Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = service supply chain management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 470
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

25 pages, 2669 KiB  
Article
Multi-Variate Regression Analysis of Inventory Parameters in a Decentralized Multi-Echelon Supply Chain: A Simulation-Based Approach
by Ghada Ragheb Elnaggar
Processes 2025, 13(8), 2345; https://doi.org/10.3390/pr13082345 - 23 Jul 2025
Viewed by 306
Abstract
Effective inventory management in decentralized multi-echelon supply chains (MESCs) is essential for minimizing costs and improving service levels. This study introduces a two-stage approach that combines discrete-event simulation and multi-variate regression analysis (MVRA) to analyze a three-echelon supply chain. The first stage simulates [...] Read more.
Effective inventory management in decentralized multi-echelon supply chains (MESCs) is essential for minimizing costs and improving service levels. This study introduces a two-stage approach that combines discrete-event simulation and multi-variate regression analysis (MVRA) to analyze a three-echelon supply chain. The first stage simulates various inventory policies and demand scenarios across manufacturers, wholesalers, and retailers. The second stage uses MVRA to examine how inventory decisions at each echelon influence key performance indicators, including inventory cost and inventory level. The results identify the parameters that most significantly affect supply chain performance, offering practical guidance for optimizing policies in complex and decentralized systems. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 326
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

17 pages, 936 KiB  
Article
Improving the Freight Transportation System in the Context of the Country’s Economic Development
by Veslav Kuranovič, Leonas Ustinovichius, Maciej Nowak, Darius Bazaras and Edgar Sokolovskij
Sustainability 2025, 17(14), 6327; https://doi.org/10.3390/su17146327 - 10 Jul 2025
Viewed by 413
Abstract
Due to the recent significant increase in the scale of both domestic and international cargo transportation, the transport sector is becoming an important factor in the country’s economic development. This implies the need to improve all links in the cargo transportation chain. A [...] Read more.
Due to the recent significant increase in the scale of both domestic and international cargo transportation, the transport sector is becoming an important factor in the country’s economic development. This implies the need to improve all links in the cargo transportation chain. A key role in it is played by logistics centers, which in their activities must meet both state (CO2 emissions, reduction in road load, increase in transportation safety, etc.) and commercial (cargo transportation in the shortest time and at the lowest cost) requirements. The objective of the paper is freight transportation from China to European countries, reflecting issues of CO2 emissions, reduction in road load, and increase in transportation safety. Transport operations from the manufacturer to the logistics center are especially important in this chain, since the efficiency of transportation largely depends on the decisions made by its employees. They select the appropriate types of transport (air, sea, rail, and road transport) and routes for a specific situation. In methodology, the analyzed problem can be presented as a dynamic multi-criteria decision model. It is assumed that the decision-maker—the manager responsible for planning transportation operations—is interested in achieving three basic goals: financial goal minimizing total delivery costs from factories to the logistics center, environmental goal minimizing the negative impact of supply chain operations on the environment, and high level of customer service goal minimizing delivery times from factories to the logistics center. The proposed methodology allows one to reduce the total carbon dioxide emission by 1.1 percent and the average duration of cargo transportation by 1.47 percent. On the other hand, the total cost of their delivery increases by 1.25 percent. By combining these, it is possible to create optimal transportation options, effectively use vehicles, reduce air pollution, and increase the quality of customer service. All this would significantly contribute to the country’s socio-economic development. It is proposed to solve this complex problem based on a dynamic multi-criteria model. In this paper, the problem of constructing a schedule of transport operations from factories to a logistics center is considered. The analyzed problem can be presented as a dynamic multi-criteria decision model. Linear programming and the AHP method were used to solve it. Full article
Show Figures

