Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,479)

Search Parameters:
Keywords = severe burns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

19 pages, 1625 KiB  
Review
The Potential of Functional Hydrogels in Burns Treatment
by Nathalie S. Ringrose, Ricardo W. J. Balk, Susan Gibbs, Paul P. M. van Zuijlen and H. Ibrahim Korkmaz
Gels 2025, 11(8), 595; https://doi.org/10.3390/gels11080595 - 31 Jul 2025
Viewed by 126
Abstract
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, [...] Read more.
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, and integration with host tissue. Functional hydrogels are being explored as alternatives due to properties such as high water content, biodegradability, adhesiveness, antimicrobial activity, and support for angiogenesis. Unlike standard templates, hydrogels can adapt to irregular wound shapes as in burn wounds and reach deeper tissue layers, supporting moisture retention, cell migration, and controlled drug delivery. These features may improve the wound environment and support healing in burns of varying severity. This review outlines recent developments in functional hydrogel technologies and compares them to current clinical treatments for burn care. Emphasis is placed on the structural and biological features that influence performance, including material composition, bioactivity, and integration capacity. Through an exploration of key mechanisms of action and clinical applications, this review highlights the benefits and challenges associated with hydrogel technology, providing insights into its future role in burn care. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Influence of Regional PM2.5 Sources on Air Quality: A Network-Based Spatiotemporal Analysis in Northern Thailand
by Khuanchanok Chaichana, Supanut Chaidee, Sayan Panma, Nattakorn Sukantamala, Neda Peyrone and Anchalee Khemphet
Mathematics 2025, 13(15), 2468; https://doi.org/10.3390/math13152468 - 31 Jul 2025
Viewed by 208
Abstract
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated [...] Read more.
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated the spatial and temporal dynamics of PM2.5 in northern Thailand. Specifically, it explored how pollution at one monitoring station influenced concentrations at others and revealed the seasonal structure of PM2.5 transmission using network-based analysis. We developed a Python-based framework to analyze daily PM2.5 data from 2022 to 2023, selecting nine representative stations across eight provinces based on spatial clustering and shape-based criteria. Delaunay triangulation was used to define spatial connections among stations, capturing the region’s irregular geography. Cross-correlation and Granger causality were applied to identify time-lagged relationships between stations for each season. Trophic coherence analysis was used to evaluate the hierarchical structure and seasonal stability of the resulting networks. The analysis revealed seasonal patterns of PM2.5 transmission, with certain stations, particularly in Chiang Mai and Lampang, consistently acting as source nodes. Provinces such as Phayao and Phrae were frequently identified as receptors, especially during the winter and rainy seasons. Trophic coherence varied by season, with the winter network showing the highest coherence, indicating a more hierarchical but less stable structure. The rainy season exhibited the lowest coherence, reflecting greater structural stability. PM2.5 spreads through structured, seasonal pathways in northern Thailand. Network patterns vary significantly across seasons, highlighting the need for adaptive air quality strategies. This framework can help identify influential monitoring stations for early warning and support more targeted, season-specific air quality management strategies in northern Thailand. Full article
(This article belongs to the Special Issue Application of Mathematical Theory in Data Science)
Show Figures

Figure 1

17 pages, 2535 KiB  
Article
Climate-Induced Heat Stress Responses on Indigenous Varieties and Elite Hybrids of Mango (Mangifera indica L.)
by Amar Kant Kushwaha, Damodaran Thukkaram, Dheerendra Rastogi, Ningthoujam Samarendra Singh, Karma Beer, Prasenjit Debnath, Vishambhar Dayal, Ashish Yadav, Swosti Suvadarsini Das, Anju Bajpai and Muthukumar Manoharan
Agriculture 2025, 15(15), 1619; https://doi.org/10.3390/agriculture15151619 - 26 Jul 2025
Viewed by 336
Abstract
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars [...] Read more.
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars from subtropical regions viz.,‘Dashehari’, ‘Langra’, ‘Chausa’, ‘Bombay Green’, ‘Himsagar’, ‘Amrapali’, ‘Mallika’, ‘Sharda Bhog’, ‘Kesar’, and ‘Rataul’, and thirteen selected elite hybrids H-4208, H-3680, H-4505, H-3833, H-4504, H-1739, H-3623, H-1084, H-4264, HS-01, H-949, H-4065, and H-2805, is reported. The predominant effects that were observed include the following: burning symptoms or blackened tips, surrounded by a yellow halo, with premature ripening in affected parts and, in severe cases, tissue mummification. Among commercial cultivars, viz., ‘Amrapali’ (25%), ‘Mallika’ (30%), ‘Langra’ (30%), ‘Dashehari’ (50%), and ‘Himsagar’ and ‘Bombay Green’ had severe impacts, with ~80% of fruits being affected, followed by ‘Sharda Bhog’. In contrast, mid-maturing cultivars like ‘Kesar’, ‘Rataul’, and late-maturing elite hybrids, which were immature during the stress period, showed no symptoms, indicating they are tolerant. Biochemical analyses revealed significantly elevated total soluble solids (TSS > 25 °B) in affected areas of sensitive genotypes compared to non-affected tissues and tolerant genotypes. Aroma profiling indicated variations in compounds such as caryophyllene and humulene between affected and unaffected parts. The study envisages that the phenological maturity scales are indicators for the selection of climate-resilient mango varieties/hybrids and shows potential for future breeding programs. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Horticultural Crops)
Show Figures

