Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,182)

Search Parameters:
Keywords = serum growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 313 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
19 pages, 3275 KiB  
Article
Polysialylation of Glioblastoma Cells Is Regulated by Autophagy Under Nutrient Deprivation
by Sofia Scibetta, Giuseppe Pepe, Marco Iuliano, Alessia Iaiza, Elisabetta Palazzo, Marika Quadri, Thomas J. Boltje, Francesco Fazi, Vincenzo Petrozza, Sabrina Di Bartolomeo, Alba Di Pardo, Antonella Calogero, Giorgio Mangino, Vittorio Maglione and Paolo Rosa
Int. J. Mol. Sci. 2025, 26(15), 7625; https://doi.org/10.3390/ijms26157625 - 6 Aug 2025
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant expression of polysialic acid (PSA), has been linked to increased plasticity, motility, and immune evasion. PSA, a long α2,8-linked sialic acid polymer typically attached to the NCAM, is abundant in the embryonic brain and re-expressed in cancers, correlating with poor prognosis. Here, we investigated how PSA expression was regulated in GBM cells under nutrient-limiting conditions. Serum starvation induced a marked increase in PSA-NCAM, driven by upregulation of the polysialyltransferase ST8SiaIV and an autophagy-dependent recycling of sialic acids from degraded glycoproteins. Inhibition of autophagy or sialidases impaired PSA induction, and PSA regulation appeared dependent on p53 function. Immunohistochemical analysis of GBM tissues revealed co-localization of PSA and LC3, particularly around necrotic regions. In conclusion, we identified a novel mechanism by which GBM cells sustain PSA-NCAM expression via autophagy-mediated sialic acid recycling under nutrient stress. This pathway may enhance cell migration, immune escape, and stem-like properties, offering a potential therapeutic target in GBM. Full article
(This article belongs to the Special Issue Targeting Glioblastoma Metabolism)
Show Figures

