Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Use and Tissue Collection
2.2. RNA Isolation and Sequencing
2.3. IGF1 and IGF1R IHC
2.4. IGF1/IGF2 Immunoassay
2.5. Data Analysis
3. Results
3.1. IGFs
3.2. IGFRs
3.3. IGFBPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IGF | Insulin-like growth factor (e.g., IGF1 and IGF2) |
VEGF | Vascular endothelial growth factor |
CA | Chorioallantois |
EN | Endometrium |
GA | Gestational age |
PP | Postpartum |
IGF1R | Insulin-like growth factor 1 receptor |
IGF2R | Insulin-like growth factor 2 receptor |
INSR | Insulin receptor |
IGFBPs | Insulin-like growth factor-binding proteins (e.g., IGFBP1-IGFBP10) |
IGF2BPs | Insulin-like growth factor 2 mRNA-binding proteins (e.g., IGF2BP1-IGF2BP3) |
TPM | Transcripts per million |
SEM | Standard error of the mean |
IHC | Immunohistochemistry |
RNA-Seq | RNA sequencing |
PI3K | Phosphoinositide 3-kinase |
MAPK (ERK) | Mitogen-activated protein kinase (extracellular signal-regulated kinase) |
MinDC | Minimum detectable concentration |
2SDs | Two standard deviations |
References
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv. Nutr. 2021, 12, 2415–2434. [Google Scholar] [CrossRef]
- Guzeloglu-Kayisli, O.; Kayisli, U.A.; Taylor, H.S. The role of growth factors and cytokines during implantation: Endocrine and paracrine interactions. Semin. Reprod. Med. 2009, 27, 62–79. [Google Scholar] [CrossRef]
- Bowman, C.J.; Streck, R.D.; Chapin, R.E. Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development. Birth Defects Res. B Dev. Reprod. Toxicol. 2010, 89, 339–349. [Google Scholar] [CrossRef]
- Forbes, K.; Westwood, M. The IGF axis and placental function: A mini review. Horm. Res. 2008, 69, 129–137. [Google Scholar] [CrossRef]
- Martin, J.L.; Baxter, R.C. Signalling pathways of insulin-like growth factors (IGFs) and IGF binding protein-3. Growth Factors 2011, 29, 235–244. [Google Scholar] [CrossRef]
- Sarfstein, R.; Werner, H. The INSR/IGF1R Receptor Family. In Receptor Tyrosine Kinases: Family and Subfamilies; Wheeler, D.L., Yarden, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 297–320. [Google Scholar] [CrossRef]
- Harris, L.K.; Westwood, M. Biology and significance of signalling pathways activated by IGF-II. Growth Factors 2012, 30, 1–12. [Google Scholar] [CrossRef]
- MacDonald, R.G.; Pfeffer, S.R.; Coussens, L.; Tepper, M.A.; Brocklebank, C.M.; Mole, J.E.; Anderson, J.K.; Chen, E.; Czech, M.P.; Ullrich, A. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science 1988, 239, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Nakae, J.; Kido, Y.; Accili, D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 2001, 22, 818–835. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.I.; Clemmons, D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 1995, 16, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.; de Ruijter-Villani, M.; Stout, T.A.E. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front. Vet. Sci. 2022, 9, 912721. [Google Scholar] [CrossRef]
- Lennard, S.N.; Stewart, F.; Allen, W.R. Insulin-like growth factor II gene expression in the fetus and placenta of the horse during the first half of gestation. J. Reprod. Fertil. 1995, 103, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.Y.; Tanaka, Y.; Taniyama, H.; Tsunoda, N.; Nambo, Y.; Nagamine, N.; Watanabe, G.; Taya, K. Expression of inhibins, activins, insulin-like growth factor-I and steroidogenic enzymes in the equine placenta. Domest. Anim. Endocrinol. 2006, 31, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.H.; Ginther, O.J. Development of the equine fetus and placenta. J. Reprod. Fertil. Suppl. 1975, 23, 503–505. [Google Scholar]