Figure 1

14 pages, 1322 KiB  
Systematic Review
Neuroimaging Signatures of Temporomandibular Disorder and Burning Mouth Syndrome: A Systematic Review
by Sarah Fischer, Charalampos Tsoumpas, Pavneet Chana, Richard G. Feltbower and Vishal R. Aggarwal
Dent. J. 2025, 13(8), 340; https://doi.org/10.3390/dj13080340 - 24 Jul 2025
Viewed by 266
Abstract
Background: Chronic primary orofacial pain (COFP) affects approximately 7% of the population and often leads to reduced quality of life. Patients frequently undergo multiple assessments and treatments across healthcare disciplines, often without a definitive diagnosis. The 2019 ICD-11 classification of chronic primary pain [...] Read more.
Background: Chronic primary orofacial pain (COFP) affects approximately 7% of the population and often leads to reduced quality of life. Patients frequently undergo multiple assessments and treatments across healthcare disciplines, often without a definitive diagnosis. The 2019 ICD-11 classification of chronic primary pain clusters together COFP subtypes based on chronicity and associated functional and emotional impairment. Objective: This study aimed to evaluate whether these subtypes of COFP share common underlying mechanisms by comparing neuroimaging findings. Methods: A systematic review was conducted in accordance with PRISMA guidelines. Searches were performed using Medline (OVID) and Scopus up to April 2025. Inclusion criteria focused on MRI-based neuroimaging studies of participants diagnosed with COFP subtypes. Data extraction included participant demographics, imaging modality, brain regions affected, and pain assessment tools. Quality assessment used a modified Coleman methodological score. Results: Fourteen studies met the inclusion criteria, all utilising MRI and including two COFP subtypes (temporomandibular disorder and burning mouth syndrome). Resting- and task-state imaging revealed overlapping alterations in several brain regions, including the thalamus, somatosensory cortices (S1, S2), cingulate cortex, insula, prefrontal cortex, basal ganglia, medial temporal lobe, and primary motor area. These changes were consistent across both TMD and BMS populations. Conclusions: The findings suggest that chronic primary orofacial pain conditions (TMD and BMS) may share common central neuroplastic changes, supporting the hypothesis of a unified pathophysiological mechanism. This has implications for improving diagnosis and treatment strategies, potentially leading to more targeted and effective care for these patients. Full article
(This article belongs to the Topic Oral Health Management and Disease Treatment)
Show Figures

Figure 1

24 pages, 958 KiB  
Article
Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments
by Kaouthar Andaloussi, Hafid Achtak, Abdeltif El Ouahrani, Jalal Kassout, Giovanni Vinti, Daniele Di Trapani, Gaspare Viviani, Hassnae Kouali, Mhammed Sisouane, Khadija Haboubi and Mostafa Stitou
Soil Syst. 2025, 9(3), 82; https://doi.org/10.3390/soilsystems9030082 - 22 Jul 2025
Viewed by 370
Abstract
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and [...] Read more.
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and its nearby areas following leaching drain flows. The pollution load index (PLI), geo-accumulation index (Igeo), and potential ecological risk index (RI) were subsequently determined. In addition, hazard quotient (HQ) and health index (HI) were used to assess the non-carcinogenic and carcinogenic risks associated with the soil heavy metal contents. The PLI indicated significant contamination by the studied heavy metals. On the other hand, the Igeo values suggested no Cr contamination, moderate contamination by Cu and Zn, and severe contamination by Cd. The RI indicated a dominant contribution from Cd, with minor contributions from Cu, Zn, and Cr accounting for 92.47, 5.44, 1.11, and 0.96%, respectively, to the potential ecological risk in the study area. The non-carcinogenic health risks associated with exposure of the nearby population to the soil heavy metals at the dumpsite and burned solid waste-derived air pollution were below the threshold value of 1 for both children and adults. Although carcinogenic risks were observed in the study area, they were acceptable for both children and adults according to the United States Environmental Protection Agency (USEPA). However, carcinogenic risks associated with Cr were unacceptable according to the Italian Legislation. Finally, strategies to mitigate the risks posed by the dumpsite were also discussed in this study. Full article
Show Figures

