Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = serum- and xeno-free cell culture medium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4963 KiB  
Article
Evaluation of Osteogenic Potential for Rat Adipose-Derived Stem Cells under Xeno-Free Environment
by Yuzhu Sun, Jun-Ichiro Jo and Yoshiya Hashimoto
Int. J. Mol. Sci. 2023, 24(24), 17532; https://doi.org/10.3390/ijms242417532 - 15 Dec 2023
Cited by 2 | Viewed by 1392
Abstract
This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free [...] Read more.
This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free recombinant collagen peptide to form 3-dimensional aggregates (XF-rADSC-CellSaic or FBS-rADSC-CellSaic). Both FBS-rADSC and XF-ADSC in CellSaic exhibited multilineage differentiation potential. Compared to FBS-rADSC-CellSaic, XF-rADSC-CellSaic accelerated and promoted osteogenic differentiation in vitro. When transplanted into rat mandibular congenital bone defects, the osteogenically differentiated XF-rADSC-CellSaic induced regeneration of bone tissue with a highly maturated structure compared to FBS-rADSC-CellSaic. In conclusion, XF-rADSC-CellSaic is a feasible 3-dimensional platform for efficient bone formation. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas
by Delia Talpan, Sabine Salla, Linus Meusel, Peter Walter, Chao-Chung Kuo, Julia Franzen and Matthias Fuest
Int. J. Mol. Sci. 2023, 24(3), 2882; https://doi.org/10.3390/ijms24032882 - 2 Feb 2023
Cited by 4 | Viewed by 2820
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS [...] Read more.
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = −0.7% vs. FBS = −3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression. Full article
Show Figures

Figure 1

15 pages, 4858 KiB  
Article
Clumps of Mesenchymal Stem Cells/Extracellular Matrix Complexes Generated with Xeno-Free Chondro-Inductive Medium Induce Bone Regeneration via Endochondral Ossification
by Susumu Horikoshi, Mikihito Kajiya, Souta Motoike, Mai Yoshino, Shin Morimoto, Hiroki Yoshii, Tomoya Ogawa, Hisakatsu Sone, Tomoyuki Iwata, Kazuhisa Ouhara, Shinji Matsuda, Noriyoshi Mizuno and Hidemi Kurihara
Biomedicines 2021, 9(10), 1408; https://doi.org/10.3390/biomedicines9101408 - 7 Oct 2021
Cited by 6 | Viewed by 2620
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether [...] Read more.
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification. Full article
Show Figures

Figure 1

28 pages, 4822 KiB  
Article
Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status
by Francesco Muoio, Stefano Panella, Valentin Jossen, Matias Lindner, Yves Harder, Michele Müller, Regine Eibl and Tiziano Tallone
J. Funct. Biomater. 2021, 12(2), 25; https://doi.org/10.3390/jfb12020025 - 16 Apr 2021
Cited by 9 | Viewed by 5197
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are [...] Read more.
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells’ quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions. Full article
Show Figures

Figure 1

35 pages, 10172 KiB  
Article
Chemically Defined Xeno- and Serum-Free Cell Culture Medium to Grow Human Adipose Stem Cells
by Stefano Panella, Francesco Muoio, Valentin Jossen, Yves Harder, Regine Eibl-Schindler and Tiziano Tallone
Cells 2021, 10(2), 466; https://doi.org/10.3390/cells10020466 - 22 Feb 2021
Cited by 16 | Viewed by 6910
Abstract
Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a “cell drug” that is [...] Read more.
Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a “cell drug” that is safe, reproducible, and cost-effective. Thus, we developed our own basal defined xeno- and serum-free cell culture medium (UrSuppe), specifically formulated to grow human adipose stem cells (hASCs). With this medium, we can directly culture the stromal vascular fraction (SVF) cells in defined cell culture conditions to obtain hASCs. Cells proliferate while remaining undifferentiated, as shown by Flow Cytometry (FACS), Quantitative Reverse Transcription PCR (RT-qPCR) assays, and their secretion products. Using the UrSuppe cell culture medium, maximum cell densities between 0.51 and 0.80 × 105 cells/cm2 (=2.55–4.00 × 105 cells/mL) were obtained. As the expansion of hASCs represents only the first step in a cell therapeutic protocol or further basic research studies, we formulated two chemically defined media to differentiate the expanded hASCs in white or beige/brown adipocytes. These new media could help translate research projects into the clinical application of hASCs and study ex vivo the biology in healthy and dysfunctional states of adipocytes and their precursors. Following the cell culture system developers’ practice and obvious reasons related to the formulas’ patentability, the defined media’s composition will not be disclosed in this study. Full article
(This article belongs to the Special Issue Human Adipose Stem Cells)
Show Figures