- Loux, S.C.; Dini, P.; El-Sheikh Ali, H.; Kalbfleisch, T.; Ball, B.A. Characterization of the placental transcriptome through mid to late gestation in the mare. PLoS ONE 2019, 14, e0224497. [Google Scholar] [CrossRef]
- Cima, G. Providing a humane death: Expanded euthanasia guidelines add species, process, technique considerations. J. Am. Vet. Med. Assoc. 2013, 242, 714–716. [Google Scholar] [CrossRef]
- 18. Dini, P.; El-Sheikh Ali, H.; Carossino, M.; C. Loux, S.; Esteller-Vico, A.; E. Scoggin, K.; Daels, P.; A. Ball, B. Expression Profile of the Chromosome 14 MicroRNA Cluster (C14MC) Ortholog in Equine Maternal Circulation throughout Pregnancy and Its Potential Implications. Int. J. Mol. Sci. 2019, 20, 6285. [Google Scholar] [CrossRef]
- El-Sheikh Ali, H.; Scoggin, K.; Linhares Boakari, Y.; Dini, P.; Loux, S.; Fedorka, C.; Esteller-Vico, A.; Ball, B. Kinetics of placenta-specific 8 (PLAC8) in equine placenta during pregnancy and placentitis. Theriogenology 2021, 160, 81–89. [Google Scholar] [CrossRef]
- El-Sheikh Ali, H.; Scoggin, K.; Murase, H.; Norris, J.; Menarim, B.; Dini, P.; Ball, B. Transcriptomic and histochemical analysis reveal the complex regulatory networks in equine chorioallantois during spontaneous term labor†. Biol. Reprod. 2022, 107, 1296–1310. [Google Scholar] [CrossRef]
- El-Sheikh Ali, H.; Legacki, E.L.; Scoggin, K.E.; Loux, S.C.; Dini, P.; Esteller-Vico, A.; Conley, A.J.; Stanley, S.D.; Ball, B.A. Steroid synthesis and metabolism in the equine placenta during placentitis. Reproduction 2020, 159, 289–302. [Google Scholar] [CrossRef]
- Fernandes, C.B.; Ball, B.A.; Loux, S.C.; Boakari, Y.L.; Scoggin, K.E.; El-Sheikh Ali, H.; Cogliati, B.; Esteller-Vico, A. Uterine cervix as a fundamental part of the pathogenesis of pregnancy loss associated with ascending placentitis in mares. Theriogenology 2020, 145, 167–175. [Google Scholar] [CrossRef]
- Ball, B.A.; Scoggin, K.E.; Troedsson, M.H.; Squires, E.L. Characterization of prostaglandin E2 receptors (EP2, EP4) in the horse oviduct. Anim. Reprod. Sci. 2013, 142, 35–41. [Google Scholar] [CrossRef]
- El-Sheikh Ali, H.; Scoggin, K.E.; Ruby, R.; Loynachan, A.; Boakari, Y.; Fernandes, C.; Dini, P.; Fedorka, C.E.; Loux, S.C.; Esteller-Vico, A.; et al. Equine cervical remodeling during placentitis and the prepartum period: A transcriptomic approach. Reproduction 2021, 161, 603–621. [Google Scholar] [CrossRef]
- Baskerville, C.L.; Bamford, N.J.; Harris, P.A.; Bailey, S.R. Comparison and validation of ELISA assays for plasma insulin-like growth factor-1 in the horse. Open Vet. J. 2017, 7, 75–80. [Google Scholar] [CrossRef]
- Skogstrand, K. Multiplex assays of inflammatory markers, a description of methods and discussion of precautions—Our experience through the last ten years. Methods 2012, 56, 204–212. [Google Scholar] [CrossRef]