Figure 1

29 pages, 870 KiB  
Article
Deep Reinforcement Learning for Optimal Replenishment in Stochastic Assembly Systems
by Lativa Sid Ahmed Abdellahi, Zeinebou Zoubeir, Yahya Mohamed, Ahmedou Haouba and Sidi Hmetty
Mathematics 2025, 13(14), 2229; https://doi.org/10.3390/math13142229 - 9 Jul 2025
Viewed by 509
Abstract
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times [...] Read more.
This study presents a reinforcement learning–based approach to optimize replenishment policies in the presence of uncertainty, with the objective of minimizing total costs, including inventory holding, shortage, and ordering costs. The focus is on single-level assembly systems, where both component delivery lead times and finished product demand are subject to randomness. The problem is formulated as a Markov decision process (MDP), in which an agent determines optimal order quantities for each component by accounting for stochastic lead times and demand variability. The Deep Q-Network (DQN) algorithm is adapted and employed to learn optimal replenishment policies over a fixed planning horizon. To enhance learning performance, we develop a tailored simulation environment that captures multi-component interactions, random lead times, and variable demand, along with a modular and realistic cost structure. The environment enables dynamic state transitions, lead time sampling, and flexible order reception modeling, providing a high-fidelity training ground for the agent. To further improve convergence and policy quality, we incorporate local search mechanisms and multiple action space discretizations per component. Simulation results show that the proposed method converges to stable ordering policies after approximately 100 episodes. The agent achieves an average service level of 96.93%, and stockout events are reduced by over 100% relative to early training phases. The system maintains component inventories within operationally feasible ranges, and cost components—holding, shortage, and ordering—are consistently minimized across 500 training episodes. These findings highlight the potential of deep reinforcement learning as a data-driven and adaptive approach to inventory management in complex and uncertain supply chains. Full article
Show Figures

Figure 1

19 pages, 1265 KiB  
Article
The Effect of Digital Service Innovation on Strengthening Supply Chain Networks Against Disruptions: A Network Embedding Approach
by Yanjie Gou, Maozeng Xu, Lucille Aba Abruquah and Xudong Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 164; https://doi.org/10.3390/jtaer20030164 - 1 Jul 2025
Viewed by 385
Abstract
The advent of digital technology has transformed traditional service management approaches and offers new opportunities for the supply chain network to resist these interruptions. However, current research on how digital service innovation directly affects supply chain resilience is limited. This study constructs a [...] Read more.
The advent of digital technology has transformed traditional service management approaches and offers new opportunities for the supply chain network to resist these interruptions. However, current research on how digital service innovation directly affects supply chain resilience is limited. This study constructs a theoretical research framework to explore how digital service innovation promotes supply chain resilience in the manufacturing industry, using a network embeddedness perspective. Through extensive survey data, the research demonstrates that digital service innovation enhances resilience by fostering two types of network embeddedness, namely relational and structural embedding, which in turn enhances resistance to interruption. IT support capabilities further reinforce the relationship between digital service innovation and relational embedding and structural embedding, and enhance the overall impact on resilience. This paper is among the first to integrate digital service innovation into supply chain resilience research, unveiling a network embedding approach for enhancing the ability to respond to supply chain network disruptions. Full article
(This article belongs to the Special Issue Digitalization and Sustainable Supply Chain)
Show Figures

Figure 1

20 pages, 1067 KiB  
Article
The Impact of Dual-Channel Investments and Contract Mechanisms on Telecommunications Supply Chains
by Yongjae Kim
Systems 2025, 13(7), 539; https://doi.org/10.3390/systems13070539 - 1 Jul 2025
Viewed by 269
Abstract
This study examines how contract structures influence coordination and innovation incentives in dual-channel telecommunications supply chains. We consider a setting where a mobile network operator (MNO) supplies services both directly to consumers and indirectly through a mobile virtual network operator (MVNO), which competes [...] Read more.
This study examines how contract structures influence coordination and innovation incentives in dual-channel telecommunications supply chains. We consider a setting where a mobile network operator (MNO) supplies services both directly to consumers and indirectly through a mobile virtual network operator (MVNO), which competes in the retail market. Using a game-theoretic framework, we evaluate how different contracts—single wholesale pricing, revenue sharing, and quantity discounts—shape strategic decisions, particularly in the presence of investment spillovers between parties. A key coordination problem emerges from the externalized gains of innovation, where one party’s investment generates value for both participants. Our results show that single wholesale and revenue sharing contracts often lead to suboptimal investment and profit outcomes. In contrast, quantity discount contracts, especially when combined with appropriate transfer payments, improve coordination and enhance the total performance of the supply chain. We also find that innovation led by the MVNO, while generally less impactful, can still yield reciprocal benefits for the MNO, reinforcing the value of cooperative arrangements. These findings emphasize the importance of contract design in managing interdependence and improving efficiency in decentralized supply chains. This study offers theoretical and practical implications for telecommunications providers and policymakers aiming to promote innovation and mutually beneficial outcomes through well-aligned contractual mechanisms. Full article
(This article belongs to the Special Issue Systems Methodology in Sustainable Supply Chain Resilience)
Show Figures