Figure 1

16 pages, 2720 KiB  
Communication
Wildland and Forest Fire Emissions on Federally Managed Land in the United States, 2001–2021
by Coeli M. Hoover and James E. Smith
Forests 2025, 16(8), 1205; https://doi.org/10.3390/f16081205 - 22 Jul 2025
Viewed by 266
Abstract
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in [...] Read more.
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in assessing wildland fire impacts, particularly on federally managed land, we developed estimates of area burned and related emissions for a 21-year period. These estimates are based on wildland fires defined by the interagency Monitoring Trends in Burn Severity database; emissions are simulated through the Wildland Fire Emissions Inventory System; and the classification of public land is performed according to the US Geological Survey’s Protected Areas Database of the United States. Wildland fires on federal land contributed 62 percent of all annual CO2 emissions from wildfires in the United States between 2001 and 2021. During this period, emissions from the forest fire subset of wildland fires ranged from 328 Tg CO2 in 2004 to 37 Tg CO2 in 2001. While forest fires averaged 38 percent of burned area, they represent the majority—59 to 89 percent of annual emissions—relative to fires in all ecosystems, including non-forest. Wildland fire emissions on land belonging to the federal government accounted for 44 to 77 percent of total annual fire emissions for the entire United States. Land managed by three federal agencies—the Forest Service, the Bureau of Land Management, and the Fish and Wildlife Service—accounted for 93 percent of fire emissions from federal land over the course of the study period, but year-to-year contributions varied. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

16 pages, 2417 KiB  
Communication
Owl Habitat Use and Diets After Fire and Salvage Logging
by Angelina J. Kelly, Frank I. Doyle and Karen E. Hodges
Fire 2025, 8(7), 281; https://doi.org/10.3390/fire8070281 - 16 Jul 2025
Viewed by 513
Abstract
Megafires are transforming western boreal forests, and many burned forests are salvage logged, removing more structure from landscapes and delaying forest regeneration. We studied forest-dwelling owls in a post-fire and salvage-logged landscape in central British Columbia, Canada, in 2018–2019 after the 2010 Meldrum [...] Read more.
Megafires are transforming western boreal forests, and many burned forests are salvage logged, removing more structure from landscapes and delaying forest regeneration. We studied forest-dwelling owls in a post-fire and salvage-logged landscape in central British Columbia, Canada, in 2018–2019 after the 2010 Meldrum Creek Fire and the 2017 Hanceville Fire. We examined owl habitat selection via call surveys compared to the habitats available in this landscape. Owl pellets were dissected to determine owl diets. We detected six owl species, of which Northern Saw-whet Owls (Aegolius acadicus) were the most common. Owls had weak and variable habitat selection within an 800 m radius of detections; all species used some burned area. Great Gray Owls (Strix nebulosa) and Great Horned Owls (Bubo virginanus) obtained more prey from mature forests (e.g., red-backed voles, Myodes gapperi, snowshoe hares, Lepus americanus) than other owls did, whereas other owls primarily consumed small mammals that were common in burned or salvaged areas. These results indicate a diverse community of owls can use landscapes within a decade after wildfire, potentially with some prey switching to take advantage of prey that use disturbed habitats. Despite that, owl numbers were low and some owls consumed prey that were not available in salvage-logged areas, suggesting that impacts on owls were more severe from the combination of fire and salvage logging than from fire alone. Full article
Show Figures