- El-Sheikh Ali, H.; Boakari, Y.L.; Loux, S.C.; Dini, P.; Scoggin, K.E.; Esteller-Vico, A.; Kalbfleisch, T.; Ball, B.A. Transcriptomic analysis reveals the key regulators and molecular mechanisms underlying myometrial activation during equine placentitis†. Biol. Reprod. 2020, 102, 1306–1325. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh Ali, H.; Loux, S.C.; Kennedy, L.; Scoggin, K.E.; Dini, P.; Fedorka, C.E.; Kalbfleisch, T.S.; Esteller-Vico, A.; Horohov, D.W.; Erol, E.; et al. Transcriptomic analysis of equine chorioallantois reveals immune networks and molecular mechanisms involved in nocardioform placentitis. Vet. Res. 2021, 52, 103. [Google Scholar] [CrossRef]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Scoggin, K.E.; Valet, C.; Stout, T.A.E.; Troedsson, M.H.T.; El-Sheikh Ali, H. Expression of Placental Growth Factor and Vascular Endothelial Growth Factor Family in Equine Placenta Throughout Gestation. Department of Veterinary Science, University of Kentucky, Lexington, KY, USA. 2025. manuscript in preparation.
- Hiden, U.; Glitzner, E.; Hartmann, M.; Desoye, G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J. Anat. 2009, 215, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Pandey, Y.; Pooja, A.R.; Devi, H.L.; Jalmeria, N.S.; Punetha, M.; Kumar, S.; Paul, A.; Kumar, K.; Sonawane, A.; Samad, H.A.; et al. Expression and functional role of IGFs during early pregnancy in placenta of water buffalo. Theriogenology 2021, 161, 313–331. [Google Scholar] [CrossRef]
- Osgerby, J.C.; Gadd, T.S.; Wathes, D.C. Expression of insulin-like growth factor binding protein-1 (IGFBP-1) mRNA in the ovine uterus throughout the oestrous cycle and early pregnancy. J. Endocrinol. 1999, 162, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Miese-Looy, G.; MJ, V.D.H.; Edwards, A.K.; Lamarre, J.; Tayade, C. Expression of insulin-like growth factor (IGF) family members in porcine pregnancy. J. Reprod. Dev. 2012, 58, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Han, V.K.; Carter, A.M. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta 2000, 21, 289–305. [Google Scholar] [CrossRef]
- Allen, W.R.; Stewart, F. Equine placentation. Reprod. Fertil. Dev. 2001, 13, 623–634. [Google Scholar] [CrossRef]
- Dini, P.; Kalbfleisch, T.; Uribe-Salazar, J.M.; Carossino, M.; Ali, H.E.; Loux, S.C.; Esteller-Vico, A.; Norris, J.K.; Anand, L.; Scoggin, K.E.; et al. Parental bias in expression and interaction of genes in the equine placenta. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Boucher, J.; Charalambous, M.; Zarse, K.; Mori, M.A.; Kleinridders, A.; Ristow, M.; Ferguson-Smith, A.C.; Kahn, C.R. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proc. Natl. Acad. Sci. USA 2014, 111, 14512–14517. [Google Scholar] [CrossRef]
- Lambertini, L.; Marsit, C.J.; Sharma, P.; Maccani, M.; Ma, Y.; Hu, J.; Chen, J. Imprinted gene expression in fetal growth and development. Placenta 2012, 33, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.E.; Ishida, M.; Demetriou, C.; Al-Olabi, L.; Leon, L.J.; Thomas, A.C.; Abu-Amero, S.; Frost, J.M.; Stafford, J.L.; Chaoqun, Y.; et al. The role and interaction of imprinted genes in human fetal growth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140074. [Google Scholar] [CrossRef]
- Ellero, N.; Lanci, A.; Baldassarro, V.A.; Alastra, G.; Mariella, J.; Cescatti, M.; Giardino, L.; Castagnetti, C. Study on NGF and VEGF during the Equine Perinatal Period-Part 1: Healthy Foals Born from Normal Pregnancy and Parturition. Vet. Sci. 2022, 9, 451. [Google Scholar] [CrossRef]