Figure 1

13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

16 pages, 1298 KiB  
Article
Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
by Jianzhou Shi, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao and Guirong Sun
Animals 2025, 15(15), 2300; https://doi.org/10.3390/ani15152300 - 6 Aug 2025
Abstract
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), [...] Read more.
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), we screened and validated miRNA SNPs. A SNP mutation in the miR-3528 precursor region was identified. Specific primers were designed to amplify the polymorphic fragment. Genotyping was performed for this individual SNP across the population, using the MassArray system. Association analyses were conducted between this SNP and chicken growth and body measurement traits, carcass traits, meat quality traits, and serum enzyme activities. (3) The rs14098602 (+12 bp A > G) was identified within the precursor region of gga-miR-3528. Significant associations (p < 0.05) were observed between this SNP and chicken growth traits (body weight at the age of 0 day, body weight at the age of 2 weeks, and body weight at the age of 4 weeks), carcass traits (evisceration weight), meat quality traits (subcutaneous fat rate and pectoral muscle density), and serum enzyme activities (total protein, albumin, globulin, cholinesterase, and lactate dehydrogenase). (4) These findings suggest that the polymorphism at rs14098602 may influence chicken growth, meat quality, and serum biochemical indices, through specific mechanisms. The gga-miR-3528 gene likely plays an important role in chicken development. Therefore, this SNP can serve as a molecular marker for genetic breeding and auxiliary selection of growth-related traits, facilitating the rapid establishment of elite chicken populations with superior genetic resources. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta
by Kirsten E. Scoggin, Fatma Adlan, Carleigh E. Fedorka, Shimaa I. Rakha, Tom A. E. Stout, Mats H. T. Troedsson and Hossam El-Sheikh Ali
Biomolecules 2025, 15(8), 1135; https://doi.org/10.3390/biom15081135 - 6 Aug 2025
Abstract
The insulin-like growth factor (IGF) system regulates implantation, placental development, and angiogenesis in eutherian mammals. However, little is known about the changes in this system in equine placenta (chorioallantois; CA) and the endometrium (EN) during pregnancy, or the relationship to vascular endothelial growth [...] Read more.
The insulin-like growth factor (IGF) system regulates implantation, placental development, and angiogenesis in eutherian mammals. However, little is known about the changes in this system in equine placenta (chorioallantois; CA) and the endometrium (EN) during pregnancy, or the relationship to vascular endothelial growth factor (VEGF) expression. The current study investigated the expression of the IGF system components, namely the ligands (IGF1 and IGF2), their receptors (IGF1R, IGF2R, and INSR), and their binding proteins (IGFBPs and IGF2BPs) in equine CA at 45 days, 4, 6, 10, and 11 months of gestational age (GA) and immediately postpartum (PP), and in equine EN at 4, 6, 10, and 11 months GA. IGF1 immunolocalization and serum concentrations were also evaluated across gestation. IGF1 mRNA expression in CA increased from day 45 to peak at 6 months and then gradually declined to reach a nadir in PP samples. This profile correlated positively with the VEGF expression profile (r = 0.62, p = 0.001). In contrast, IGF2 expression in CA was not correlated with VEGF (p = 0.14). Interestingly, IGF2 mRNA was more abundant in equine CA than IGF1 (p < 0.05) throughout gestation. Among the IGFBPs investigated in CA, the expression of IGFBP2 and IGF2BP2 was highly abundant (p < 0.05) at day 45 compared to other GAs. Conversely, mRNA expression for IGFBP3 and IGFBP5 was more abundant (p < 0.05) in PP than at all investigated GAs. Immunohistochemistry revealed that IGF1 is localized in the equine chorionic epithelium (cytoplasm and nucleus). IGF1 serum concentrations peaked at 9 months and declined to their lowest levels PP. In conclusion, this study demonstrates a positive correlation between IGF1 and VEGF expression in equine CA during gestation, suggesting that the IGF system plays a crucial role in placental angiogenesis by regulating VEGF. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 896 KiB  
Article
Insights into FGFR4 (rs351855 and rs7708357) Gene Variants, Ki-67 and p53 in Pituitary Adenoma Pathophysiology
by Martyna Juskiene, Monika Duseikaite, Alvita Vilkeviciute, Egle Kariniauske, Ieva Baikstiene, Jurgita Makstiene, Lina Poskiene, Arimantas Tamasauskas, Rasa Liutkeviciene, Rasa Verkauskiene and Birute Zilaitiene
Int. J. Mol. Sci. 2025, 26(15), 7565; https://doi.org/10.3390/ijms26157565 - 5 Aug 2025
Abstract
To determine the association between FGFR4 (rs351855 and rs7708357) gene variants, serum levels, and immunohistochemical markers (Ki-67 and p53) in pituitary adenoma (PA), a case-control study was conducted involving 300 subjects divided into two groups: the control group (n = 200) and [...] Read more.
To determine the association between FGFR4 (rs351855 and rs7708357) gene variants, serum levels, and immunohistochemical markers (Ki-67 and p53) in pituitary adenoma (PA), a case-control study was conducted involving 300 subjects divided into two groups: the control group (n = 200) and a group of PA (n = 100). The genotyping of FGFR4 rs351855 and rs7708357 was carried out using the real-time polymerase chain reaction (RT-PCR) method. The serum FGFR4 levels were measured using the ELISA method. Immunohistochemical analysis (Ki-67 and p53) was conducted. Statistical analysis of the data was performed using IBM SPSS Statistics 30.0 software. There were no statistically significant differences after analyzing the genotypes and alleles of FGFR4 rs351855 and rs7708357 in patients with PA and control groups (all p > 0.05). After evaluating the distribution of genotypes and alleles of FGFR4 rs351855 and rs7708357 in micro/macro, invasiveness, activity, and recurrence of PA and the control groups, the analysis showed no statistically significant differences between the groups (p > 0.05). Similarly, no significant differences in FGFR4 levels were observed between PA patients and control group (median (IQR): 3642.41 (1755.08) pg/mL vs. 3126.24 (1334.15) pg/mL, p = 0.121). Immunohistochemistry for Ki-67 revealed a labeling index (LI) of <1% in 25.5% of patients with PA, an LI of 1% in 10.9%, and an LI of >1% in 63.6% of patients. Further analyses showed no statistically significant associations with tumor size, invasiveness, activity, or recurrence. Immunohistochemistry for p53 revealed that macroadenomas had a significantly higher p53 H-score compared to microadenomas (median (IQR): 30.33 (28.68) vs. 18.34 (17.65), p = 0.005). Additionally, a moderate, statistically significant positive correlation between the Ki-67 LI and the p53 expression was found (Spearman’s ρ = 0.443, p = 0.003, n = 43). FGFR4 variants and serum protein levels were not significantly associated with PA risk or tumor features. Conversely, immunohistochemical markers Ki-67 and p53 were more informative, with higher p53 expression in macroadenomas and a moderate positive correlation between Ki-67 and p53, highlighting their potential relevance in tumor growth assessment. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