Figure 1

34 pages, 3561 KiB  
Article
Research on Pricing and Effort Investment Decisions for Dual-Channel Fresh Product Supply Chain Under the Participation of Third-Party Logistics Provider
by Yunting Wu, Aimin Zhu, Lijuan Yu and Wenbo Wang
Systems 2025, 13(7), 538; https://doi.org/10.3390/systems13070538 - 1 Jul 2025
Viewed by 266
Abstract
This study takes the dual-channel fresh product supply chain involving the participation of third-party logistics (3PL) as the background to explore how 3PL makes choices between homogeneous and differentiated logistics service strategies and how the supply chain formulates optimal decisions under different logistics [...] Read more.
This study takes the dual-channel fresh product supply chain involving the participation of third-party logistics (3PL) as the background to explore how 3PL makes choices between homogeneous and differentiated logistics service strategies and how the supply chain formulates optimal decisions under different logistics service strategies to achieve maximum benefits. This paper constructs a sequential game model of the three-tier supply chain composed of 3PL, a supplier, and a retailer; uses the consumer utility function to describe market demand; and considers different logistics service strategies adopted by 3PL. It compares and analyzes the equilibrium strategies under the traditional retail channel (O Model), the homogeneous cold-chain service dual-channel model (D1 Model), and the differentiated cold-chain service dual-channel model (D2 Model). The results show the following: (1) The D1 Model reduces the transportation cost of the supply chain through economies of scale. Under the D2 Model, the transportation and sales prices of the offline channels are higher than those of the online channels, while the online marketing effort is higher than that of the offline channels. (2) The profits generated by the dual-channel models (D1 Model and D2 Model) are both higher than those of O Model. In most cases, the D1 Model generates the highest system profit. However, in scenarios where consumers are highly sensitive to freshness and marketing efforts, the system profit of the D2 Model is higher than that of the D1 Model. (3) The supply chain has lower pricing and effort input when consumers are more sensitive to prices and higher pricing and effort input when consumers are more sensitive to freshness. These findings contribute valuable insights to the field of supply chain management, particularly in the context of fresh product supply chains involving 3PL. They underscore the importance of considering consumer behavior and logistics service strategies in optimizing supply chain performance and highlight the potential trade-offs between standardization and differentiation in logistics services. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
PSL-IoD: PUF-Based Secure Last-Mile Drone Delivery in Supply Chain Management
by Mohammad D. Alahmadi, Ahmed S. Alzahrani, Azeem Irshad and Shehzad Ashraf Chaudhry
Mathematics 2025, 13(13), 2143; https://doi.org/10.3390/math13132143 - 30 Jun 2025
Viewed by 312
Abstract
The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package deliveries and tracking. [...] Read more.
The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package deliveries and tracking. There have been a lot of recent research proposals on various aspects of last-mile delivery systems for drones in particular. Although drones have largely changed the logistics landscape, there are many concerns regarding security and privacy posed to drones due to their open and vulnerable nature. The security and privacy of involved stakeholders needs to be preserved across the whole chain of Supply Chain Management (SCM) till delivery. Many earlier studies addressed this concern, however with efficiency limitations. We propose a Physical Uncloneable Function (PUF)-based secure authentication protocol (PSL-IoD) using symmetric key operations for reliable last-mile drone delivery in SCM. PSL-IoD ensures mutual authenticity, forward secrecy, and privacy for the stakeholders. Moreover, it is protected from machine learning attacks and drone-related physical capture threats due to embedded PUF installations along with secure design of the protocol. The PSL-IoD is formally analyzed through rigorous security assessments based on the Real-or-Random (RoR) model. The PSL-IoD supports 26.71% of enhanced security traits compared to other comparative studies. The performance evaluation metrics exhibit convincing findings in terms of efficient computation and communication along with enhanced security features, making it viable for practical implementations. Full article
Show Figures