- Kaczmarek, M.M.; Blitek, A.; Kaminska, K.; Bodek, G.; Zygmunt, M.; Schams, D.; Ziecik, A.J. Assessment of VEGF-receptor system expression in the porcine endometrial stromal cells in response to insulin-like growth factor-I, relaxin, oxytocin and prostaglandin E2. Mol. Cell Endocrinol. 2008, 291, 33–41. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.H.; Lee, H.C.; Ko, D.S.; Kim, S.S. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: Can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil. Steril. 2008, 90, 1550–1558. [Google Scholar] [CrossRef]
- Troja, W.; Kil, K.; Klanke, C.; Jones, H.N. Interaction between human placental microvascular endothelial cells and a model of human trophoblasts: Effects on growth cycle and angiogenic profile. Physiol. Rep. 2014, 2, e00244. [Google Scholar] [CrossRef] [PubMed]
- Angiolini, E.; Fowden, A.; Coan, P.; Sandovici, I.; Smith, P.; Dean, W.; Burton, G.; Tycko, B.; Reik, W.; Sibley, C.; et al. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 2006, 27 (Suppl. A), S98–S102. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Liu, J.P.; Robertson, E.J.; Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 75, 73–82. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Roy, P.K.; Qamar, A.Y.; Tanga, B.M.; Bang, S.; Seong, G.; Fang, X.; Kim, G.; Edirisinghe, S.L.; De Zoysa, M.; Kang, D.H.; et al. Modified Spirulina maxima Pectin Nanoparticles Improve the Developmental Competence of In Vitro Matured Porcine Oocytes. Animals 2021, 11, 2483. [Google Scholar] [CrossRef]
- Ginther, O.J.; Gastal, E.L.; Gastal, M.O.; Checura, C.M.; Beg, M.A. Dose-response study of intrafollicular injection of insulin-like growth factor-I on follicular fluid factors and follicle dominance in mares. Biol. Reprod. 2004, 70, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J. Follicle Selection in Mares: 90 Years from Observation to Theory. J. Equine Vet. Sci. 2017, 54, 24–31. [Google Scholar] [CrossRef]
- Legacki, E.L.; Scholtz, E.L.; Ball, B.A.; Esteller-Vico, A.; Stanley, S.D.; Conley, A.J. Concentrations of sulphated estrone, estradiol and dehydroepiandrosterone measured by mass spectrometry in pregnant mares. Equine Vet. J. 2019, 51, 802–808. [Google Scholar] [CrossRef]
- Raeside, J.I. A Brief Account of the Discovery of the Fetal/Placental Unit for Estrogen Production in Equine and Human Pregnancies: Relation to Human Medicine. Yale J. Biol. Med. 2017, 90, 449–461. [Google Scholar]
- Raeside, J.I.; Liptrap, R.M. Patterns of urinary oestrogen excretion in individual pregnant mares. J. Reprod. Fertil. Suppl. 1975, 23, 649–675. [Google Scholar]
- Haneda, S.; Dini, P.; Esteller-Vico, A.; Scoggin, K.E.; Squires, E.L.; Troedsson, M.H.; Daels, P.; Nambo, Y.; Ball, B.A. Estrogens Regulate Placental Angiogenesis in Horses. Int. J. Mol. Sci. 2021, 22, 12116. [Google Scholar] [CrossRef]
- Poreba, E.; Durzynska, J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. Mutat. Res. Rev. Mutat. Res. 2020, 784, 108307. [Google Scholar] [CrossRef]
- Xiu, M.; Huan, X.; Ou, Y.; Ying, S.; Wang, J. The basic route of nuclear-targeted transport of IGF-1/IGF-1R and potential biological functions in intestinal epithelial cells. Cell Prolif. 2021, 54, e13030. [Google Scholar] [CrossRef]
- Satué, K.; Marcilla, M.; Medica, P.; Ferlazzo, A.; Fazio, E. Sequential concentrations of placental growth factor and haptoglobin, and their relation to oestrone sulphate and progesterone in pregnant Spanish Purebred mare. Theriogenology 2018, 115, 77–83. [Google Scholar] [CrossRef]