11 pages, 225 KiB  
Article
Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler
by Tassanee Trairatapiwan, Rachakris Lertpatarakomol, Sucheera Chotikatum, Achara Lukkananukool and Jamlong Mitchaothai
Animals 2025, 15(15), 2287; https://doi.org/10.3390/ani15152287 - 5 Aug 2025
Abstract
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), [...] Read more.
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), and immune response (serum IgG) in broilers. A total of 384 one-day-old Ross 308 chicks were randomly assigned to three dietary treatments: (1) commercial-level inorganic trace minerals (ILI; Zn 100 ppm; Cu 15 ppm; Fe 100 ppm; Mn 80 ppm; Se 0.2 ppm; I 3 ppm); (2) low-level organic trace minerals (LLO; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.225 ppm; I 3 ppm), and (3) low-level inorganic trace minerals (LLI; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.2 ppm; I 3 ppm). Each treatment consisted of eight replicates with 16 birds per replicate, and diets were provided in two phases: starter (days 1–21) and grower (days 22–35). The results showed that the LLO group demonstrated a significantly improved feed conversion ratio (FCR) during the starter phase, 2.4% better than that of the ILI and LLI groups (p = 0.02). Additionally, filet and thigh muscle yields in the LLO group were higher by 11.9% (p = 0.03) and 13.9% (p = 0.02), respectively, compared to the ILI group. Other carcass traits, as well as pH and drip loss, were not significantly affected. However, tibia breaking strength at day 35 was 15.1% lower in the LLO group compared to the ILI group (p = 0.02). No significant differences were observed in oxidative stress markers or IgG levels among groups. This study demonstrated that reducing the inclusion level of inorganic trace minerals did not negatively affect broiler growth performance, whereas supplementation with low levels of organic trace minerals improved both growth performance and carcass quality. Full article
(This article belongs to the Section Animal Nutrition)
15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

21 pages, 1359 KiB  
Article
Diagnostic Accuracy of Radiological Bone Age Methods for Assessing Skeletal Maturity in Central Precocious Puberty Girls from the Canary Islands
by Sebastián Eustaquio Martín Pérez, Isidro Miguel Martín Pérez, Ruth Molina Suárez, Jesús María Vega González and Alfonso Miguel García Hernández
Endocrines 2025, 6(3), 39; https://doi.org/10.3390/endocrines6030039 - 5 Aug 2025
Abstract
Background: Central precocious puberty (CPP), defined as the onset of secondary sexual characteristics before age 8 in girls, is increasingly prevalent worldwide. CPP is often caused by early activation of the HPG axis, leading to accelerated growth and bone maturation. However, the diagnostic [...] Read more.
Background: Central precocious puberty (CPP), defined as the onset of secondary sexual characteristics before age 8 in girls, is increasingly prevalent worldwide. CPP is often caused by early activation of the HPG axis, leading to accelerated growth and bone maturation. However, the diagnostic accuracy of standard bone age (BA) methods remains uncertain in this context. Objective: To compare the diagnostic accuracy of the Greulich–Pyle atlas (GPA) and Tanner–Whitehouse 3 (TW3) methods in estimating skeletal age in girls with CPP and to assess the predictive value of serum hormone levels for estimating chronological age (CA). Methods: An observational, cross-sectional diagnostic study was conducted, involving n = 109 girls aged 6–12 years with confirmed CPP (Ethics Committee approval: CHUC_2023_86; 13 July 2023). Left posteroanterior hand–wrist (PA–HW) radiographs were assessed using the GPA and TW3 methods. Anthropometric measurements were recorded, and serum concentrations of estradiol, LH, FSH, DHEA-S, cortisol, TSH, and free T4 were obtained. Comparisons between CA and BA estimates were conducted using repeated-measures ANOVA, and ANCOVA was applied to examine the hormonal predictors of CA. Results: Both GPA and TW3 overestimated CA between 7 and 12 years, with the GPA showing larger deviations (up to 4.8 months). The TW3 method provided more accurate estimations, particularly at advanced pubertal stages. Estradiol (η2p = 0.188–0.197), LH (η2p = 0.061–0.068), and FSH (η2p = 0.008–0.023) emerged as the strongest endocrine predictors of CA, significantly enhancing the explanatory power of both radiological methods. Conclusions: The TW3 method demonstrated superior diagnostic accuracy over GPA in girls with CPP, especially between 7 and 12 years. Integrating estradiol, LH, and FSH into BA assessment significantly improved the accuracy, supporting a more individualized and physiologically grounded diagnostic approach. Full article
(This article belongs to the Section Pediatric Endocrinology and Growth Disorders)
Show Figures

