is designed and tested for future use in autonomous sewer robot local path generation. Our experiments show the convenience of applying four linear laser markers with an RGB camera to fully inspect upcoming obstacles in the region covering the front robot dimensions. The results show distance measurement accuracy of up to ±1.33 mm and obstacle width accuracy of up to ±0.28 mm measured from a 130 mm range. Nevertheless, accuracy is strongly dependent on the segmentation of image resolution, lighting, and reflection of the inspected surfaces. Also, it depends on the configuration of laser markers and the RGB camera position. Full article
(This article belongs to the Special Issue Mechatronic Systems: Developments and Applications)
Show Figures

Figure 1

22 pages, 3823 KB  
Article
Evaluation of Life Cycle Cost of Excavation and Trenchless Cured-in-Place Pipeline Technologies for Sustainable Wastewater Applications
by Gayatri Thakre, Vinayak Kaushal, Eesha Karkhanis and Mohammad Najafi
Sustainability 2025, 17(5), 2329; https://doi.org/10.3390/su17052329 - 6 Mar 2025
Cited by 1 | Viewed by 1877
Abstract
Sanitary sewer pipelines frequently experience blockages, structural failures, and overflows, underscoring the dire state of U.S. wastewater infrastructure, which has been rated a D-, while America’s overall infrastructure scores only slightly better at C-. Traditional open-trench excavation methods or excavation technology (ET) for [...] Read more.
Sanitary sewer pipelines frequently experience blockages, structural failures, and overflows, underscoring the dire state of U.S. wastewater infrastructure, which has been rated a D-, while America’s overall infrastructure scores only slightly better at C-. Traditional open-trench excavation methods or excavation technology (ET) for replacing deteriorated pipes are notoriously expensive and disruptive, requiring extensive processes like route planning, surveying, engineering, trench excavation, pipe installation, backfilling, and ground restoration. In contrast, trenchless technologies (TT) provide a less invasive and more cost-effective alternative. Among these, cured-in-place pipe technology (CIPPT), which involves inserting resin-impregnated fabric into damaged pipelines, is widely recognized for its efficiency. However, a comprehensive life cycle cost analysis (LCCA) directly comparing ET and TT, accounting for the net present value (NPV) across installation, maintenance, and rehabilitation costs, remains unexplored. This study aims to establish an LCCA framework for both CIPPT and ET, specifically for sanitary sewer pipes ranging from 8 to 42 inches in diameter. The framework incorporates construction, environmental, and social costs, providing a holistic evaluation. The key costs for ET involve pipe materials and subsurface investigations, whereas TT’s costs center around engineering and design. Social impacts, such as road and pavement damage, disruption to adjacent utilities, and noise, are pivotal, alongside environmental factors like material use, transportation, project duration, and equipment emissions. This comprehensive framework empowers decision makers to holistically assess economic and environmental impacts, enabling informed choices for sustainable sewer infrastructure renewal. Full article
Show Figures

Figure 1

22 pages, 17290 KB  
Article
Testing Concrete Sewer Maintenance Holes Using an Angular Modulated Penetrometer
by Sampath Thamel, Robert Ross, Alex Stumpf, Fernando Galetto and Jason Cotton
Materials 2024, 17(24), 6187; https://doi.org/10.3390/ma17246187 - 18 Dec 2024
Viewed by 856
Abstract
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be [...] Read more.
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be significantly corroded and softened but still pass a visual inspection. The novel system presented in this paper uses a penetrometer mounted on a robotic platform to measure the depth of penetration through a corroded concrete surface. An angular mechanism is used to rotate the penetrometer to new positions as striking aggregate may result in false readings. Based on laboratory analysis, this design is capable of providing consistent and precise multiple observations for both smooth and rough surfaces, as well as for flat and curved surfaces, with 0.1 mm accuracy. The use of a remote robotic platform eliminates the hazards of confined space entry whilst providing a repeatable analysis platform. Full article
Show Figures

Figure 1

21 pages, 6182 KB  
Review
Advances in the Mitigation of Microbiologically Influenced Concrete Corrosion: A Snapshot
by Husnu Gerengi, Ertugrul Kaya, Moses M. Solomon, Matthew Snape and Andrea Koerdt
Materials 2024, 17(23), 5846; https://doi.org/10.3390/ma17235846 - 28 Nov 2024
Cited by 2 | Viewed by 1877
Abstract
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances [...] Read more.
Concrete, a versatile construction material, faces pervasive deterioration due to microbiologically influenced corrosion (MIC) in various applications, including sewer systems, marine engineering, and buildings. MIC is initiated by microbial activities such as involving sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria (SOB), etc., producing corrosive substances like sulfuric acid. This process significantly impacts structures, causing economic losses and environmental concerns. Despite over a century of research, MIC remains a debated issue, lacking standardized assessment methods. Microorganisms contribute to concrete degradation through physical and chemical means. In the oil and gas industry, SRB and SOB activities may adversely affect concrete in offshore platforms. MIC challenges also arise in cooling water systems and civil infrastructures, impacting concrete surfaces. Sewer systems experience biogenic corrosion, primarily driven by SRB activities, leading to concrete deterioration. Mitigation traditionally involves the use of biocides and surface coatings, but their long-term effectiveness and environmental impact are questionable. Nowadays, it is important to design more eco-friendly mitigation products. The microbial-influenced carbonate precipitation is one of the green techniques and involves incorporating beneficial bacteria with antibacterial activity into cementitious materials to prevent the growth and the formation of a community that contains species that are pathogenic or may be responsible for MIC. These innovative strategies present promising avenues for addressing MIC challenges and preserving the integrity of concrete structures. This review provides a snapshot of the MIC in various areas and mitigation measures, excluding underlying mechanisms and broader influencing factors. Full article
Show Figures

Figure 1

14 pages, 2077 KB  
Article
Using HF183 to Estimate Watershed-Wide Annual Loadings of Human Fecal Pollution from Onsite Wastewater Treatment Systems
by Kenneth Schiff, Amity Zimmer-Faust, Duy Nguyen, John Griffith, Joshua Steele, Darcy Ebentier McCargar and Sierra Wallace
Sustainability 2024, 16(21), 9503; https://doi.org/10.3390/su16219503 - 31 Oct 2024
Viewed by 1307
Abstract
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of [...] Read more.
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of human fecal pollution to recreational waters, resulting in an increased risk of illness to swimmers. Quantifying the contribution of poor-performing OWTSs relative to other sources of fecal pollution is particularly challenging in wet weather when various sources commingle as they flow downstream. This study aimed to estimate the total load of human fecal pollution from OWTSs in an arid watershed with municipal separate storm sewer systems (MS4). The novel study design sampled HF183, a DNA-based human marker, from six small catchments containing only OWTSs and no other known human fecal sources, such as sanitary sewer collection systems or people experiencing homelessness. Then, the human fecal loading from the representative catchments was extrapolated to the portions of the watershed that were not sampled but contained OWTSs. Flow-weighted mean HF183 concentrations ranged from 104 to 107 gene copies/100 mL across 29 site-events. HF183 mass loading estimates were normalized to the number of parcels per catchment and inches of rainfall per storm event. Assuming the normalized loading estimate was representative, extrapolation to all of the OWTS parcels in the watershed and average annual rainfall quantity illustrated that HF183 loading from OWTSs was a small but measurable fraction of the total HF183 mass loading emanating at the bottom of the watershed. Clearly, other human fecal sources contributed HF183 during storm events in this watershed. The loading estimate approach used in this study could be applied to other watersheds facing similar challenges in prioritizing resources for monitoring and mitigation among co-located human fecal sources. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

Back to TopTop