- Loux, S.; Robles, M.; Chavatte-Palmer, P.; de Mestre, A. Markers of equine placental differentiation: Insights from gene expression studies. Reproduction 2022, 163, R39–R54. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Shi, J.; Song, W. Role and mechanism of insulin-like growth factor 2 on the proliferation of human trophoblasts in vitro. J. Obstet. Gynaecol. Res. 2016, 42, 44–51. [Google Scholar] [CrossRef]
- Efstratiadis, A. Genetics of mouse growth. Int. J. Dev. Biol. 1998, 42, 955–976. [Google Scholar]
- Coan, P.M.; Fowden, A.L.; Constancia, M.; Ferguson-Smith, A.C.; Burton, G.J.; Sibley, C.P. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J. Physiol. 2008, 586, 5023–5032. [Google Scholar] [CrossRef]
- Dupont, J.; Holzenberger, M. Biology of insulin-like growth factors in development. Birth Defects Res. Part C Embryo Today 2003, 69, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Blyth, A.J.; Kirk, N.S.; Forbes, B.E. Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells 2020, 9, 2276. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Duan, C.; Bai, X.C. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat. Rev. Mol. Cell Biol. 2025, 26, 558–580. [Google Scholar] [CrossRef]
- Han, V.K.; Bassett, N.; Walton, J.; Challis, J.R. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: Evidence for IGF-IGFBP interactions at the feto-maternal interface. J. Clin. Endocrinol. Metab. 1996, 81, 2680–2693. [Google Scholar] [CrossRef]
- Lau, M.M.; Stewart, C.E.; Liu, Z.; Bhatt, H.; Rotwein, P.; Stewart, C.L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes. Dev. 1994, 8, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.D.; Kiess, W. Soluble M6P/IGFIIR in the circulation. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 723–733. [Google Scholar] [CrossRef]
- Daza, D.O.; Sundström, G.; Bergqvist, C.A.; Duan, C.; Larhammar, D. Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 2011, 152, 2278–2289. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.S.; Lysiak, J.J.; Han, V.K.; Lala, P.K. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp. Cell Res. 1998, 244, 147–156. [Google Scholar] [CrossRef]
- Irving, J.A.; Lala, P.K. Functional role of cell surface integrins on human trophoblast cell migration: Regulation by TGF-beta, IGF-II, and IGFBP-1. Exp. Cell Res. 1995, 217, 419–427. [Google Scholar] [CrossRef]
- Gibson, J.M.; Aplin, J.D.; White, A.; Westwood, M. Regulation of IGF bioavailability in pregnancy. Mol. Hum. Reprod. 2001, 7, 79–87. [Google Scholar] [CrossRef]
- McLellan, K.C.; Hooper, S.B.; Bocking, A.D.; Delhanty, P.J.; Phillips, I.D.; Hill, D.J.; Han, V.K. Prolonged hypoxia induced by the reduction of maternal uterine blood flow alters insulin-like growth factor-binding protein-1 (IGFBP-1) and IGFBP-2 gene expression in the ovine fetus. Endocrinology 1992, 131, 1619–1628. [Google Scholar] [CrossRef]
- Wu, L.; Song, W.Y.; Xie, Y.; Hu, L.L.; Hou, X.M.; Wang, R.; Gao, Y.; Zhang, J.N.; Zhang, L.; Li, W.W.; et al. miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 2018, 9, 16. [Google Scholar] [CrossRef]
- Baxter, R.C. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr. Rev. 2023, 44, 753–778. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front. Endocrinol. 2018, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.S.; Stevenson, K.R.; Wathes, D.C. Pregnancy-specific alterations in the expression of the insulin-like growth factor system during early placental development in the ewe. Endocrinology 1997, 138, 886–897. [Google Scholar] [CrossRef]