Figure 1

24 pages, 3214 KiB  
Article
Risk Contagion Mechanism and Control Strategies in Supply Chain Finance Using SEIR Epidemic Model from the Perspective of Commercial Banks
by Xiaojing Liu, Jie Gao and Mingfeng He
Mathematics 2025, 13(13), 2051; https://doi.org/10.3390/math13132051 - 20 Jun 2025
Viewed by 362
Abstract
Over the past decade, the rapid growth of supply chain finance (SCF) in developing countries has made it a key profit driver for commercial banks and financial firms. In parallel, financial risk control in SCF has attracted more and more attention from financial [...] Read more.
Over the past decade, the rapid growth of supply chain finance (SCF) in developing countries has made it a key profit driver for commercial banks and financial firms. In parallel, financial risk control in SCF has attracted more and more attention from financial service providers and has gained research momentum in recent years. This study analyzes the contagion mechanism of SCF-related risks faced by commercial banks through examining SCF network topology. First, this study uses complex network theory to integrate an SEIR epidemic model (Susceptible–Exposed–Infectious–Recovered) into financial risk management. The model simulates how financial risks spread in supply chain finance (SCF) under banks’ strategic, tactical, or operational interventions. Then, some key points for financial risk control from the perspective of commercial banks are obtained by investigating the risk stability threshold of the financial network of SCF and its stability. Numerical simulations show that effective interventions—such as strengthening loan guarantees to reduce the number of exposed firms—significantly curb risk transmission by restricting its scope and shortening its duration. This research provides commercial banks with a quantitative framework to analyze risk propagation and actionable strategies to optimize SCF risk control, enhancing financial system stability and offering practical guidance for preventing systemic risks. Full article
(This article belongs to the Section E5: Financial Mathematics)
Show Figures

Figure 1

36 pages, 5316 KiB  
Article
Risk Assessment of Cryptojacking Attacks on Endpoint Systems: Threats to Sustainable Digital Agriculture
by Tetiana Babenko, Kateryna Kolesnikova, Maksym Panchenko, Olga Abramkina, Nikolay Kiktev, Yuliia Meish and Pavel Mazurchuk
Sustainability 2025, 17(12), 5426; https://doi.org/10.3390/su17125426 - 12 Jun 2025
Cited by 1 | Viewed by 1033
Abstract
Digital agriculture has rapidly developed in the last decade in many countries where the share of agricultural production is a significant part of the total volume of gross production. Digital agroecosystems are developed using a variety of IT solutions, software and hardware tools, [...] Read more.
Digital agriculture has rapidly developed in the last decade in many countries where the share of agricultural production is a significant part of the total volume of gross production. Digital agroecosystems are developed using a variety of IT solutions, software and hardware tools, wired and wireless data transmission technologies, open source code, Open API, etc. A special place in agroecosystems is occupied by electronic payment technologies and blockchain technologies, which allow farmers and other agricultural enterprises to conduct commodity and monetary transactions with suppliers, creditors, and buyers of products. Such ecosystems contribute to the sustainable development of agriculture, agricultural engineering, and management of production and financial operations in the agricultural industry and related industries, as well as in other sectors of the economy of a number of countries. The introduction of crypto solutions in the agricultural sector is designed to create integrated platforms aimed at helping farmers manage supply lines or gain access to financial services. At the same time, there are risks of illegal use of computing power for cryptocurrency mining—cryptojacking. This article offers a thorough risk assessment of cryptojacking attacks on endpoint systems, focusing on identifying critical vulnerabilities within IT infrastructures and outlining practical preventive measures. The analysis examines key attack vectors—including compromised websites, infected applications, and supply chain infiltration—and explores how unauthorized cryptocurrency mining degrades system performance and endangers data security. The research methodology combines an evaluation of current cybersecurity trends, a review of specialized literature, and a controlled experiment simulating cryptojacking attacks. The findings highlight the importance of multi-layered protection mechanisms and ongoing system monitoring to detect malicious activities at an early stage. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 5059 KiB  
Article
Measuring Created Value for Suppliers and Buyers: A Decision Matrix Approach—Evidence from Slovak Enterprises
by Dana Kusnirova, Oliver Bubeliny and Maria Durisova
Adm. Sci. 2025, 15(6), 226; https://doi.org/10.3390/admsci15060226 - 12 Jun 2025
Viewed by 402
Abstract
This study introduces a structured approach for assessing value creation in supplier–buyer relationships by evaluating key value-creation indicators. Recognising strategic collaboration in B2B, the research focuses on identifying key indicators and determining their relevance based on Slovak manufacturing enterprises. Empirical data were collected [...] Read more.
This study introduces a structured approach for assessing value creation in supplier–buyer relationships by evaluating key value-creation indicators. Recognising strategic collaboration in B2B, the research focuses on identifying key indicators and determining their relevance based on Slovak manufacturing enterprises. Empirical data were collected via questionnaires distributed to manufacturing firms across Slovakia. Based on these data, a decision matrix was developed to quantify the value provided to suppliers and buyers. Results reveal that suppliers prioritise financial reliability and adherence to business terms, while buyers place higher value on service-related attributes such as maintenance and product quality updates. The proposed matrix serves as a practical tool for enterprises seeking to evaluate and enhance their stakeholder relationships. By offering quantifiable insights, the study supports more effective decision-making in supply chain and relationship management. Full article
Show Figures