Figure 1

14 pages, 971 KiB  
Article
High Voltage and Train-Surfing Injuries: A 30-Year Retrospective Analysis of High-Voltage Trauma and Its Impact on Cardiac Biomarkers
by Viktoria Koenig, Maximilian Monai, Alexandra Christ, Marita Windpassinger, Gerald C. Ihra, Alexandra Fochtmann-Frana and Julian Joestl
J. Clin. Med. 2025, 14(14), 4969; https://doi.org/10.3390/jcm14144969 - 14 Jul 2025
Viewed by 286
Abstract
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these [...] Read more.
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these behaviors expose individuals to the invisible danger of electric arcs from 15,000-volt railway lines, often resulting in extensive burns, cardiac complications, and severe trauma. This study presents a 30-year retrospective analysis comparing cardiac biomarkers and clinical outcomes in train-surfing injuries versus work-related HVEIs. Methods: All patients with confirmed high-voltage injury (≥1000 volts) admitted to a Level 1 burn center between 1994 and 2024 were retrospectively analyzed. Exclusion criteria comprised low-voltage trauma, suicide, incomplete records, and external treatment. Clinical and laboratory parameters—including total body surface area (TBSA), Abbreviated Burn Severity Index (ABSI), electrocardiogram (ECG) findings, intensive care unit (ICU) and hospital stay, mortality, and cardiac biomarkers (creatine kinase [CK], CK-MB, lactate dehydrogenase [LDH], aspartate transaminase [AST], troponin, and myoglobin)—were compared between the two cohorts. Results: Of 81 patients, 24 sustained train-surfing injuries and 57 were injured in occupational settings. Train surfers were significantly younger (mean 16.7 vs. 35.2 years, p = 0.008), presented with greater TBSA (49.9% vs. 17.9%, p = 0.008), higher ABSI scores (7.3 vs. 5.1, p = 0.008), longer ICU stays (53 vs. 17 days, p = 0.008), and higher mortality (20.8% vs. 3.5%). ECG abnormalities were observed in 51% of all cases, without significant group differences. However, all cardiac biomarkers were significantly elevated in train-surfing injuries at both 72 h and 10 days post-injury (p < 0.05), suggesting more pronounced cardiac and muscular damage. Conclusions: Train-surfing-related high-voltage injuries are associated with markedly more severe systemic and cardiac complications than occupational HVEIs. The significant biomarker elevation and critical care demands highlight the urgent need for targeted prevention, public awareness, and early cardiac monitoring in this high-risk adolescent population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

20 pages, 6376 KiB  
Article
Analyses of MODIS Land Cover/Use and Wildfires in Italian Regions Since 2001
by Ebrahim Ghaderpour, Francesca Bozzano, Gabriele Scarascia Mugnozza and Paolo Mazzanti
Land 2025, 14(7), 1443; https://doi.org/10.3390/land14071443 - 10 Jul 2025
Viewed by 351
Abstract
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly [...] Read more.
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly MODIS burned area images are utilized for the period 2001–2020 to study wildfire occurrences across these regions. In addition, monthly Global Precipitation Measurement images for the period 2001–2020 are employed to estimate correlations between precipitation and burned areas annually and seasonally. Boxplots are produced to show the distributions of each land cover/use type within the regions. The non-parametric Mann–Kendall trend test and Sen’s slope are applied to estimate a linear trend, with statistical significance being evaluated for each land cover/use time series of size 23. Pearson’s correlation method is applied for correlation analysis. It is found that grasslands and woodlands have been declining and increasing in most regions, respectively, most significantly in Abruzzo (−0.88%/year for grasslands and 0.71%/year for grassy woodlands). The most significant and frequent wildfires have been observed in southern Italy, particularly in Basilicata, Apulia, and Sicily, mainly in grasslands. The years 2007 and 2017 experienced severe wildfires in the southern regions, mainly during July and August, due to very hot and dry conditions. Negative Pearson’s correlations are estimated between precipitation and burnt areas, with the most significant one being for Basilicata during the fire season (r = −0.43). Most of the burned areas were mainly within the elevation range of 0–500 m and the lowlands of Apulia. In addition, for the 2001–2020 period, a high positive correlation (r > 0.7) is observed between vegetation and land surface temperature, while significant negative correlations between these variables are observed for Apulia (r ≈ −0.59), Sicily (r ≈ −0.69), and Sardinia (r ≈ −0.74), and positive correlations (r > 0.25) are observed between vegetation and precipitation in these three regions. This study’s findings can guide land managers and policymakers in developing or maintaining a sustainable environment. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