Figure 1

27 pages, 9391 KiB  
Article
Development of a Biodegradable Microcarrier for the Cultivation of Human Adipose Stem Cells (hASCs) with a Defined Xeno- and Serum-Free Medium
by Francesco Muoio, Stefano Panella, Matias Lindner, Valentin Jossen, Yves Harder, Tiziano Moccetti, Regine Eibl, Michele Müller and Tiziano Tallone
Appl. Sci. 2021, 11(3), 925; https://doi.org/10.3390/app11030925 - 20 Jan 2021
Cited by 7 | Viewed by 4458
Abstract
Stirred single-use bioreactors in combination with microcarriers (MCs) have established themselves as a technology that has the potential to meet the demands of current and future cell therapeutic markets. However, most of the published processes have been performed using fetal bovine serum (FBS) [...] Read more.
Stirred single-use bioreactors in combination with microcarriers (MCs) have established themselves as a technology that has the potential to meet the demands of current and future cell therapeutic markets. However, most of the published processes have been performed using fetal bovine serum (FBS) containing cell culture medium and non-biocompatible MCs. This approach has two significant drawbacks: firstly, the inevitable potential risks associated with the use of FBS for clinical applications; secondly, non-biocompatible MCs have to be removed from the cell suspension before implantation, requiring a step that causes loss of viable cells and adds further costs and complications. This study aimed to develop a new platform based on a chemically defined xeno- and serum-free cell culture medium and biodegradable MC that can support the growth of human adipose stem cells (hASCs) while still preserving their undifferentiated status. A specific combination of components and manufacturing parameters resulted in a MC prototype, called “BR44”, which delivered the desired functionality. MC BR44 allows the hASCs to stick to its surface and grow in a chemically defined xeno- and serum-free medium (UrSuppe). Although the cells’ expansion rate was not as high as with a commercial non-biodegradable standard MC, those cultured on BR44 maintained a better undifferentiated status in both static and dynamic conditions than those cultured on traditional 2D surfaces. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

20 pages, 4153 KiB  
Article
Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity
by Ji Yeon Kang, Mi-Kyung Oh, Hansol Joo, Hyun Sung Park, Dong-Hoon Chae, Jieun Kim, Hae-Ri Lee, Il-Hoan Oh and Kyung-Rok Yu
J. Clin. Med. 2020, 9(9), 2913; https://doi.org/10.3390/jcm9092913 - 10 Sep 2020
Cited by 23 | Viewed by 4283
Abstract
The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic [...] Read more.
The therapeutic applications of mesenchymal stem cells (MSCs) have been actively explored due to their broad anti-inflammatory and immunomodulatory properties. However, the use of xenogeneic components, including fetal bovine serum (FBS), in the expansion media might pose a risk of xenoimmunization and zoonotic transmission to post-transplanted patients. Here, we extensively compared the physiological functions of human Wharton’s jelly-derived MSCs (WJ-MSCs) in a xeno-free medium (XF-MSCs) and a medium containing 10% FBS (10%-MSCs). Both groups showed similar proliferation potential; however, the 10%-MSCs showed prolonged expression of CD146, with higher colony-forming unit-fibroblast (CFU-F) ability than the XF-MSCs. The XF-MSCs showed enhanced adipogenic differentiation potential and sufficient hematopoietic stem cell (HSC) niche activity, with elevated niche-related markers including CXCL12. Furthermore, we demonstrated that the XF-MSCs had a significantly higher suppressive effect on human peripheral blood-derived T cell proliferation, Th1 and Th17 differentiation, as well as naïve macrophage polarization toward an M1 phenotype. Among the anti-inflammatory molecules, the production of indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase 2 (NOS2) was profoundly increased, whereas cyclooxygenase-2 (COX-2) was decreased in the XF-MSCs. Finally, the XF-MSCs had an enhanced therapeutic effect against mouse experimental colitis. These findings indicate that xeno-free culture conditions improved the immunomodulatory properties of WJ-MSCs and ex vivo-expanded XF-MSCs might be an effective strategy for preventing the progression of colitis. Full article
Show Figures