- Herrler, A.; Pell, J.M.; Allen, W.R.; Beier, H.M.; Stewart, F. Horse conceptuses secrete insulin-like growth factor-binding protein 3. Biol. Reprod. 2000, 62, 1804–1811. [Google Scholar] [CrossRef]
- Klein, C.; Scoggin, K.E.; Ealy, A.D.; Troedsson, M.H. Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biol. Reprod. 2010, 83, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Merkl, M.; Ulbrich, S.E.; Otzdorff, C.; Herbach, N.; Wanke, R.; Wolf, E.; Handler, J.; Bauersachs, S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol. Reprod. 2010, 83, 874–886. [Google Scholar] [CrossRef]
- Rogers, J.; Wiltrout, L.; Nanu, L.; Fant, M.E. Developmentally regulated expression of IGF binding protein-3 (IGFBP-3) in human placental fibroblasts: Effect of exogenous IGFBP-3 on IGF-1 action. Regul. Pept. 1996, 61, 189–195. [Google Scholar] [CrossRef]
- Firth, S.M.; Baxter, R.C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 2002, 23, 824–854. [Google Scholar] [CrossRef]
- Waters, J.A.; Urbano, I.; Robinson, M.; House, C.D. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front. Oncol. 2022, 12, 1052457. [Google Scholar] [CrossRef]
- Robinson, S.J.; Neal, H.; Allen, W.R. Modulation of oviductal transport in mares by local application of prostaglandin E2. J. Reprod. Fertil. Suppl. 2000, 56, 587–592. [Google Scholar]
- Gadd, T.S.; Osgerby, J.C.; Wathes, D.C. Regulation and localization of insulin-like growth factor binding protein-5 gene expression in the uterus and placenta of the cyclic and early pregnant ewe. Biol. Reprod. 2000, 62, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Nawathe, A.R.; Christian, M.; Kim, S.H.; Johnson, M.; Savvidou, M.D.; Terzidou, V. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clin. Epigenetics 2016, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.L.; Zhu, J.W.; Zeng, C.; Li, X.; Xue, Q.; Yang, H.X. IGFBP7 enhances trophoblast invasion via IGF-1R/c-Jun signaling in unexplained recurrent spontaneous abortion. Reproduction 2022, 164, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Hwa, V.; Oh, Y.; Rosenfeld, R.G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr. Rev. 1999, 20, 761–787. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scoggin, K.E.; Adlan, F.; Fedorka, C.E.; Rakha, S.I.; Stout, T.A.E.; Troedsson, M.H.T.; Ali, H.E.-S. Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta. Biomolecules 2025, 15, 1135. https://doi.org/10.3390/biom15081135
Scoggin KE, Adlan F, Fedorka CE, Rakha SI, Stout TAE, Troedsson MHT, Ali HE-S. Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta. Biomolecules. 2025; 15(8):1135. https://doi.org/10.3390/biom15081135
Chicago/Turabian StyleScoggin, Kirsten E., Fatma Adlan, Carleigh E. Fedorka, Shimaa I. Rakha, Tom A. E. Stout, Mats H. T. Troedsson, and Hossam El-Sheikh Ali. 2025. "Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta" Biomolecules 15, no. 8: 1135. https://doi.org/10.3390/biom15081135
APA StyleScoggin, K. E., Adlan, F., Fedorka, C. E., Rakha, S. I., Stout, T. A. E., Troedsson, M. H. T., & Ali, H. E.-S. (2025). Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta. Biomolecules, 15(8), 1135. https://doi.org/10.3390/biom15081135