16 pages, 1550 KiB  
Article
Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States
by C. Wade Ross, E. Louise Loudermilk, Steven A. Flanagan, Grant Snitker, J. Kevin Hiers and Joseph J. O’Brien
Sustainability 2025, 17(13), 6230; https://doi.org/10.3390/su17136230 - 7 Jul 2025
Viewed by 402
Abstract
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods [...] Read more.
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods for reducing hazardous fuels and hence wildfire severity, yet empirical research on its effectiveness at minimizing damage to highly valued resources and assets (HVRAs) remains limited. The overarching objective of this study was to evaluate wildfire severity under differing weather conditions across various HVRAs characterized by diverse land uses, vegetation types, and treatment histories. The findings from this study reveal that wildfire severity was generally lower in areas treated with prescribed fire, although the significance of this effect varied among HVRAs and diminished as post-treatment duration increased. The wildland–urban interface experienced the greatest initial reduction in wildfire severity following prescribed fire, but burn severity increased more rapidly over time relative to other HVRAs. Elevated drought conditions had a significant effect, increasing wildfire severity across all HVRAs. The implications of this study underscore the role of prescribed fire in promoting sustainable land management by reducing wildfire severity and safeguarding both natural and built environments, particularly in the expanding wildland–urban interface. Full article
Show Figures

Figure 1

23 pages, 5365 KiB  
Article
Impact of Post-Fire Rehabilitation Treatments on Forest Soil Infiltration in Mediterranean Landscapes: A Two-Year Study
by Nikolaos D. Proutsos, Stefanos P. Stefanidis, Alexandra D. Solomou, Panagiotis Michopoulos, Athanasios Bourletsikas and Panagiotis Lattas
Fire 2025, 8(7), 269; https://doi.org/10.3390/fire8070269 - 6 Jul 2025
Viewed by 662
Abstract
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this [...] Read more.
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this study, we investigated the performance of three types of erosion control structures (log dams, log barriers, and wattles), two years after fire, in three Mediterranean areas that were burnt by severe forest fires in 2021. The wooden structures’ ability to infiltrate precipitation was evaluated by 100 infiltration experiments in 25 plots, one and two years after the wildfires. The unsaturated hydraulic conductivity K was determined at two zones formed between consecutive wooden structures, i.e., the erosion zone (EZ) where soil erosion occurs, and the deposition zone (DZ) where the soil sediment is accumulated. These zones showed significant differences concerning their hydraulic behavior, with DZ presenting enhanced infiltration ability by 130 to 300% higher compared to EZ, during both years of measurements. The findings suggest that the implementation of emergency restoration actions after a wildfire can highly affect the burned forest soils’ ability to infiltrate water, preventing surface runoff and erosion, whereas specific structures such as the log dams can be even more effective. Full article
Show Figures

Figure 1

53 pages, 2879 KiB  
Systematic Review
Hypersensitivity in Orthodontics: A Systematic Review of Oral and Extra-Oral Reactions
by Alessandra Amato, Stefano Martina, Giuseppina De Benedetto, Ambrosina Michelotti, Massimo Amato and Federica Di Spirito
J. Clin. Med. 2025, 14(13), 4766; https://doi.org/10.3390/jcm14134766 - 5 Jul 2025
Viewed by 454
Abstract
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment [...] Read more.
Background/Objectives: This systematic review analyzed the epidemiologic and macro/microscopic features of manifestations of hypersensitivity reactions with oral and extra-oral involvement in orthodontic patients with fixed (FAs) or removable (RAs) appliances or clear aligners (CAs), and evaluated them based on patient and treatment characteristics to provide clinical recommendations. Methods: The study protocol followed the PRISMA guidelines and was registered on PROSPERO (CRD42024517942). Results: Thirty-one studies were qualitatively assessed and synthetized, involving 858 subjects (114 males and 714 females, 9–49 years old), of whom there were 86 with a history of allergy, and 743 wearing recorded appliances (FAs = 656, FAs and RAs = 81, intra- and extra-oral RAs = 3, CAs = 3), with a mean treatment duration of 21.5 months (6 weeks–40 months). Among 75 reports, 29 (38.67%), describing burning, gingival hyperplasia, erythema, and vesicles, had oral involvement, while 46 (61.33%) had skin, eye, and systemic involvement, with erythema, papules, conjunctival hyperemia, and vertigo. Positive allergy tests concomitant with the manifestations identified nickel 451 times, cobalt 6 times, titanium 5 times, and chromium 4 times. Management included antihistamines or corticosteroids and removing the offending materials, with treatment discontinuation/appliance substitution. Conclusions: Pre-treatment evaluations, including patient histories and allergy testing, are essential to identify potential allergens and select hypoallergenic materials like titanium or ceramic brackets; regular monitoring and early intervention during treatment are crucial to prevent severe outcomes. Full article
(This article belongs to the Special Issue Oral Health and Dental Care: Current Advances and Future Options)
Show Figures