Figure 1

24 pages, 964 KiB  
Article
Designing a Sustainable Supply Chain Network for Perishable Products Integrating Internet of Things and Mixed Fleets
by Lihong Pan, Xialian Li and Miyuan Shan
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 137; https://doi.org/10.3390/jtaer20020137 - 6 Jun 2025
Viewed by 1533
Abstract
Designing a sustainable supply chain network for perishable products is challenging due to their short shelf life and sensitivity to environmental conditions. These factors necessitate strict quality control and efficient logistics. The emergence of Internet of Things (IoT) technology has significantly improved supply [...] Read more.
Designing a sustainable supply chain network for perishable products is challenging due to their short shelf life and sensitivity to environmental conditions. These factors necessitate strict quality control and efficient logistics. The emergence of Internet of Things (IoT) technology has significantly improved supply chain operations by enabling real-time monitoring of environmental conditions. This helps maintain product quality and ensures timely deliveries. Additionally, using mixed fleets—comprising both electric and conventional vehicles—can reduce carbon emissions without compromising operational reliability. While previous studies have explored the application of IoT to enhance delivery efficiency and the use of mixed fleets to address environmental concerns, few have examined both technologies within a unified modeling framework. This study proposes a sustainable multi-period supply chain network for perishable products that integrates IoT technology and mixed fleets into an optimization framework. We develop a multi-objective location-inventory-routing model. The first objective minimizes total costs, including production, facility operation, inventory, transportation, carbon emissions, IoT deployment, and energy use. The second objective aims to maximize service levels, which are measured by product quality and on-time delivery. The model is solved using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). A case study based on real-world data demonstrates the model’s effectiveness. Sensitivity analysis indicates that balancing the emphasis on quality and delivery reliability leads to improved cost and service performance. Furthermore, while total costs steadily increase with higher demand, service levels remain stable, showcasing the model’s robustness. These results provide practical guidance for managing sustainable supply chains for perishable products. Full article
(This article belongs to the Special Issue Digitalization and Sustainable Supply Chain)
Show Figures

Figure 1

28 pages, 3908 KiB  
Article
Enhancing Port Shipping Synergy Through Bayesian Network: A Case of Major Chinese Ports
by Siqian Cheng, Jiankun Hu, Youfang Huang and Zhihua Hu
J. Mar. Sci. Eng. 2025, 13(6), 1093; https://doi.org/10.3390/jmse13061093 - 30 May 2025
Cited by 1 | Viewed by 411
Abstract
Port shipping collaboration is vital to greener, more resilient trade, yet decisions remain siloed and uncertain. This study develops a Bayesian network model grounded in empirical data from major Chinese ports, aiming to systematically analyze and enhance port shipping collaborative capacity. The methodology [...] Read more.
Port shipping collaboration is vital to greener, more resilient trade, yet decisions remain siloed and uncertain. This study develops a Bayesian network model grounded in empirical data from major Chinese ports, aiming to systematically analyze and enhance port shipping collaborative capacity. The methodology integrates expert knowledge and structural learning algorithms to construct a Directed Acyclic Graph (DAG), representing complex multi-stakeholder interactions among port enterprises, shipping companies, customers, and governmental bodies. Through forward and backward probabilistic inference, the study quantifies how coordinated improvements yield substantial synergistic benefits. Five leverage points stand out: customer engagement in green supply chains, perceived service quality, port digital information integration, multilateral trading maturity, and strict policy enforcement. A newly revealed feedback loop between digital integration and enforcement extends Emerson et al.’s collaborative governance framework, highlighting “digital-era connectivity” as a critical governance dimension and offering managers a focused, evidence-based action agenda. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Graphical abstract

Back to TopTop