Figure 1

17 pages, 3184 KiB  
Article
Polyphenol-Rich Extract of Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju) Prevents Obesity and Lipid Accumulation Through Restoring Intestinal Microecological Balance
by Xinyu Feng, Jing Huang, Lin Xiang, Fuyuan Zhang, Xinxin Wang, Anran Yan, Yani Pan, Ping Chen, Bizeng Mao and Qiang Chu
Plants 2025, 14(15), 2393; https://doi.org/10.3390/plants14152393 - 2 Aug 2025
Viewed by 224
Abstract
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. [...] Read more.
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. HE contains phenolic acids and flavonoids with anti-obesity properties, such as apigenin, luteolin-7-glucoside, apigenin-7-O-glucoside, kaempferol 3-(6″-acetylglucoside), etc. To establish the obesity model, mice were randomly assigned into four groups (n = 8 per group) and administered with either HE or water for 42 days under high-fat or low-fat dietary conditions. Administration of low (LH) and high (HH) doses of HE both significantly suppressed body weight growth (by 16.28% and 16.24%, respectively) and adipose tissue enlargement in obese mice. HE significantly improved the serum lipid profiles, mainly manifested as decreased levels of triglycerides (28.19% in LH and 19.59% in HH) and increased levels of high-density lipoprotein cholesterol (44.34% in LH and 54.88% in HH), and further attenuated liver lipid deposition. Furthermore, HE significantly decreased the Firmicutes/Bacteroidetes ratio 0.23-fold (LH) and 0.12-fold (HH), indicating an improvement in the microecological balance of the gut. HE administration also elevated the relative abundance of beneficial bacteria (e.g., Allobaculum, norank_f__Muribaculaceae), while suppressing harmful pathogenic proliferation (e.g., Dubosiella, Romboutsia). In conclusion, HE ameliorates obesity and hyperlipidemia through modulating lipid metabolism and restoring the balance of intestinal microecology, thus being promising for obesity therapy. Full article
(This article belongs to the Special Issue Functional Components and Bioactivity of Edible Plants)
Show Figures