Figure 1

27 pages, 4364 KiB  
Article
Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico
by Oscar Enrique Balcázar Medina, Enrique J. Jardel Peláez, Daniel José Vega-Nieva, Adrián Israel Silva-Cardoza and Ramón Cuevas Guzmán
Remote Sens. 2025, 17(13), 2307; https://doi.org/10.3390/rs17132307 - 5 Jul 2025
Viewed by 1424
Abstract
There is a need to evaluate Sentinel-2 (S2) fire severity spectral indices (SFSIs) for predicting vegetation and soil burn severity for a variety of ecosystems. We evaluated the performance of 26 SFSIs across three fires in seasonally dry oak–pine forests in central-western Mexico. [...] Read more.
There is a need to evaluate Sentinel-2 (S2) fire severity spectral indices (SFSIs) for predicting vegetation and soil burn severity for a variety of ecosystems. We evaluated the performance of 26 SFSIs across three fires in seasonally dry oak–pine forests in central-western Mexico. The SFSIs were derived from composites of S2 multispectral images obtained with Google Earth Engine (GEE), processed using different techniques, for periods of 30, 60 and 90 days. Field verification was conducted through stratified random sampling by severity class on 100 circular plots of 707 m2, where immediate post-fire effects were evaluated for five strata, including the canopy scorch in overstory (OCS)—divided in canopy (CCS) and subcanopy (SCS)—understory (UCS) and soil burn severity (SBS). Best fits were obtained with relative, phenologically corrected indices of 60–90 days. For canopy scorch percentage prediction, the indices RBR3c and RBR5n, using NIR (bands 8 and 8a) and SWIR (band 12), provided the best accuracy (R2 = 0.82). SBS could be best mapped from RBR1c (using 11 and 12 bands) with relatively acceptable precision (R2 = 0.62). Our results support the feasibility to separately map OCS and SBS from S2, in relatively open oak–pine seasonally dry forests, potentially supporting post-fire management planning. Full article
Show Figures

Figure 1

21 pages, 2738 KiB  
Article
Effects of Fire on Soil Bacterial Communities and Nitrogen Cycling Functions in Greater Khingan Mountains Larch Forests
by Yang Shu, Wenjie Jia, Pengwu Zhao, Mei Zhou and Heng Zhang
Forests 2025, 16(7), 1094; https://doi.org/10.3390/f16071094 - 2 Jul 2025
Viewed by 344
Abstract
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to [...] Read more.
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to analyze the impact of varying fire intensities on soil nitrogen, microbial communities, and the abundance of nitrogen cycle-related functional genes after three years. The results indicated the following findings: (1) Soil bulk density increased significantly following severe fires (7.06%~10.84%, p < 0.05), whereas soil water content decreased with increasing fire intensity (6.62%~19.42%, p < 0.05). The soil total nitrogen and ammonium nitrogen levels declined after heavy fires but increased after mild fires; (2) Mild fire burning significantly increased soil bacterial diversity, while heavy fire had a lesser effect. Dominant bacterial groups included Xanthobacteraceae, norank_o_norank_c_AD3, and norank_o_Elsterales. Norank_o_norank_c_AD3 abundance decreased with burn intensity (7.90% unburned, 3.02% mild fire, 2.70% heavy fire). Conversely, norank_o_Elsterales increased with burning (1.23% unburned, 5.66% mild fire, 5.48% heavy fire); (3) The abundance of nitrogen-fixing nifH functional genes decreased with increasing fire intensity, whereas nitrification functional genes amoA-AOA and amoA-AOB exhibited the opposite trend. Light-intensity fires increased the abundance of denitrification functional genes nirK, nirS, and nosZ, while heavy fires reduced their abundance; (4) The correlation analysis demonstrated a strong association between soil bacteria and denitrification functional genes nifH and amoA-AOA, with soil total nitrogen being a key factor influencing the nitrogen cycle-related functional genes. The primary bacterial groups involved in soil nitrogen cycling were Proteobacteria, Actinobacteria, and Chloroflexi. These findings play a critical role in promoting vegetation regeneration and rapid ecosystem restoration in fire-affected areas. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop