Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = sequential quantum measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 17580 KB  
Article
Joint Hyperspectral Images and LiDAR Data Classification Combined with Quantum-Inspired Entangled Mamba
by Davaajargal Myagmarsuren, Aili Wang, Haoran Lv, Haibin Wu, Gabor Molnar and Liang Yu
Remote Sens. 2025, 17(24), 4065; https://doi.org/10.3390/rs17244065 - 18 Dec 2025
Viewed by 422
Abstract
The multimodal fusion of hyperspectral images (HSI) and LiDAR data for land cover classification encounters difficulties in modeling heterogeneous data characteristics and cross-modal dependencies, leading to the loss of complementary information due to concatenation, the inadequacy of fixed fusion weights to adapt to [...] Read more.
The multimodal fusion of hyperspectral images (HSI) and LiDAR data for land cover classification encounters difficulties in modeling heterogeneous data characteristics and cross-modal dependencies, leading to the loss of complementary information due to concatenation, the inadequacy of fixed fusion weights to adapt to spatially varying reliability, and the assumptions of linear separability for nonlinearly coupled patterns. We propose QIE-Mamba, integrating selective state-space models with quantum-inspired processing to enhance multimodal representation learning. The framework employs ConvNeXt encoders for hierarchical feature extraction, quantum superposition layers for complex-valued multimodal encoding with learned amplitude–phase relationships, unitary entanglement networks via skew-symmetric matrix parameterization (validated through Cayley transform and matrix exponential methods), quantum-enhanced Mamba blocks with adaptive decoherence, and confidence-weighted measurement for classification. Systematic three-phase sequential validation on Houston2013, Muufl, and Augsburg datasets achieves overall accuracies of 99.62%, 96.31%, and 96.30%. Theoretical validation confirms 35.87% mutual information improvement over classical fusion (6.9966 vs. 5.1493 bits), with ablation studies demonstrating quantum superposition contributes 82% of total performance gains. Phase information accounts for 99.6% of quantum state entropy, while gradient convergence analysis confirms training stability (zero mean/std gradient norms). The optimization framework reduces hyperparameter search complexity by 99.6% while maintaining state-of-the-art performance. These results establish quantum-inspired state-space models as effective architectures for multimodal remote sensing fusion, providing reproducible methodology for hyperspectral–LiDAR classification with linear computational complexity. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

24 pages, 3276 KB  
Review
In Situ Neutron and Synchrotron X-Ray Analysis of Structural Evolution on Plastically Deformed Metals During Annealing
by Xiaojing Liu, Zheng Lei and Zhengxing Men
Coatings 2025, 15(12), 1438; https://doi.org/10.3390/coatings15121438 - 7 Dec 2025
Viewed by 415
Abstract
This review highlights the significance of modern quantum-beam techniques, particularly neutron and synchrotron radiation sources, for advanced microstructural characterization of metallic systems. Following a brief introduction to neutron and synchrotron diffraction, selected studies demonstrate their application in probing thermally induced structural evolution in [...] Read more.
This review highlights the significance of modern quantum-beam techniques, particularly neutron and synchrotron radiation sources, for advanced microstructural characterization of metallic systems. Following a brief introduction to neutron and synchrotron diffraction, selected studies demonstrate their application in probing thermally induced structural evolution in plastically deformed metals. Additively manufactured CoCrFeNi alloys and 316L stainless steels subjected to high-pressure torsion (HPT) were investigated by in situ neutron diffraction during heating, revealing the sequential regimes of recovery, recrystallization, and grain growth. Coupled with mechanical measurements, the results show that HPT followed by controlled thermal treatment improves the mechanical performance, offering strategies for designing engineering materials with enhanced properties. The thermal anisotropy behavior of Ti-45Al-7.5Nb alloys under in situ neutron diffraction is defined as anisotropic ordering upon heating, while the HPT-processed alloy displayed isotropic recovery of order at earlier temperatures. Complementary in situ synchrotron studies in rolled-sheet magnesium alloys unveiled microstructural rearrangement, grain rotation, recovery, and precipitate dissolution during annealing. And phase transformation, recovery, and recrystallization processes were detected in steel using HEXRD. This work emphasizes the complementary strengths of the neutron and synchrotron methods and recommends their broader application as powerful tools to unravel microstructure–property relationships in plastically deformed metals. Full article
(This article belongs to the Special Issue Surface Treatment and Mechanical Properties of Metallic Materials)
Show Figures

Figure 1

51 pages, 643 KB  
Article
Sequential Quantum Measurements and the Instrumental Group Algebra
by Christopher S. Jackson
Quantum Rep. 2025, 7(4), 57; https://doi.org/10.3390/quantum7040057 - 30 Nov 2025
Viewed by 419
Abstract
Many of the most fundamental observables—position, momentum, phase point, and spin direction—cannot be measured by an instrument that obeys the orthogonal projection postulate. Continuous-in-time measurements provide the missing theoretical framework to make physical sense of such observables. The elements of the time-dependent instrument [...] Read more.
Many of the most fundamental observables—position, momentum, phase point, and spin direction—cannot be measured by an instrument that obeys the orthogonal projection postulate. Continuous-in-time measurements provide the missing theoretical framework to make physical sense of such observables. The elements of the time-dependent instrument define a group called the instrumental group (IG). Relative to the IG, all of the time dependence is contained in a certain function called the Kraus-operator density (KOD), which evolves according to a classical Kolmogorov equation. Unlike the Lindblad master equation, the KOD Kolmogorov equation is a direct expression of how the elements of the instrument (not just the total quantum channel) evolve. Shifting from continuous measurements to sequential measurements more generally, the structure of combining instruments in sequence is shown to correspond to the convolution of their KODs. This convolution promotes the IG to an involutive Banach algebra (a structure that goes all the way back to the origins of POVM and C*-algebra theory), which will be called the instrumental group algebra (IGA). The IGA is the true home of the KOD, similar to how the dual of a von Neumann algebra is the true home of the density operator. Operators on the IGA, which play the analogous role for KODs as superoperators play for density operators, are called ultraoperators and various important examples are discussed. Certain ultraoperator–superoperator intertwining relationships are also considered throughout, including the relationship between the KOD Kolmogorov equation and the Lindblad master equation. The IGA is also shown to have actually two distinct involutions: one respected by the convolution ultraoperators and the other by the quantum channel superoperators. Finally, the KOD Kolmogorov generators are derived for jump processes and more general diffusive processes. Full article
18 pages, 974 KB  
Article
Authenticated Multi-Party Quantum Private Set Intersection with Single Particles
by Gong-De Guo, Li-Qin Zheng, Kai Yu and Song Lin
Mathematics 2025, 13(12), 2019; https://doi.org/10.3390/math13122019 - 18 Jun 2025
Cited by 2 | Viewed by 962
Abstract
As an important branch of secure multi-party computation, privacy set intersection enables multiple parties to input their private sets and jointly compute the intersection of these sets without revealing any information other than the intersection itself. With the increasing demand for privacy protection [...] Read more.
As an important branch of secure multi-party computation, privacy set intersection enables multiple parties to input their private sets and jointly compute the intersection of these sets without revealing any information other than the intersection itself. With the increasing demand for privacy protection of user data, privacy set intersection has been widely used in privacy computing and other fields. In this paper, we utilize the properties of mutually unbiased bases to propose a multi-party quantum private set intersection protocol that incorporates identity authentication mechanisms. A semi-honest third party (TP) is introduced to facilitate the secure execution of this task among the multiple participating parties. The TP establishes a shared master key with each party, which serves as the basis for authenticating the identity of each participant throughout the protocol. Single-particle quantum states, prepared by the TP, act as the information carriers and are sequentially transmitted among the participating parties. Each party performs a local unitary operation on the circulating particle, thereby encoding their private data within the quantum state. At the end of the protocol, the TP announces his measurement result, by which all participants can concurrently ascertain the intersection of their private data sets. Notably, the proposed protocol eliminates the need for long-term storage of single-particle quantum states, thereby rendering it feasible with existing quantum technological capabilities. Furthermore, a comprehensive security analysis demonstrates that the protocol effectively resists some common external and internal attacks, thereby ensuring its theoretical security. Full article
(This article belongs to the Special Issue Quantum Cryptography and Applications)
Show Figures

Figure 1

24 pages, 3951 KB  
Article
Optimization of OPM-MEG Layouts with a Limited Number of Sensors
by Urban Marhl, Rok Hren, Tilmann Sander and Vojko Jazbinšek
Sensors 2025, 25(9), 2706; https://doi.org/10.3390/s25092706 - 24 Apr 2025
Cited by 2 | Viewed by 2783
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that measures weak magnetic fields generated by neural electrical activity in the brain. Traditional MEG systems use superconducting quantum interference device (SQUID) sensors, which require cryogenic cooling and employ a dense array of sensors to capture [...] Read more.
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that measures weak magnetic fields generated by neural electrical activity in the brain. Traditional MEG systems use superconducting quantum interference device (SQUID) sensors, which require cryogenic cooling and employ a dense array of sensors to capture magnetic field maps (MFMs) around the head. Recent advancements have introduced optically pumped magnetometers (OPMs) as a promising alternative. Unlike SQUIDs, OPMs do not require cooling and can be placed closer to regions of interest (ROIs). This study aims to optimize the layout of OPM-MEG sensors, maximizing information capture with a limited number of sensors. We applied a sequential selection algorithm (SSA), originally developed for body surface potential mapping in electrocardiography, which requires a large database of full-head MFMs. While modern OPM-MEG systems offer full-head coverage, expected future clinical use will benefit from simplified procedures, where handling a lower number of sensors is easier and more efficient. To explore this, we converted full-head SQUID-MEG measurements of auditory-evoked fields (AEFs) into OPM-MEG layouts with 80 sensor sites. System conversion was done by calculating a current distribution on the brain surface using minimum norm estimation (MNE). We evaluated the SSA’s performance under different protocols, for example, using measurements of single or combined OPM components. We assessed the quality of estimated MFMs using metrics, such as the correlation coefficient (CC), root-mean-square error, and relative error. Additionally, we performed source localization for the highest auditory response (M100) by fitting equivalent current dipoles. Our results show that the first 15 to 20 optimally selected sensors (CC > 0.95, localization error < 1 mm) capture most of the information contained in full-head MFMs. Our main finding is that for event-related fields, such as AEFs, which primarily originate from focal sources, a significantly smaller number of sensors than currently used in conventional MEG systems is sufficient to extract relevant information. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

18 pages, 4064 KB  
Article
Sequential Discrimination of Mixed Quantum States
by Jin-Hua Zhang, Fu-Lin Zhang, Yan Gao, Wei Qin and Shao-Ming Fei
Entropy 2025, 27(3), 246; https://doi.org/10.3390/e27030246 - 27 Feb 2025
Viewed by 933
Abstract
Classical mixtures of quantum states often give rise to decoherence and are generally considered detrimental to quantum processing. However, in the framework of sequential measurement, such mixtures can be beneficial for state discrimination. We investigate the sequential discrimination of mixed states and compare [...] Read more.
Classical mixtures of quantum states often give rise to decoherence and are generally considered detrimental to quantum processing. However, in the framework of sequential measurement, such mixtures can be beneficial for state discrimination. We investigate the sequential discrimination of mixed states and compare the results with those of pure states under the condition of equal fidelity. It is found that the successful probability of the mixed-state protocol is superior to the pure one under the equal-fidelity condition. It is shown that the difference between the sequential discrimination of pure and mixed states is more reliable under the equal-fidelity condition than under single-shot discrimination, and this difference increases with the mixability of the initial mixed states. For scenarios in which classical communication is allowed, the optimal successful probability of pure-state discriminations is larger than that for mixed states on the contrary. We also show that the classical mixture of basic vectors from quantum decoherence has a subtle impact on the communication channel induced by the coincidence of the maximal mutual information and optimal successful probability of sequential discrimination for pure states. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

21 pages, 295 KB  
Article
Unveiling the Fifth Dimension: A Novel Approach to Quantum Mechanics
by Frederick George Astbury
Quantum Rep. 2025, 7(1), 8; https://doi.org/10.3390/quantum7010008 - 15 Feb 2025
Viewed by 3395
Abstract
Quantum mechanics (QM) has long challenged our understanding of time, space, and reality, with phenomena such as superposition, wave–particle duality, and quantum entanglement defying classical notions of causality and locality. Despite the predictive success of QM, its interpretations—such as the Copenhagen and many-worlds [...] Read more.
Quantum mechanics (QM) has long challenged our understanding of time, space, and reality, with phenomena such as superposition, wave–particle duality, and quantum entanglement defying classical notions of causality and locality. Despite the predictive success of QM, its interpretations—such as the Copenhagen and many-worlds interpretations—remain contentious and incomplete. This paper introduces Strip Theory, a novel framework that reconceptualises time as a two-dimensional manifold comprising foretime, the sequential dimension, and sidetime, an orthogonal possibility dimension representing parallel quantum outcomes. By incorporating sidetime, the theory provides a unified explanation for quantum superposition, coherence, and interference, resolving ambiguities associated with wavefunction collapse. The methods involve extending the mathematical formalism of QM into a five-dimensional framework, where sidetime is explicitly encoded alongside spatial and sequential temporal dimensions. The principal findings demonstrate that this model reproduces all measurable results of QM while addressing foundational issues, offering a clearer and more deterministic interpretation of quantum phenomena. Furthermore, the framework provides insights into quantum coherence, wave–particle duality, and the philosophical implications of free will. These results suggest that Strip Theory can serve as a bridge between interpretations and provide a deeper understanding of time and reality, advancing both theoretical and conceptual horizons. Full article
(This article belongs to the Special Issue 100 Years of Quantum Mechanics)
23 pages, 6157 KB  
Article
Stomatal and Non-Stomatal Leaf Responses during Two Sequential Water Stress Cycles in Young Coffea canephora Plants
by Danilo F. Baroni, Guilherme A. R. de Souza, Wallace de P. Bernado, Anne R. Santos, Larissa C. de S. Barcellos, Letícia F. T. Barcelos, Laísa Z. Correia, Claudio M. de Almeida, Abraão C. Verdin Filho, Weverton P. Rodrigues, José C. Ramalho, Miroslava Rakočević and Eliemar Campostrini
Stresses 2024, 4(3), 575-597; https://doi.org/10.3390/stresses4030037 - 9 Sep 2024
Cited by 4 | Viewed by 2387
Abstract
Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions [...] Read more.
Understanding the dynamics of physiological changes involved in the acclimation responses of plants after their exposure to repeated cycles of water stress is crucial to selecting resilient genotypes for regions with recurrent drought episodes. Under such background, we tried to respond to questions as: (1) Are there differences in the stomatal-related and non-stomatal responses during water stress cycles in different clones of Coffea canephora Pierre ex A. Froehner? (2) Do these C. canephora clones show a different response in each of the two sequential water stress events? (3) Is one previous drought stress event sufficient to induce a kind of “memory” in C. canephora? Seven-month-old plants of two clones (’3V’ and ‘A1’, previously characterized as deeper and lesser deep root growth, respectively) were maintained well-watered (WW) or fully withholding the irrigation, inducing soil water stress (WS) until the soil matric water potential (Ψmsoil) reached ≅ −0.5 MPa (−500 kPa) at a soil depth of 500 mm. Two sequential drought events (drought-1 and drought-2) attained this Ψmsoil after 19 days and were followed by soil rewatering until a complete recovery of leaf net CO2 assimilation rate (Anet) during the recovery-1 and recovery-2 events. The leaf gas exchange, chlorophyll a fluorescence, and leaf reflectance parameters were measured in six-day frequency, while the leaf anatomy was examined only at the end of the second drought cycle. In both drought events, the WS plants showed reduction in stomatal conductance and leaf transpiration. The reduction in internal CO2 diffusion was observed in the second drought cycle, expressed by increased thickness of spongy parenchyma in both clones. Those stomatal and anatomical traits impacted decreasing the Anet in both drought events. The ‘3V’ was less influenced by water stress than the ‘A1’ genotype in Anet, effective quantum yield in PSII photochemistry, photochemical quenching, linear electron transport rate, and photochemical reflectance index during the drought-1, but during the drought-2 event such an advantage disappeared. Such physiological genotype differences were supported by the medium xylem vessel area diminished only in ‘3V’ under WS. In both drought cycles, the recovery of all observed stomatal and non-stomatal responses was usually complete after 12 days of rewatering. The absence of photochemical impacts, namely in the maximum quantum yield of primary photochemical reactions, photosynthetic performance index, and density of reaction centers capable of QA reduction during the drought-2 event, might result from an acclimation response of the clones to WS. In the second drought cycle, the plants showed some improved responses to stress, suggesting “memory” effects as drought acclimation at a recurrent drought. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Graphical abstract

15 pages, 1575 KB  
Article
Microsolvation of a Proton by Ar Atoms: Structures and Energetics of ArnH+ Clusters
by María Judit Montes de Oca-Estévez and Rita Prosmiti
Molecules 2024, 29(17), 4084; https://doi.org/10.3390/molecules29174084 - 28 Aug 2024
Cited by 2 | Viewed by 1311
Abstract
We present a computational investigation on the structural arrangements and energetic stabilities of small-size protonated argon clusters, Ar nH +. Using high-level ab initio electronic structure computations, we determined that the linear symmetric triatomic ArH +Ar ion [...] Read more.
We present a computational investigation on the structural arrangements and energetic stabilities of small-size protonated argon clusters, Ar nH +. Using high-level ab initio electronic structure computations, we determined that the linear symmetric triatomic ArH +Ar ion serves as the molecular core for all larger clusters studied. Through harmonic normal-mode analysis for clusters containing up to seven argon atoms, we observed that the proton-shared vibration shifts to lower frequencies, consistent with measurements in gas-phase IRPD and solid Ar-matrix isolation experiments. We explored the sum-of-potentials approach by employing kernel-based machine-learning potential models trained on CCSD(T)-F12 data. These models included expansions of up to two-body, three-body, and four-body terms to represent the underlying interactions as the number of Ar atoms increases. Our results indicate that the four-body contributions are crucial for accurately describing the potential surfaces in clusters with n> 3. Using these potential models and an evolutionary programming method, we analyzed the structural stability of clusters with up to 24 Ar atoms. The most energetically favored Ar nH + structures were identified for magic size clusters at n = 7, 13, and 19, corresponding to the formation of Ar-pentagon rings perpendicular to the ArH +Ar core ion axis. The sequential formation of such regular shell structures is compared to ion yield data from high-resolution mass spectrometry measurements. Our results demonstrate the effectiveness of the developed sum-of-potentials model in describing trends in the nature of bonding during the single proton microsolvation by Ar atoms, encouraging further quantum nuclear studies. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

33 pages, 5971 KB  
Article
The Immunosuppressive Properties of Cyclo-[D-Pro-Pro-β3-HoPhe-Phe-] Tetrapeptide Selected from Stereochemical Variants of Cyclo-[Pro-Pro-β3-HoPhe-Phe-] Peptide
by Krzysztof Kaczmarek, Jolanta Artym, Joanna Bojarska, Barbara Pacholczyk-Sienicka, Joanna Waśko, Ingrid Jelemenska, Wojciech M. Wolf, Martin Breza and Michał Zimecki
Pharmaceutics 2024, 16(8), 1106; https://doi.org/10.3390/pharmaceutics16081106 - 22 Aug 2024
Cited by 1 | Viewed by 1930
Abstract
The anti-inflammatory, antiviral, and anti-cancer properties, as well as the mechanism of action of cyclo-[Pro-Pro-β3-HoPhe-Phe-] tetrapeptide (denoted as 4B8M), were recently described. The aim of this work was to synthesize and evaluate the immunosuppressive actions of the stereochemical variants of [...] Read more.
The anti-inflammatory, antiviral, and anti-cancer properties, as well as the mechanism of action of cyclo-[Pro-Pro-β3-HoPhe-Phe-] tetrapeptide (denoted as 4B8M), were recently described. The aim of this work was to synthesize and evaluate the immunosuppressive actions of the stereochemical variants of 4B8M by sequential substitution of L-amino acids by D-amino acids (a series of peptides denoted as P01–P07) using parent 4B8M as a reference compound. In addition, diverse available bioinformatics tools using machine learning and artificial intelligence were tested to find the bio-pharmacokinetic and polypharmacological attributes of analyzed stereomers. All peptides were non-toxic to human peripheral blood mononuclear cells (PBMCs) and only cyclo-[D-Pro-Pro-β3-HoPhe-Phe-] peptide (P03) was capable of inhibiting mitogen-induced PBMC proliferation. The peptides inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α) to various degrees, with P04 (cyclo-[Pro-Pro-D-β3-HoPhe-Phe-]) and P03 being the most potent. For further in vivo studies, P03 was selected because it had the combined properties of inhibiting cell proliferation and TNF-α production. P03 demonstrated a comparable ability to 4B8M in the inhibition of auricle edema and lymph node cell number and in the normalization of a distorted blood cell composition in contact sensitivity to the oxazolone mouse model. In the mouse model of carrageenan-induced inflammation of the air pouch, P03 exhibited a similar inhibition of the cell number in the air pouches as 4B8M, but its inhibitory effects on the percentage of neutrophils and eosinophils in the air pouches and blood, as well as on mastocyte degranulation in the air pouches, were stronger in comparison to 4B8M. Lastly, in a mouse model of dextran sulfate-induced colitis, similar effects to 4B8M regarding thymocyte number restoration and normalization of the blood cell pictures by P03 were observed. In summary, depending on either experimental findings or in silico predictions, P03 demonstrated comparable, or even better, anti-inflammatory and bio-pharmacokinetic properties to 4B8M and may be considered as a potential therapeutic. The possibility of P00 and P03 identification by circular dichroism measurements was tested by quantum-chemical calculations. Full article
Show Figures

Figure 1

19 pages, 327 KB  
Article
Relativistic Consistency of Nonlocal Quantum Correlations
by Christian Beck and Dustin Lazarovici
Entropy 2024, 26(7), 548; https://doi.org/10.3390/e26070548 - 27 Jun 2024
Cited by 1 | Viewed by 1698
Abstract
What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker [...] Read more.
What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker than Bell locality but stronger than the no-signaling condition meant to exclude superluminal communication. While justifications for the no-signaling condition often rely on anthropocentric arguments, relativistic consistency is simply the requirement that joint outcome distributions for spacelike separated measurements (or measurement-like processes) must be independent of their temporal order. This is necessary to obtain consistent statistical predictions across different Lorentz frames. We first consider ideal quantum measurements, derive the relevant consistency condition on the level of probability distributions, and show that it implies no-signaling (but not vice versa). We then extend the results to general quantum operations and derive corresponding operator conditions. This will allow us to clarify the relationships between relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency is the basic physical principle that ensures the compatibility of quantum statistics and relativistic spacetime structure, while no-signaling and local commutativity can be justified on this basis. Full article
(This article belongs to the Special Issue Time and Temporal Asymmetries)
26 pages, 976 KB  
Review
Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments
by Xianzhi Huang, Liyao Zhan, Liang Li, Suhui Bao, Zipeng Tao and Jiayu Ying
Photonics 2023, 10(12), 1314; https://doi.org/10.3390/photonics10121314 - 28 Nov 2023
Viewed by 2734
Abstract
Quantum correlation is a key resource for a variety of quantum information processing and communication tasks, the efficient utilization of which has been a longstanding concern, and it is also one of the main challenges in the application of quantum technology. In this [...] Read more.
Quantum correlation is a key resource for a variety of quantum information processing and communication tasks, the efficient utilization of which has been a longstanding concern, and it is also one of the main challenges in the application of quantum technology. In this review, we focus on the interaction between quantum measurements and quantum correlations by designing appropriate measurement strategies, specifically exploring the trade-off between information gain and disturbance degree in weak measurements to ensure that quantum correlations from the same source can be shared among multiple independent observers. We introduce the basic knowledge and classification of quantum measurements, investigate the weak measurement scenario, and show the theoretical model construction of quantum correlation recycling in the original works. We summarize the theoretical and experimental development process and the latest progress in this field. Finally, we provide an outlook for more quantum resource applications that can profit from the optimization of quantum measurement strategies. Full article
(This article belongs to the Special Issue Quantum Optics: Science and Applications)
Show Figures

Figure 1

49 pages, 4386 KB  
Article
Free Choice in Quantum Theory: A p-adic View
by Vladimir Anashin
Entropy 2023, 25(5), 830; https://doi.org/10.3390/e25050830 - 22 May 2023
Cited by 8 | Viewed by 3180
Abstract
In this paper, it is rigorously proven that since observational data (i.e., numerical values of physical quantities) are rational numbers only due to inevitably nonzero measurements errors, the conclusion about whether Nature at the smallest scales is discrete or continuous, random and chaotic, [...] Read more.
In this paper, it is rigorously proven that since observational data (i.e., numerical values of physical quantities) are rational numbers only due to inevitably nonzero measurements errors, the conclusion about whether Nature at the smallest scales is discrete or continuous, random and chaotic, or strictly deterministic, solely depends on experimentalist’s free choice of the metrics (real or p-adic) he chooses to process the observational data. The main mathematical tools are p-adic 1-Lipschitz maps (which therefore are continuous with respect to the p-adic metric). The maps are exactly the ones defined by sequential Mealy machines (rather than by cellular automata) and therefore are causal functions over discrete time. A wide class of the maps can naturally be expanded to continuous real functions, so the maps may serve as mathematical models of open physical systems both over discrete and over continuous time. For these models, wave functions are constructed, entropic uncertainty relation is proven, and no hidden parameters are assumed. The paper is motivated by the ideas of I. Volovich on p-adic mathematical physics, by G. ‘t Hooft’s cellular automaton interpretation of quantum mechanics, and to some extent, by recent papers on superdeterminism by J. Hance, S. Hossenfelder, and T. Palmer. Full article
(This article belongs to the Special Issue New Trends in Theoretical and Mathematical Physics)
Show Figures

Figure 1

15 pages, 2770 KB  
Article
Facile One-Pot Green Synthesis of Magneto-Luminescent Bimetallic Nanocomposites with Potential as Dual Imaging Agent
by Radek Ostruszka, Denisa Půlpánová, Tomáš Pluháček, Ondřej Tomanec, Petr Novák, Daniel Jirák and Karolína Šišková
Nanomaterials 2023, 13(6), 1027; https://doi.org/10.3390/nano13061027 - 13 Mar 2023
Cited by 14 | Viewed by 3072
Abstract
Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner [...] Read more.
Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner and obeys the principles of green chemistry. Briefly, bovine serum albumin (BSA) was exploited to uptake Au (III) and Fe (II)/Fe (III) ions simultaneously. Then, Au (III) ions were transformed to luminescent Au nanoclusters embedded in BSA (AuNCs-BSA) and majority of Fe ions were bio-embedded into superparamagnetic iron oxide nanoparticles (SPIONs) by the alkalization of the reaction medium. The resulting nanocomposites, AuNCs-BSA-SPIONs, represent a bimodal nanoprobe. Scanning transmission electron microscopy (STEM) imaging visualized nanostructures with sizes in units of nanometres that were arranged into aggregates. Mössbauer spectroscopy gave direct evidence regarding SPION presence. The potential applicability of these bimodal nanoprobes was verified by the measurement of their luminescent features as well as magnetic resonance (MR) imaging and relaxometry. It appears that these magneto-luminescent nanocomposites were able to compete with commercial MRI contrast agents as MR displays the beneficial property of bright luminescence of around 656 nm (fluorescence quantum yield of 6.2 ± 0.2%). The biocompatibility of the AuNCs-BSA-SPIONs nanocomposite has been tested and its long-term stability validated. Full article
Show Figures

Graphical abstract

16 pages, 1361 KB  
Review
Searching for the Best Values of NMR Shielding and Spin-Spin Coupling Parameters: CH4-nFn Series of Molecules as the Example
by Karol Jackowski and Mateusz A. Słowiński
Molecules 2023, 28(3), 1499; https://doi.org/10.3390/molecules28031499 - 3 Feb 2023
Cited by 6 | Viewed by 3122
Abstract
Attempts at the theoretical interpretation of NMR spectra have a very long and fascinating history. Present quantum chemical calculations of shielding and indirect spin-spin couplings permit modeling NMR spectra when small, isolated molecules are studied. Similar data are also available from NMR experiments [...] Read more.
Attempts at the theoretical interpretation of NMR spectra have a very long and fascinating history. Present quantum chemical calculations of shielding and indirect spin-spin couplings permit modeling NMR spectra when small, isolated molecules are studied. Similar data are also available from NMR experiments if investigations are performed in the gas phase. An interesting set of molecules is formed when a methane molecule is sequentially substituted by fluorine atoms—CH4-nFn, where n = 0, 1, 2, 3, or 4. The small molecules contain up to three magnetic nuclei, each with a one-half spin number. The spectral parameters of CH4-nFn can be easily observed in the gas phase and calculated with high accuracy using the most advanced ab initio methods of quantum chemistry. However, the presence of fluorine atoms makes the calculations of shielding and spin-spin coupling constants extremely demanding. Appropriate experimental 19F NMR parameters are good but also require some further improvements. Therefore, there is a real need for the comparison of existing NMR measurements with available state-of-the-art theoretical results for a better understanding of actual limits in the determination of the best shielding and spin-spin coupling values, and CH4-nFn molecules are used here as the exceptionally important case. Full article
Show Figures

Figure 1

Back to TopTop