Graphical abstract

18 pages, 309 KiB  
Article
Effects of Adding Hydroxytyrosol to the Diet of Pigs in the Nursery Phase on Growth Performance, Biochemical Markers, and Fatty Acid Profile
by Rafael Domingos Augusto Rofino, Cassio Antonio Ficagna, Taeline Zamboni, Bruna Klein, Enrico A. Altieri, Kevin E. O’Connor, Reeta Davis, Margaret Walsh, Fernando de Castro Tavernari, Marcel Manente Boiago, Aleksandro Schafer da Silva and Diovani Paiano
Animals 2025, 15(15), 2268; https://doi.org/10.3390/ani15152268 - 1 Aug 2025
Viewed by 230
Abstract
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, [...] Read more.
This study evaluated the effects of dietary hydroxytyrosol (HT) addition on piglets during the nursery phase across two experiments. In the first, 72 weaned male piglets (~26 days old, 7.3 ± 0.5 kg) were assigned to one of four diets containing 0, 5, 10, or 50 mg HT/kg feed. Growth performance, serum biochemistry, histological and behavioral parameters, and meat lipid profiles were assessed. In the second study, the apparent digestibility of diets containing 0, 25, or 50 mg HT/kg feed was evaluated using 15 male piglets (21.5 ± 1.5 kg) through total excreta collection. Results revealed that HT influenced serum glucose and gamma-glutamyl transferase, histological inflammation, and active behaviors. HT modified lipid profiles, reduced capric, lauric, linolenic, arachidonic, cis-5,8,11,14,17-eicosapentaenoic fatty acid concentrations, and increased the nervonic acid profile. The digestibility of dry matter, organic matter, energy, and protein increased with HT use up to 50 mg/kg of feed. These findings demonstrate that HT positively impacts piglet efficiency, changing the fatty acid profile with increased nervonic acid, highlighting its potential as a dietary additive for improving nursery pig production. Full article
(This article belongs to the Section Animal Nutrition)
25 pages, 681 KiB  
Review
Insights into the Molecular Mechanisms and Signaling Pathways of Epithelial to Mesenchymal Transition (EMT) in the Pathophysiology of Endometriosis
by Hossein Hosseinirad, Jae-Wook Jeong and Breton F. Barrier
Int. J. Mol. Sci. 2025, 26(15), 7460; https://doi.org/10.3390/ijms26157460 - 1 Aug 2025
Viewed by 243
Abstract
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and [...] Read more.
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and acquire mesenchymal traits, including migratory and invasive capabilities. During the process of EMT, epithelial traits are downregulated, while mesenchymal traits are acquired, with cells developing migratory ability, increasing proliferation, and resistance to apoptosis. EMT is promoted by exposure to hypoxia and stimulation by transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), and estradiol. Signaling pathways that promote EMT are activated in most ectopic lesions and involve transcription factors such as Snail, Slug, ZEB-1/2, and TWIST-1/2. EMT-specific molecules present in the serum of women with endometriosis appear to have diagnostic potential. Strategies targeting EMT in animal models of endometriosis have demonstrated regression of ectopic lesions, opening the door for novel therapeutic approaches. This review summarizes the current understanding of the role of EMT in endometriosis and highlights potential targets for EMT-related diagnosis and therapeutic interventions. Full article
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)
Show Figures

Figure 1

19 pages, 3251 KiB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 - 1 Aug 2025
Viewed by 179
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
AiiA Lactonase Suppresses ETEC Pathogenicity Through 3OC12-HSL Quenching in a Murine Model
by Yang Yang, Ji Shao, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microbiol. Res. 2025, 16(8), 166; https://doi.org/10.3390/microbiolres16080166 - 31 Jul 2025
Viewed by 120
Abstract
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). [...] Read more.
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). In synthetic gut microbiota, 3OC12-HSL selectively augmented E. coli colonization (37.6% 16S rDNA increase at 12 h). Murine studies revealed 3OC12-HSL reduced jejunal villus height (381.5 μm vs. 543.2 μm in controls), elevated serum LPS, D-lactate, and DAO, and altered microbial composition (Firmicutes/Bacteroidetes imbalance). The lactonase AiiA reversed these effects by degrading 3OC12-HSL. It abrogated bacterial growth stimulation (in vitro CFU restored to baseline), normalized microbiota diversity (Shannon index recovered to control levels), suppressed pro-inflammatory cytokines (IL-6/TNF-α reduction), and restored intestinal integrity (villus length: 472.5 μm, 20.5% increase vs. ETEC-infected mice). Our findings establish AiiA as a potent quorum-quenching agent that counteracts ETEC virulence via targeted signal inactivation, highlighting its translational value. Full article
Show Figures

Figure 1

Back to TopTop