Figure 1

17 pages, 8456 KiB  
Article
Xeno-Free In Vitro Cultivation and Osteogenic Differentiation of hAD-MSCs on Resorbable 3D Printed RESOMER®
by Marline Kirsch, Annabelle-Christin Herder, Cécile Boudot, Andreas Karau, Jessica Rach, Wiebke Handke, Axel Seltsam, Thomas Scheper and Antonina Lavrentieva
Materials 2020, 13(15), 3399; https://doi.org/10.3390/ma13153399 - 31 Jul 2020
Cited by 3 | Viewed by 3307
Abstract
The development of alloplastic resorbable materials can revolutionize the field of implantation technology in regenerative medicine. Additional opportunities to colonize the three-dimensionally (3D) printed constructs with the patient’s own cells prior to implantation can improve the regeneration process but requires optimization of cultivation [...] Read more.
The development of alloplastic resorbable materials can revolutionize the field of implantation technology in regenerative medicine. Additional opportunities to colonize the three-dimensionally (3D) printed constructs with the patient’s own cells prior to implantation can improve the regeneration process but requires optimization of cultivation protocols. Human platelet lysate (hPL) has already proven to be a suitable replacement for fetal calf serum (FCS) in 2D and 3D cell cultures. In this study, we investigated the in vitro biocompatibility of the printed RESOMER® Filament LG D1.75 materials as well as the osteogenic differentiation of human mesenchymal stem cells (hMSCs) cultivated on 3D printed constructs under the influence of different medium supplements (FCS, human serum (HS) and hPL). Additionally, the in vitro degradation of the material was studied over six months. We demonstrated that LG D1.75 is biocompatible and has no in vitro cytotoxic effects on hMSCs. Furthermore, hMSCs grown on the constructs could be differentiated into osteoblasts, especially supported by supplementation with hPL. Over six months under physiological in vitro conditions, a distinct degradation was observed, which, however, had no influence on the biocompatibility of the material. Thus, the overall suitability of the material LG D1.75 to produce 3D printed, resorbable bone implants and the promising use of hPL in the xeno-free cultivation of human MSCs on such implants for autologous transplantation have been demonstrated. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable 3D Scaffolds)
Show Figures

Figure 1

23 pages, 6956 KiB  
Article
An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies
by Valentin Jossen, Francesco Muoio, Stefano Panella, Yves Harder, Tiziano Tallone and Regine Eibl
Bioengineering 2020, 7(3), 77; https://doi.org/10.3390/bioengineering7030077 - 20 Jul 2020
Cited by 19 | Viewed by 5881
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is [...] Read more.
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies. Full article
(This article belongs to the Special Issue Stem Cell Bioprocessing and Manufacturing)
Show Figures

Figure 1

15 pages, 6055 KiB  
Article
Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis
by Souta Motoike, Mikihito Kajiya, Nao Komatsu, Susumu Horikoshi, Tomoya Ogawa, Hisakatsu Sone, Shinji Matsuda, Kazuhisa Ouhara, Tomoyuki Iwata, Noriyoshi Mizuno, Tsuyoshi Fujita, Makoto Ikeya and Hidemi Kurihara
Int. J. Mol. Sci. 2019, 20(16), 3970; https://doi.org/10.3390/ijms20163970 - 15 Aug 2019
Cited by 23 | Viewed by 6664
Abstract
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical [...] Read more.
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis. Full article
Show Figures

Graphical abstract

16 pages, 2997 KiB  
Article
Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation
by Georgy Sagaradze, Olga Grigorieva, Peter Nimiritsky, Nataliya Basalova, Natalia Kalinina, Zhanna Akopyan and Anastasia Efimenko
Int. J. Mol. Sci. 2019, 20(7), 1656; https://doi.org/10.3390/ijms20071656 - 3 Apr 2019
Cited by 132 | Viewed by 9980
Abstract
Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications. Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical for tissue [...] Read more.
Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications. Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical for tissue regeneration. Due to comparable effects along with superior safety MSC conditioned medium (MSC-CM) containing a complex of MSC-secreted products is considered a reasonable alternative to cell therapy. However, the lack of standards regulating bioprocessing, use of proper auxiliary materials, and quality control complicates the development of MSC secretome-based therapeutics. In this study, we suggested several approaches addressing these issues. We manufactured 36 MSC-CM samples based on different xeno-free serum-free chemically defined media (DMEM-LG or MSC NutriStem® XF) using original protocols and considered total concentrations of regeneration-associated paracrine factors secreted by human adipose-derived MSC at each time-point of conditioning. Using regression analysis, we retrospectively predicted associations between concentrations of several components of MSC-CM and its biological activity to stimulate human dermal fibroblast and endothelial cell migration in vitro as routine examples of potency assays for cell-based products. We also demonstrated that the cell culture medium might affect MSC-CM biological activity to varying degrees depending on the potency assay type. Furthermore, we showed that regression analysis might help to overcome donor variability. The suggested approaches might be successfully applied for other cell types if their secretome was shown to be promising for application in regenerative medicine. Full article
(This article belongs to the Special Issue Role and Application of Stem Cells in Regenerative Medicine)
Show Figures

Figure 1

16 pages, 3355 KiB  
Article
Functional Assessment for Clinical Use of Serum-Free Adapted NK-92 Cells
by Michael Chrobok, Carin I. M. Dahlberg, Ece Canan Sayitoglu, Vladimir Beljanski, Hareth Nahi, Mari Gilljam, Birgitta Stellan, Tolga Sutlu, Adil Doganay Duru and Evren Alici
Cancers 2019, 11(1), 69; https://doi.org/10.3390/cancers11010069 - 10 Jan 2019
Cited by 21 | Viewed by 8311
Abstract
Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. [...] Read more.
Natural killer (NK) cells stand out as promising candidates for cellular immunotherapy due to their capacity to kill malignant cells. However, the therapeutic use of NK cells is often dependent on cell expansion and activation with considerable amounts of serum and exogenous cytokines. We aimed to develop an expansion protocol for NK-92 cells in an effort to generate a cost-efficient, xeno-free, clinical grade manufactured master cell line for therapeutic applications. By making functional assays with NK-92 cells cultured under serum-free conditions (NK-92SF) and comparing to serum-supplemented NK-92 cells (NK-92S) we did not observe significant alterations in the viability, proliferation, receptor expression levels, or in perforin and granzyme levels. Interestingly, even though NK-92SF cells displayed decreased degranulation and cytotoxicity against tumor cells in vitro, the degranulation capacity was recovered after overnight incubation with 20% serum in the medium. Moreover, lentiviral vector-based genetic modification efficiency of NK-92SF cells was comparable with NK-92S cells. The application of similar strategies can be useful in reducing the costs of manufacturing cells for clinical use and can help us understand and implement strategies towards chemically defined expansion and genetic modification protocols. Full article
(This article belongs to the Special Issue Natural Killer Cells and Cancer Therapy)
Show Figures

Figure 1

7 pages, 1910 KiB  
Communication
Comparison of Synthetic Media Designed for Expansion of Adipose-Derived Mesenchymal Stromal Cells
by Michelle Lensch, Angela Muise, Lisa White, Michael Badowski and David Harris
Biomedicines 2018, 6(2), 54; https://doi.org/10.3390/biomedicines6020054 - 14 May 2018
Cited by 19 | Viewed by 4299
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that can differentiate into various cell types, such as osteoblasts, myocytes, and adipocytes. This characteristic makes the cells a useful tool in developing new therapies for a number of common maladies and diseases. The utilization of [...] Read more.
Mesenchymal stromal cells (MSCs) are multipotent cells that can differentiate into various cell types, such as osteoblasts, myocytes, and adipocytes. This characteristic makes the cells a useful tool in developing new therapies for a number of common maladies and diseases. The utilization of animal-derived growth serum, such as fetal bovine serum (FBS), for the expansion of MSCs has traditionally been used for cell culture. However, in clinical applications, animal-derived products present limitations and safety concerns for the recipient, as exposure to animal (xeno-) antigens and infectious agents is possible. Multiple synthetic, xeno-free media have been developed to combat these limitations of animal-derived growth serum and have the potential to be used in ex vivo MSC expansion for clinical use. The goal of this study was to determine if xeno-free media are adequate to significantly and efficiently expand MSCs derived from adipose tissue. MSCs were cultured in both standard FBS-containing as well as xeno-free media. The media were compared for cell yield, viability, and phenotypic expression via flow cytometry and directed differentiation. The xeno-free media that were tested were StemMACS MSC Expansion Media (Miltenyi Biotec, Bergisch Gladbach, Germany), PLTMax Human Platelet Lysate (Sigma-Aldrich, St. Louis, MO, USA), and MesenCult-hPL media (Stemcell Technologies, Vancouver, BC, Canada). All xeno-free media showed promise as a feasible replacement for animal-derived growth serums. The xeno-free media expanded MSCs more quickly than the FBS-containing medium and also showed great similarity in cell viability and phenotypic expression. In fact, each xeno-free media produced a greater viable cell yield than the standard FBS-containing medium. Full article
Show Figures

Figure 1

Back to TopTop